Asymmetric Interaction Between Two Mycorrhizal Fungal Guilds and Consequences for the Establishment of Their Host Plants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35755655
PubMed Central
PMC9218742
DOI
10.3389/fpls.2022.873204
Knihovny.cz E-zdroje
- Klíčová slova
- Betula pendula, Hieracium caespitosum, arbuscular mycorrhizae, ectomycorrhizae, mycorrhizal networks, primary succession,
- Publikační typ
- časopisecké články MeSH
Arbuscular mycorrhiza (AM) and ectomycorrhiza (EcM) are the most abundant and widespread types of mycorrhizal symbiosis, but there is little and sometimes conflicting information regarding the interaction between AM fungi (AMF) and EcM fungi (EcMF) in soils. Their competition for resources can be particularly relevant in successional ecosystems, which usually present a transition from AM-forming herbaceous vegetation to EcM-forming woody species. The aims of this study were to describe the interaction between mycorrhizal fungal communities associated with AM and EcM hosts naturally coexisting during primary succession on spoil banks and to evaluate how this interaction affects growth and mycorrhizal colonization of seedlings of both species. We conducted a greenhouse microcosm experiment with Betula pendula and Hieracium caespitosum as EcM and AM hosts, respectively. They were cultivated in three-compartment rhizoboxes. Two lateral compartments contained different combinations of both host plants as sources of fungal mycelia colonizing the middle compartment, where fungal biomass, diversity, and community composition as well as the growth of each host plant species' seedlings were analyzed. The study's main finding was an asymmetric outcome of the interaction between the two plant species: while H. caespitosum and associated AMF reduced the abundance of EcMF in soil, modified the composition of EcMF communities, and also tended to decrease growth and mycorrhizal colonization of B. pendula seedlings, the EcM host did not have such effects on AM plants and associated AMF. In the context of primary succession, these findings suggest that ruderal AM hosts could hinder the development of EcM tree seedlings, thus slowing the transition from AM-dominated to EcM-dominated vegetation in early successional stages.
Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czechia
Department of Mycorrhizal Symbioses Institute of Botany Czech Academy of Sciences Průhonice Czechia
Faculty of Science Institute for Environmental Studies Charles University Prague Czechia
Institute of Microbiology Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Allen M. F., Crisafulli C. M., Morris S. J., Egerton-Warburton L. M., MacMahon J. A., Trappe J. M. (2005). “Mycorrhizae and Mount St. Helens: story of a symbiosis,” in Ecological Responses to the 1980 Eruption of Mt. St. Helens. eds. Dale V. H., Swanson C. M., Crisafulli C. M. (New York, NY: Springer-Verlag; ), 221–232.
Bååth E. (2003). The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Microb. Ecol. 45, 373–383. doi: 10.1007/s00248-003-2002-y, PMID: PubMed DOI
Becklin K. M., Galen C. (2009). Intra- and interspecific variation in mycorrhizal associations across a heterogeneous habitat gradient in alpine plant communities. Arct. Antarct. Alp. Res. 41, 183–190. doi: 10.1657/1938-4246-41.2.183 DOI
Becklin K. M., Pallo M. L., Galen C. (2012). Willows indirectly reduce arbuscular mycorrhizal fungal colonization in understorey communities. J. Ecol. 100, 343–351. doi: 10.1111/j.1365-2745.2011.01903.x DOI
Bengtsson-Palme J., Veldre V., Ryberg M., Hartmann M., Branco S., Wang Z., et al. . (2013). ITSx: improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for use in environmental sequencing. Methods Ecol. Evol. 4, 914–919. doi: 10.1111/2041-210X.12073 DOI
Bödeker I. T., Lindahl B. D., Olson Å., Clemmensen K. E., Treseder K. (2016). Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently. Funct. Ecol. 30, 1967–1978. doi: 10.1111/1365-2435.12677 DOI
Brundrett M. C., Tedersoo L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115. doi: 10.1111/nph.14976, PMID: PubMed DOI
Casanova-Katny M. A., Torres-Mellado G. A., Palfner G., Cavieres L. A. (2011). The best for the guest: high Andean nurse cushions of Azorella madreporica enhance arbuscular mycorrhizal status in associated plant species. Mycorrhiza 21, 613–622. doi: 10.1007/s00572-011-0367-1, PMID: PubMed DOI
Cheng W. J., Xu Y. J., Huang G. M., Rahman M. M., Xiao Z. Y., Wu Q. S. (2020). Effects of five mycorrhizal fungi on biomass and leaf physiological activities of walnut. Not. Bot. Horti. Agrobot. Cluj-Napoca 48, 2021–2031. doi: 10.15835/nbha48412144 DOI
Cosme M., Fernández I., Van der Heijden M. G. A., Pieterse C. M. J. (2018). Non-mycorrhizal plants: the exceptions that prove the rule. Trends Plant Sci. 23, 577–587. doi: 10.1016/j.tplants.2018.04.004, PMID: PubMed DOI
Fernandez C. W., Kennedy P. G. (2015). Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytol. 209, 1382–1394. doi: 10.1111/nph.13648, PMID: PubMed DOI
Flores-Rentería L., Lau M. K., Lamit L. J., Gehring C. A. (2014). An elusive ectomycorrhizal fungus reveals itself: a new species of Geopora (Pyronemataceae) associated with Pinus edulis. Mycologia 106, 553–563. doi: 10.3852/13-263, PMID: PubMed DOI
Frouz J., Elhottová D., Baldrián P., Chroňáková A., Lukešová A., Nováková A., et al. . (2014). “Soil microflora development in post-mining sites,” in Soil Biota and Ecosystem Development in Post Mining Sites. ed. Frouz J. (Boca Raton, FL, USA: CRC Press; ), 153–171.
Frouz J., Toyota A., Mudrák O., Jílková V., Filipová A., Cajthaml T. (2016). Effects of soil substrate quality, microbial diversity and community composition on the plant community during primary succession. Soil Biol. Biochem. 99, 75–84. doi: 10.1016/j.soilbio.2016.04.024 DOI
García de León D., Moora M., Öpik M., Neuenkamp L., Gerz M., Jairus T., et al. . (2016). Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities. FEMS. Microb. Ecol. 92:fiw097. doi: 10.1093/femsec/fiw097, PMID: PubMed DOI
Gorzelak M. A., Asay A. K., Pickles B. J., Simard S. W. (2015). Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB Plants 7:plv050. doi: 10.1093/aobpla/plv050, PMID: PubMed DOI PMC
Hachani C., Lamhamedi M. S., Cameselle C., Gouveia S., Zine El Abidine A., Khasa D. P., et al. . (2020). Effects of ectomycorrhizal fungi and heavy metals (Pb, Zn, and cd) on growth and mineral nutrition of Pinus halepensis seedlings in North Africa. Microorganisms 8:2033. doi: 10.3390/microorganisms8122033, PMID: PubMed DOI PMC
Haskins K. E., Gehring C. A. (2004). Interactions with juniper alter pinyon pine ectomycorrhizal fungal communities. Ecology 85, 2687–2692. doi: 10.1890/04-0306 DOI
Hoeksema J. D., Chaudhary V. B., Gehring C. A., Johnson N. C., Karst J., Koide R. T., et al. . (2010). A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407. doi: 10.1111/j.1461-0248.2009.01430.x, PMID: PubMed DOI
Huang L. J., Liu Z., Zhu B. C., Bing Y. H., Zhang X. X., Lü C. (2016). The allelopathic effects of humus soil from Betula platyphylla and Quercus liaotungensis on undergrowth medicinal species in the Qiaoshan area. Adv. J. Food Sci. Technol. 10, 610–615. doi: 10.19026/ajfst.10.2192 DOI
Hubert N. A., Gehring C. A. (2008). Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone. Mycorrhiza 18, 363–374. doi: 10.1007/s00572-008-0185-2, PMID: PubMed DOI
Ihrmark K., Bödeker I. T. M., Cruz-Martinez K., Friberg H., Kubartova A., Schenck J., et al. . (2012). New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microb. Ecol. 82, 666–677. doi: 10.1111/j.1574-6941.2012.01437.x, PMID: PubMed DOI
Janos D. P. (1980). Mycorrhizae influence tropical succession. Biotropica 12, 56–64. doi: 10.2307/2389230 DOI
Janos D. P., Scott J., Aristizábal C., Bowman D. M. J. S. (2013). Arbuscular-mycorrhizal networks inhibit Eucalyptus tetrodonta seedlings in rain forest soil microcosms. PLoS One 8:e57716. doi: 10.1371/journal.pone.0057716, PMID: PubMed DOI PMC
Janoušková M., Rydlová J., Püschel D., Száková J., Vosátka M. (2011). Extraradical mycelium of arbuscular mycorrhizal fungi radiating from large plants depresses the growth of nearby seedlings in a nutrient deficient substrate. Mycorrhiza 21, 641–650. doi: 10.1007/s00572-011-0372-4, PMID: PubMed DOI
Johnson N. C., Graham J. H., Smith F. A. (1997). Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 135, 575–585. doi: 10.1046/j.1469-8137.1997.00729.x DOI
Jones M. D., Durall D. M., Tinker P. B. (1998). A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytol. 140, 125–134. doi: 10.1046/j.1469-8137.1998.00253.x DOI
Klinsukon C., Lumyong S., Kuyper T. W., Boonlue S. (2021). Colonization by arbuscular mycorrhizal fungi improves salinity tolerance of eucalyptus (Eucalyptus camaldulensis) seedlings. Sci. Rep. 11:4362. doi: 10.1038/s41598-021-84002-5, PMID: PubMed DOI PMC
Knoblochova T., Kohout P., Püschel D., Doubková P., Frouz J., Cajthaml T., et al. . (2017). Asymmetric response of root-associated fungal communities of an arbuscular mycorrhizal grass and an ectomycorrhizal tree to their coexistence in primary succession. Mycorrhiza 27, 775–789. doi: 10.1007/s00572-017-0792-x, PMID: PubMed DOI
Kolaříková Z., Kohout P., Krüger C., Janoušková M., Mrnka L., Rydlová J. (2017). Root-associated fungal communities along a primary succession on a mine spoil: distinct ecological guilds assemble differently. Soil Biol. Biochem. 113, 143–152. doi: 10.1016/j.soilbio.2017.06.004 DOI
Koske R. E., Gemma J. N. (1989). A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 92, 486–488. doi: 10.1016/S0953-7562(89)80195-9 DOI
Lambers H., Raven J. A., Shaver G. R., Smith S. E. (2008). Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 23, 95–103. doi: 10.1016/j.tree.2007.10.008, PMID: PubMed DOI
Lau J. A., Lennon J. T. (2012). Rapid responses of soil microorganisms improve plant fitness in novel environments. PNAS 109, 14058–14062. doi: 10.1073/pnas.1202319109, PMID: PubMed DOI PMC
Lin G., McCormack M. L., Guo D. (2015). Arbuscular mycorrhizal fungal effects on plant competition and community structure. J. Ecol. 103, 1224–1232. doi: 10.1111/1365-2745.12429 DOI
Lindahl B. D., Tunlid A. (2015). Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs. New Phytol. 205, 1443–1447. doi: 10.1111/nph.13201 PubMed DOI
Lodge D. J., Wentworth T. R. (1990). Negative associations among va-mycorrhizal fungi and some ectomycorrhizal fungi inhabiting the same root system. Oikos 57, 347–356. doi: 10.2307/3565964 DOI
Long D., Liu J., Han Q., Wang X., Huang J. (2016). Ectomycorrhizal fungal communities associated with Populus simonii and Pinus tabuliformis in the hilly-gully region of the loess plateau, China. Sci. Rep. 6:24336. doi: 10.1038/srep24336, PMID: PubMed DOI PMC
McHugh T. A., Gehring C. A. (2006). Below-ground interactions with arbuscular mycorrhizal shrubs decrease the performance of pinyon pine and the abundance of its ectomycorrhizas. New Phytol. 171, 171–178. doi: 10.1111/j.1469-8137.2006.01735.x, PMID: PubMed DOI
Michelsen A., Schmidt I. K., Jonasson S., Dighton J., Jones H. E., Callaghan T. V. (1995). Inhibition of growth, and effects on nutrient uptake of arctic graminoids by leaf extracts – allelopathy or resource competition between plants and microbes? Oecologia 103, 407–418. doi: 10.1007/BF00328678, PMID: PubMed DOI
Moguilevsky D., Fernández N. V., Cornejo P. E., Puntieri J., Fontenla S. B. (2018). Nothofagus pumilio forests affected by tephra deposition in northern Patagonia: I - environmental traits influencing seedling growth. J. Soil Sci. Plant Nutr. 18, 487–498. doi: 10.4067/S0718-95162018005001502 DOI
Montesinos-Navarro A., Valiente-Banuet A., Verdú M. (2018). Processes underlying the effect of mycorrhizal symbiosis on plant-plant interactions. Fungal Ecol. 40, 98–106. doi: 10.1016/j.funeco.2018.05.003 DOI
Moora M., Zobel M. (1996). Effect of arbuscular mycorrhiza on inter- and intraspecific competition of two grassland species. Oecologia 108, 79–84. doi: 10.1007/BF00333217, PMID: PubMed DOI
Mudrák O., Frouz J. (2012). Allelopathic effect of Salix caprea litter on late successional plants at different substrates of post-mining sites: pot experiment studies. Botany 90, 311–318. doi: 10.1139/b2012-005 DOI
Mudrák O., Hermová M., Tesnerová C., Rydlová J., Frouz J. (2016). Above-ground and below-ground competition between the willow Salix caprea and its understorey. J. Veg. Sci. 27, 156–164. doi: 10.1111/jvs.12330 DOI
Nara K. (2006a). Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol. 169, 169–178. doi: 10.1111/j.1469-8137.2005.01545.x, PMID: PubMed DOI
Nara K. (2006b). Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol. 171, 187–198. doi: 10.2307/3694495, PMID: PubMed DOI
Nguyen N. H., Song Z., Bates S. T., Branco S., Tedersoo L., Menke J., et al. . (2016). FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248. doi: 10.1016/j.funeco.2015.06.006 DOI
Nilsson M. C., Hogberg P., Zackrisson O., Fengyou W. (1993). Allelopathic effects by Empetrum hermaphroditum on development and nitrogen uptake by roots and mycorrhizae of Pinus sylvestris. Canad. J. Bot. 71, 620–628. doi: 10.1139/b93-071 DOI
Olsson P. A. (1999). Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol. Ecol. 29, 303–310. doi: 10.1016/S0168-6496(99)00021-5 DOI
Oravecz O., Elhottová D., Kristůfek V., Sustr V., Frouz J., Tríska J., et al. . (2004). Application of ARDRA and PLFA analysis in characterizing the bacterial communities of the food, gut and excrement of saprophagous larvae of Penthetria holosericea (Diptera: Bibionidae): a pilot study. Folia Microbiol. 49, 83–93. doi: 10.1007/BF02931652, PMID: PubMed DOI
Peay K. G. (2016). The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu. Rev. Ecol. Evol. 47, 143–164. doi: 10.1146/annurev-ecolsys-121415-032100 DOI
Piotrowski J. S., Lekberg Y., Harner M. J., Ramsey P. W., Rillig M. C. (2008). Dynamics of mycorrhizae during development of riparian forests along an unregulated river. Ecography 31, 245–253. doi: 10.1111/j.0906-7590.2008.5262.x DOI
Prach K., Lencová K., Řehounková K., Dvořáková H., Jírová A., Konvalinková P., et al. . (2013). Spontaneous vegetation succession at different central European mining sites: a comparison across seres. Environ. Sci. Pollut. Res. 20, 7680–7685. doi: 10.1007/s11356-013-1563-7, PMID: PubMed DOI
Püschel D., Rydlová J., Vosátka M. (2007a). Mycorrhiza influences plant community structure in succession on spoil banks. Basic Appl. Ecol. 8, 510–520. doi: 10.1016/j.baae.2006.09.002 DOI
Püschel D., Rydlová J., Vosátka M. (2007b). The development of arbuscular mycorrhiza in two simulated stages of spoil-bank succession. Appl. Soil Ecol. 35, 363–369. doi: 10.1016/j.apsoil.2006.07.001 DOI
R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Read D. J. (1991). Mycorrhizae in ecosystems. Experientia 47, 376–391. doi: 10.1007/BF01972080 DOI
Rydlová J., Püschel D., Dostálová M., Janousková M., Frouz J. (2016). Nutrient limitation drives response of Calamagrostis epigejos to arbuscular mycorrhiza in primary succession. Mycorrhiza 26, 757–767. doi: 10.1007/s00572-016-0712-5, PMID: PubMed DOI
Rydlová J., Püschel D., Janousková M., Vosátka M. (2014). “Interactions of plants with arbuscular mycorrhizal fungi during ecosystem development at post mining sites in the most coal basin (Czech Republic)” in Soil Biota and Ecosystem Development in Post Mining Sites. ed. Frouz J. (Boca Raton, FL, USA: CRC Press; ), 153–171.
Sharma M. P., Buyer J. S. (2015). Comparison of biochemical and microscopic methods for quantification of arbuscular mycorrhizal fungi in soil and roots. Appl. Soil Ecol. 95, 86–89. doi: 10.1016/j.apsoil.2015.06.001 DOI
Shemesh H., Boaz B. E., Millar C. I., Bruns T. D. (2019). Symbiotic interactions above treeline of long-lived pines: Mycorrhizal advantage of limber pine (Pinus flexilis) over Great Basin bristlecone pine (Pinus longaeva) at the seedling stage. J. Ecol. 108, 908–916. doi: 10.1111/1365-2745.13312 DOI
Smith S. E., Read D. J. (2008). Mycorrhizal Symbiosis. London: Academic Press.
Šnajdr J., Valášková V., Merhautová V., Cajthaml T., Baldrian P. (2008). Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes. Enzyme Microb. Technol. 43, 186–192. doi: 10.1016/j.enzmictec.2007.11.008 DOI
Southworth D., Frank J. L. (2011). Linking mycorrhizas to sporocarps: a new species, Geopora cercocarpi on Cercocarpus ledifolius (Rosaceae). Mycologia 103, 1194–1200. doi: 10.3852/11-053, PMID: PubMed DOI
Stella T., Covino S., Burianová E., Filipová A., Křesinová Z., Voříšková J., et al. . (2015). Chemical and microbiological characterization of an aged PCB-contaminated soil. Sci. Total Environ. 533, 177–186. doi: 10.1016/j.scitotenv.2015.06.019, PMID: PubMed DOI
Tedersoo L., Bahram M. (2019). Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880. doi: 10.1111/brv.12538, PMID: PubMed DOI
Teste F. P., Jones M. D., Dickie I. A. (2020). Dual-mycorrhizal plants: their ecology and relevance. New Phytol. 225, 1835–1851. doi: 10.1111/nph.16190, PMID: PubMed DOI
Thomson B. D., Grove T. S., Malajczuk N., Hardy G. E. S. J. (1994). The effectiveness of ectomycorrhizal fungi in increasing the growth of Eucalyptus globulus Labill. in relation to root colonization and hyphal development in soil. New Phytol. 126, 517–524. doi: 10.1111/j.1469-8137.1994.tb04250.x, PMID: PubMed DOI
Treseder K. K. (2013). The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371, 1–13. doi: 10.1007/s11104-013-1681-5 DOI
Trouvelot A., Kough J. L., Gianinazzi-Pearson V. (1986). “Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une signification fonctionnelle,” in Physiological and Genetical Aspects of Mycorrhizae. eds. Gianinazzi-Pearson V., Gianinazzi S. (Paris: INRA; ), 217–221.
van der Heijden M. G. A., Bardgett R. D., van Straalen N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310. doi: 10.1111/j.1461-0248.2007.01139.x, PMID: PubMed DOI
Varga S., Kytöviita M. M. (2016). Faster acquisition of symbiotic partner by common mycorrhizal networks in early plant life stage. Ecosphere 7:e01222. doi: 10.1002/ecs2.1222 DOI
Vetrovský T., Baldrian P., Morais D. (2018). SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34, 2292–2294. doi: 10.1093/bioinformatics/bty071, PMID: PubMed DOI PMC
Walder F., Niemann H., Natarajan M., Lehmann M. F., Boller T., Wiemken A. (2012). Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol. 159, 789–797. doi: 10.1104/pp.112.195727, PMID: PubMed DOI PMC
White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR Protocols: a guide to Methods and Applications. eds. Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (New York: Academic Press; ), 315–322.
Zhenxing Y., Jing X., Shijun L., Liangliang H., Minglei R., Yu L., et al. . (2019). Adult plants facilitate their conspecific seedlings by enhancing arbuscular mycorrhizae in a saline soil. Plant Soil 447, 333–345. doi: 10.1007/s11104-019-04382-6 DOI
Zhou Y., Li X., Gao Y., Liu H., Gao Y. B., van der Heijden M. G. A., et al. . (2018). Plant endophytes and arbuscular mycorrhizal fungi alter plant competition. Funct. Ecol. 32, 1168–1179. doi: 10.1111/1365-2435.13084 DOI