Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- DNA fungální genetika MeSH
- fylogeneze MeSH
- genetické markery MeSH
- Glomeromycota genetika izolace a purifikace fyziologie MeSH
- haplotypy MeSH
- kořeny rostlin mikrobiologie MeSH
- mitochondriální DNA genetika MeSH
- mitochondrie genetika MeSH
- molekulární sekvence - údaje MeSH
- mykorhiza genetika izolace a purifikace fyziologie MeSH
- Phalaris mikrobiologie fyziologie MeSH
- polymerázová řetězová reakce metody MeSH
- půdní mikrobiologie MeSH
- ribozomální DNA genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční seřazení MeSH
- symbióza MeSH
- těžba uhlí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- DNA fungální MeSH
- genetické markery MeSH
- mitochondriální DNA MeSH
- ribozomální DNA MeSH
During the last decade, the application of arbuscular mycorrhizal fungi (AMF) as bioenhancers has increased significantly. However, until now, it has been difficult to verify the inoculation success in terms of fungal symbiont establishment in roots of inoculated plants because specific fungal strains could not be detected within colonized roots. Using mitochondrial large subunit ribosomal DNA, we show that Rhizophagus irregularis (formerly known as Glomus intraradices) isolate BEG140 consists of two different haplotypes. We developed nested PCR assays to specifically trace each of the two haplotypes in the roots of Phalaris arundinacea from a field experiment in a spoil bank of a former coal mine, where BEG140 was used as inoculant. We revealed that despite the relatively high diversity of native R. irregularis strains, R. irregularis BEG140 survived and proliferated successfully in the field experiment and was found significantly more often in the inoculated than control plots. This work is the first one to show tracing of an inoculated AMF isolate in the roots of target plants and to verify its survival and propagation in the field. These results will have implications for basic research on the ecology of AMF at the intraspecific level as well as for commercial users of mycorrhizal inoculation.
Zobrazit více v PubMed
New Phytol. 2009;183(4):1176-1187 PubMed
BMC Evol Biol. 2009 Sep 22;9:239 PubMed
New Phytol. 2008;180(2):452-465 PubMed
Mycorrhiza. 2007 Dec;18(1):1-14 PubMed
Bioinformatics. 1998;14(9):817-8 PubMed
New Phytol. 2008;178(3):672-87 PubMed
Mycol Res. 2005 Dec;109(Pt 12):1315-22 PubMed
Mol Phylogenet Evol. 2001 Nov;21(2):190-7 PubMed
Ecol Lett. 2006 Feb;9(2):103-10 PubMed
New Phytol. 2009;183(1):212-223 PubMed
Mol Ecol. 2009 Oct;18(20):4316-29 PubMed
Mycorrhiza. 2004 Apr;14(2):111-7 PubMed
Mol Ecol. 2010 Apr;19(7):1497-511 PubMed
Mol Ecol. 1998 Jul;7(7):879-87 PubMed
Appl Environ Microbiol. 1997 May;63(5):1756-61 PubMed
Fungal Genet Biol. 2005 Jan;42(1):73-80 PubMed
New Phytol. 2009;183(1):200-211 PubMed
Mol Phylogenet Evol. 2010 May;55(2):599-610 PubMed
New Phytol. 2008;180(3):564-568 PubMed
Mycorrhiza. 2009 Aug;19(6):393-402 PubMed
Fungal Genet Biol. 2008 Jun;45(6):812-7 PubMed
Ecol Lett. 2006 May;9(5):501-15 PubMed
Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2369-74 PubMed
Bioresour Technol. 2008 Sep;99(14):6391-9 PubMed
New Phytol. 2009 Mar;181(4):924-937 PubMed
New Phytol. 2008;178(2):253-266 PubMed