Urine proteomics for prediction of disease progression in patients with IgA nephropathy
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem
Grantová podpora
CIHR - Canada
PubMed
33313853
PubMed Central
PMC8719618
DOI
10.1093/ndt/gfaa307
PII: 6033100
Knihovny.cz E-zdroje
- Klíčová slova
- IgAN, biomarker, glomerulonephritis, progression, urine proteomics,
- MeSH
- dospělí MeSH
- hodnoty glomerulární filtrace MeSH
- IgA nefropatie * patologie MeSH
- lidé MeSH
- progrese nemoci MeSH
- proteinurie diagnóza etiologie MeSH
- proteomika MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
BACKGROUND: Risk of kidney function decline in immunoglobulin A (IgA) nephropathy (IgAN) is significant and may not be predicted by available clinical and histological tools. To serve this unmet need, we aimed at developing a urinary biomarker-based algorithm that predicts rapid disease progression in IgAN, thus enabling a personalized risk stratification. METHODS: In this multicentre study, urine samples were collected in 209 patients with biopsy-proven IgAN. Progression was defined by tertiles of the annual change of estimated glomerular filtration rate (eGFR) during follow-up. Urine samples were analysed using capillary electrophoresis coupled mass spectrometry. The area under the receiver operating characteristic curve (AUC) was used to evaluate the risk prediction models. RESULTS: Of the 209 patients, 64% were male. Mean age was 42 years, mean eGFR was 63 mL/min/1.73 m2 and median proteinuria was 1.2 g/day. We identified 237 urine peptides showing significant difference in abundance according to the tertile of eGFR change. These included fragments of apolipoprotein C-III, alpha-1 antitrypsin, different collagens, fibrinogen alpha and beta, titin, haemoglobin subunits, sodium/potassium-transporting ATPase subunit gamma, uromodulin, mucin-2, fractalkine, polymeric Ig receptor and insulin. An algorithm based on these protein fragments (IgAN237) showed a significant added value for the prediction of IgAN progression [AUC 0.89; 95% confidence interval (CI) 0.83-0.95], as compared with the clinical parameters (age, gender, proteinuria, eGFR and mean arterial pressure) alone (0.72; 95% CI 0.64-0.81). CONCLUSIONS: A urinary peptide classifier predicts progressive loss of kidney function in patients with IgAN significantly better than clinical parameters alone.
Department of Nephrology and Rheumatology University Medical Centre Göttingen Göttingen Germany
Department of Nephrology and Transplantation Medicine Wroclaw Medical University Wroclaw Poland
Department of Nephrology Skaraborg Hospital Skövde Sweden
Department of Public Health and Clinical Medicine Umeå University Umeå Sweden
Division of Nephrology and KfH Renal Unit Hospital St Georg Leipzig Germany
Martin Luther University Halle Wittenberg Halle Saale Germany
Mosaiques Diagnostics GmbH Hannover Germany
Nephrology Research University of Toronto Toronto Ontario Canada
Research Health Institute Fundación Jiménez Díaz University Madrid Spain
Zobrazit více v PubMed
McGrogan A, Franssen CF, de Vries CS. The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. Nephrol Dial Transplant 2011; 26: 414–430 PubMed
Barbour SJ, Coppo R, Zhang H et al. ; for the International IgA Nephropathy Network . Evaluating a new international risk-prediction tool in IgA nephropathy. JAMA Intern Med 2019; 179: 942–952 PubMed PMC
Barbour SJ, Espino-Hernandez G, Reich HN et al. . The MEST score provides earlier risk prediction in lgA nephropathy. Kidney Int 2016; 89: 167–175 PubMed
Reich HN, Troyanov S, Scholey JW et al. . Remission of proteinuria improves prognosis in IgA nephropathy. J Am Soc Nephrol 2007; 18: 3177–3183 PubMed
Lv J, Zhang H, Wong MG et al. ; for the TESTING Study Group . Effect of oral methylprednisolone on clinical outcomes in patients with IgA nephropathy: the TESTING randomized clinical trial. JAMA 2017; 318: 432–442 PubMed PMC
Rauen T, Eitner F, Fitzner C et al. . Intensive supportive care plus immunosuppression in IgA nephropathy. N Engl J Med 2015; 373: 2225–2236 PubMed
Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int Suppl 2012; 2: 139–274
Barbour SJ, Reich HN. Risk stratification of patients with IgA nephropathy. Am J Kidney Dis 2012; 59: 865–873 PubMed
Haas M, Verhave JC, Liu ZH et al. . A multicenter study of the predictive value of crescents in IgA nephropathy. J Am Soc Nephrol 2017; 28: 691–701 PubMed PMC
Roberts ISD, Cook HT, Troyanov S et al. ; Working Group of the International Ig ANN, the Renal Pathology S . The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int 2009; 76: 546–556 PubMed
Cattran DC, Coppo R, Cook HT et al. ; Working Group of the International IgA Nephropathy Network and the Renal Pathology Society . The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int 2009; 76: 534–545 PubMed
Julian BA, Wittke S, Novak J et al. . Electrophoretic methods for analysis of urinary polypeptides in IgA-associated renal diseases. Electrophoresis 2007; 28: 4469–4483 PubMed
Haubitz M, Wittke S, Weissinger EM et al. . Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int 2005; 67: 2313–2320 PubMed
Siwy J, Zurbig P, Argiles A et al. . Noninvasive diagnosis of chronic kidney diseases using urinary proteome analysis. Nephrol Dial Transplant 2017; 32: 2079–2089 PubMed PMC
Levey AS, Stevens LA, Schmid CH et al. ; for the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) . A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150: 604–612 PubMed PMC
Theodorescu D, Schiffer E, Bauer HW et al. . Discovery and validation of urinary biomarkers for prostate cancer. Prot Clin Appl 2008; 2: 556–570 PubMed PMC
Zimmerli LU, Schiffer E, Zurbig P et al. . Urinary proteomic biomarkers in coronary artery disease. Mol Cell Proteomics 2008; 7: 290–298 PubMed
Latosinska A, Siwy J, Mischak H et al. . Peptidomics and proteomics based on CE-MS as a robust tool in clinical application: the past, the present, and the future. Electrophoresis 2019; 40: 2294–2308 PubMed
Jantos-Siwy J, Schiffer E, Brand K et al. . Quantitative urinary proteome analysis for biomarker evaluation in chronic kidney disease. J Proteome Res 2009; 8: 268–281 PubMed
Klein J, Papadopoulos T, Mischak H et al. . Comparison of CE-MS/MS and LC-MS/MS sequencing demonstrates significant complementarity in natural peptide identification in human urine. Electrophoresis 2014; 35: 1060–1064 PubMed
Zurbig P, Renfrow MB, Schiffer E et al. . Biomarker discovery by CE-MS enables sequence analysis via MS/MS with platform-independent separation. Electrophoresis 2006; 27: 2111–2125 PubMed
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 1995; 57: 289–300
Perez-Riverol Y, Csordas A, Bai J et al. . The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 2019; 47: D442–D450 PubMed PMC
Good DM, Zurbig P, Argiles A et al. . Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics 2010; 9: 2424–2437 PubMed PMC
KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013; 3: 1–150 PubMed
Haubitz M, Good DM, Woywodt A et al. . Identification and validation of urinary biomarkers for differential diagnosis and evaluation of therapeutic intervention in anti-neutrophil cytoplasmic antibody-associated vasculitis. Mol Cell Proteomics 2009; 8: 2296–2307 PubMed PMC
Wendt R, He T, Latosinska A et al. . Proteomic characterization of obesity-related nephropathy. Clin Kidney J 2020; 13: 684–692 PubMed PMC
Rossing K, Mischak H, Dakna M et al. . Urinary proteomics in diabetes and CKD. J Am Soc Nephrol 2008; 19: 1283–1290 PubMed PMC
Magalhaes P, Pejchinovski M, Markoska K et al. . Association of kidney fibrosis with urinary peptides: a path towards non-invasive liquid biopsies? Sci Rep 2017; 7: 16915. PubMed PMC
Decramer S, Gonzalez de Peredo A, Breuil B et al. . Urine in clinical proteomics. Mol Cell Proteomics 2008; 7: 1850–1862 PubMed
Eisen AZ, Bauer EA, Jeffrey JJ. Human skin collagenase. The role of serum alpha-globulins in the control of activity in vivo and in vitro. Proc Natl Acad Sci USA 1971; 68: 248–251 PubMed PMC
Prikryl P, Vojtova L, Maixnerova D et al. . Proteomic approach for identification of IgA nephropathy-related biomarkers in urine. Physiol Res 2017; 66: 621–632 PubMed
Smith A, L’Imperio V, De Sio G et al. . Antitrypsin detected by MALDI imaging in the study of glomerulonephritis: its relevance in chronic kidney disease progression. Proteomics 2016; 16: 1759–1766 PubMed
Siwy J, Mischak H, Zurbig P. Proteomics and personalized medicine: a focus on kidney disease. Expert Rev Proteomics 2019; 16: 773–782 PubMed
Pontillo C, Zhang ZY, Schanstra JP et al. . Prediction of chronic kidney disease stage 3 by CKD273, a urinary proteomic biomarker. Kidney Int Rep 2017; 2: 1066–1075 PubMed PMC
Pontillo C, Jacobs L, Staessen JA et al. . A urinary proteome-based classifier for the early detection of decline in glomerular filtration. Nephrol Dial Transplant 2017; 32: 1510–1516 PubMed
Schanstra JP, Zurbig P, Alkhalaf A et al. . Diagnosis and prediction of CKD progression by assessment of urinary peptides. J Am Soc Nephrol 2015; 26: 1999–2010 PubMed PMC
Zurbig P, Mischak H, Menne J et al. . CKD273 enables efficient prediction of diabetic nephropathy in nonalbuminuric patients. Diabetes Care 2019; 42: e4–e5 PubMed
Verbeke F, Siwy J, Van Biesen W et al. . The urinary proteomics classifier chronic kidney disease 273 predicts cardiovascular outcome in patients with chronic kidney disease. Nephrol Dial Transplant 2019; doi: 10.1093/ndt/gfz242 (14 December 2019, date last accessed) PubMed
Currie GE, von Scholten BJ, Mary S et al. . Urinary proteomics for prediction of mortality in patients with type 2 diabetes and microalbuminuria. Cardiovasc Diabetol 2018; 17: 50. PubMed PMC