Urine proteomics for prediction of disease progression in patients with IgA nephropathy

. 2021 Dec 31 ; 37 (1) : 42-52.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33313853

Grantová podpora
CIHR - Canada

BACKGROUND: Risk of kidney function decline in immunoglobulin A (IgA) nephropathy (IgAN) is significant and may not be predicted by available clinical and histological tools. To serve this unmet need, we aimed at developing a urinary biomarker-based algorithm that predicts rapid disease progression in IgAN, thus enabling a personalized risk stratification. METHODS: In this multicentre study, urine samples were collected in 209 patients with biopsy-proven IgAN. Progression was defined by tertiles of the annual change of estimated glomerular filtration rate (eGFR) during follow-up. Urine samples were analysed using capillary electrophoresis coupled mass spectrometry. The area under the receiver operating characteristic curve (AUC) was used to evaluate the risk prediction models. RESULTS: Of the 209 patients, 64% were male. Mean age was 42 years, mean eGFR was 63 mL/min/1.73 m2 and median proteinuria was 1.2 g/day. We identified 237 urine peptides showing significant difference in abundance according to the tertile of eGFR change. These included fragments of apolipoprotein C-III, alpha-1 antitrypsin, different collagens, fibrinogen alpha and beta, titin, haemoglobin subunits, sodium/potassium-transporting ATPase subunit gamma, uromodulin, mucin-2, fractalkine, polymeric Ig receptor and insulin. An algorithm based on these protein fragments (IgAN237) showed a significant added value for the prediction of IgAN progression [AUC 0.89; 95% confidence interval (CI) 0.83-0.95], as compared with the clinical parameters (age, gender, proteinuria, eGFR and mean arterial pressure) alone (0.72; 95% CI 0.64-0.81). CONCLUSIONS: A urinary peptide classifier predicts progressive loss of kidney function in patients with IgAN significantly better than clinical parameters alone.

Zobrazit více v PubMed

McGrogan  A, Franssen  CF, de Vries  CS.  The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. Nephrol Dial Transplant  2011; 26: 414–430 PubMed

Barbour  SJ, Coppo  R, Zhang  H  et al. ; for the International IgA Nephropathy Network . Evaluating a new international risk-prediction tool in IgA nephropathy. JAMA Intern Med  2019; 179: 942–952 PubMed PMC

Barbour  SJ, Espino-Hernandez  G, Reich  HN  et al. . The MEST score provides earlier risk prediction in lgA nephropathy. Kidney Int  2016; 89: 167–175 PubMed

Reich  HN, Troyanov  S, Scholey  JW  et al. . Remission of proteinuria improves prognosis in IgA nephropathy. J Am Soc Nephrol  2007; 18: 3177–3183 PubMed

Lv  J, Zhang  H, Wong  MG  et al. ; for the TESTING Study Group . Effect of oral methylprednisolone on clinical outcomes in patients with IgA nephropathy: the TESTING randomized clinical trial. JAMA  2017; 318: 432–442 PubMed PMC

Rauen  T, Eitner  F, Fitzner  C  et al. . Intensive supportive care plus immunosuppression in IgA nephropathy. N Engl J Med  2015; 373: 2225–2236 PubMed

Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int Suppl  2012; 2: 139–274

Barbour  SJ, Reich  HN.  Risk stratification of patients with IgA nephropathy. Am J Kidney Dis  2012; 59: 865–873 PubMed

Haas  M, Verhave  JC, Liu  ZH  et al. . A multicenter study of the predictive value of crescents in IgA nephropathy. J Am Soc Nephrol  2017; 28: 691–701 PubMed PMC

Roberts  ISD, Cook  HT, Troyanov  S  et al. ; Working Group of the International Ig ANN, the Renal Pathology S . The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int  2009; 76: 546–556 PubMed

Cattran  DC, Coppo  R, Cook  HT  et al. ; Working Group of the International IgA Nephropathy Network and the Renal Pathology Society . The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int  2009; 76: 534–545 PubMed

Julian  BA, Wittke  S, Novak  J  et al. . Electrophoretic methods for analysis of urinary polypeptides in IgA-associated renal diseases. Electrophoresis  2007; 28: 4469–4483 PubMed

Haubitz  M, Wittke  S, Weissinger  EM  et al. . Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int  2005; 67: 2313–2320 PubMed

Siwy  J, Zurbig  P, Argiles  A  et al. . Noninvasive diagnosis of chronic kidney diseases using urinary proteome analysis. Nephrol Dial Transplant  2017; 32: 2079–2089 PubMed PMC

Levey  AS, Stevens  LA, Schmid  CH  et al. ; for the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) . A new equation to estimate glomerular filtration rate. Ann Intern Med  2009; 150: 604–612 PubMed PMC

Theodorescu  D, Schiffer  E, Bauer  HW  et al. . Discovery and validation of urinary biomarkers for prostate cancer. Prot Clin Appl  2008; 2: 556–570 PubMed PMC

Zimmerli  LU, Schiffer  E, Zurbig  P  et al. . Urinary proteomic biomarkers in coronary artery disease. Mol Cell Proteomics  2008; 7: 290–298 PubMed

Latosinska  A, Siwy  J, Mischak  H  et al. . Peptidomics and proteomics based on CE-MS as a robust tool in clinical application: the past, the present, and the future. Electrophoresis  2019; 40: 2294–2308 PubMed

Jantos-Siwy  J, Schiffer  E, Brand  K  et al. . Quantitative urinary proteome analysis for biomarker evaluation in chronic kidney disease. J Proteome Res  2009; 8: 268–281 PubMed

Klein  J, Papadopoulos  T, Mischak  H  et al. . Comparison of CE-MS/MS and LC-MS/MS sequencing demonstrates significant complementarity in natural peptide identification in human urine. Electrophoresis  2014; 35: 1060–1064 PubMed

Zurbig  P, Renfrow  MB, Schiffer  E  et al. . Biomarker discovery by CE-MS enables sequence analysis via MS/MS with platform-independent separation. Electrophoresis  2006; 27: 2111–2125 PubMed

Benjamini  Y, Hochberg  Y.  Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B  1995; 57: 289–300

Perez-Riverol  Y, Csordas  A, Bai  J  et al. . The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res  2019; 47: D442–D450 PubMed PMC

Good  DM, Zurbig  P, Argiles  A  et al. . Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics  2010; 9: 2424–2437 PubMed PMC

KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl  2013; 3: 1–150 PubMed

Haubitz  M, Good  DM, Woywodt  A  et al. . Identification and validation of urinary biomarkers for differential diagnosis and evaluation of therapeutic intervention in anti-neutrophil cytoplasmic antibody-associated vasculitis. Mol Cell Proteomics  2009; 8: 2296–2307 PubMed PMC

Wendt  R, He  T, Latosinska  A  et al. . Proteomic characterization of obesity-related nephropathy. Clin Kidney J  2020; 13: 684–692 PubMed PMC

Rossing  K, Mischak  H, Dakna  M  et al. . Urinary proteomics in diabetes and CKD. J Am Soc Nephrol  2008; 19: 1283–1290 PubMed PMC

Magalhaes  P, Pejchinovski  M, Markoska  K  et al. . Association of kidney fibrosis with urinary peptides: a path towards non-invasive liquid biopsies?  Sci Rep  2017; 7: 16915. PubMed PMC

Decramer  S, Gonzalez de Peredo  A, Breuil  B  et al. . Urine in clinical proteomics. Mol Cell Proteomics  2008; 7: 1850–1862 PubMed

Eisen  AZ, Bauer  EA, Jeffrey  JJ.  Human skin collagenase. The role of serum alpha-globulins in the control of activity in vivo and in vitro. Proc Natl Acad Sci USA  1971; 68: 248–251 PubMed PMC

Prikryl  P, Vojtova  L, Maixnerova  D  et al. . Proteomic approach for identification of IgA nephropathy-related biomarkers in urine. Physiol Res  2017; 66: 621–632 PubMed

Smith  A, L’Imperio  V, De Sio  G  et al. . Antitrypsin detected by MALDI imaging in the study of glomerulonephritis: its relevance in chronic kidney disease progression. Proteomics  2016; 16: 1759–1766 PubMed

Siwy  J, Mischak  H, Zurbig  P.  Proteomics and personalized medicine: a focus on kidney disease. Expert Rev Proteomics  2019; 16: 773–782 PubMed

Pontillo  C, Zhang  ZY, Schanstra  JP  et al. . Prediction of chronic kidney disease stage 3 by CKD273, a urinary proteomic biomarker. Kidney Int Rep  2017; 2: 1066–1075 PubMed PMC

Pontillo  C, Jacobs  L, Staessen  JA  et al. . A urinary proteome-based classifier for the early detection of decline in glomerular filtration. Nephrol Dial Transplant  2017; 32: 1510–1516 PubMed

Schanstra  JP, Zurbig  P, Alkhalaf  A  et al. . Diagnosis and prediction of CKD progression by assessment of urinary peptides. J Am Soc Nephrol  2015; 26: 1999–2010 PubMed PMC

Zurbig  P, Mischak  H, Menne  J  et al. . CKD273 enables efficient prediction of diabetic nephropathy in nonalbuminuric patients. Diabetes Care  2019; 42: e4–e5 PubMed

Verbeke  F, Siwy  J, Van Biesen  W  et al. . The urinary proteomics classifier chronic kidney disease 273 predicts cardiovascular outcome in patients with chronic kidney disease. Nephrol Dial Transplant  2019; doi: 10.1093/ndt/gfz242 (14 December 2019, date last accessed) PubMed

Currie  GE, von Scholten  BJ, Mary  S  et al. . Urinary proteomics for prediction of mortality in patients with type 2 diabetes and microalbuminuria. Cardiovasc Diabetol  2018; 17: 50. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace