Arterial Aging Best Reflected in Pulse Wave Velocity Measured from Neck to Lower Limbs: A Whole-Body Multichannel Bioimpedance Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35271057
PubMed Central
PMC8915004
DOI
10.3390/s22051910
PII: s22051910
Knihovny.cz E-zdroje
- Klíčová slova
- arterial stiffness, bioimpedance, pulse wave velocity (PWV),
- MeSH
- analýza pulzové vlny * metody MeSH
- arteriae carotides MeSH
- dolní končetina MeSH
- lidé MeSH
- reprodukovatelnost výsledků MeSH
- stárnutí * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Pulse wave velocity is a commonly used parameter for evaluating arterial stiffness and the overall condition of the cardiovascular system. The main goal of this study was to establish a methodology to test and validate multichannel bioimpedance as a suitable method for whole-body evaluations of pulse waves. We set the proximal location over the left carotid artery and eight distal locations on both the upper and lower limbs. In this way, it was possible to simultaneously evaluate pulse wave velocity (PWV) in the upper and lower limbs and in the limbs via four extra PWV measurements. Data were acquired from a statistical group of 220 healthy subjects who were divided into three age groups. The data were then analysed. We found a significant dependency of aortic PWV on age in those values measured using the left carotid as the proximal. PWV values in the upper and lower limbs were found to have no significant dependency on age. In addition, the PWV in the left femoral artery shows comparable values to published already carotid-femoral values. Those findings prove the reliability of whole-body multichannel bioimpedance for pulse wave velocity evaluation and provide reference values for whole-body PWV measurement.
Zobrazit více v PubMed
Salvi P. Pulse Waves: How Vascular Hemodynamics Affects Blood Pressure. Volume 9788847024. Springer; Milano, Italy: 2012.
Lehmann E.D. Clinical value of aortic pulse-wave velocity measurement. Lancet. 1999;354:528–529. doi: 10.1016/S0140-6736(99)00179-8. PubMed DOI
Asmar R., Rudnichi A., Blacher J., London G.M., Safar M.E. Pulse pressure and aortic pulse wave are markers of cardiovascular risk in hypertensive population. Am. J. Hypertens. 2001;14:91–97. doi: 10.1016/S0895-7061(00)01232-2. PubMed DOI
Koivistoinen T., Kööbi T., Jula A., Hutri-Kähönen N., Raitakari O.T., Majahalme S., Kukkonen-Harjula K., Lehtimäki T., Reunanen A., Viikari J., et al. Pulse wave velocity reference values in healthy adults aged 26–75 years. Clin. Physiol. Funct. Imaging. 2007;27:191–196. doi: 10.1111/j.1475-097X.2007.00734.x. PubMed DOI
Chowienczyk P. Pulse wave analysis: What do the numbers mean? Hypertension. 2011;57:1051–1052. doi: 10.1161/HYPERTENSIONAHA.111.171504. PubMed DOI
O’Rourke M.F., Jiang A.P.X.J. Pulse wave analysis. Br. J. Clin. Pharmacol. 2001;51:507–522. doi: 10.1046/j.0306-5251.2001.01400.x. PubMed DOI PMC
Gurovich A.N., Braith R.W. Pulse wave analysis and pulse wave velocity techniques: Are they ready for the clinic. Hypertens. Res. 2011;34:166–169. doi: 10.1038/hr.2010.217. PubMed DOI
Alastruey J., Hunt A.A.E., Weinberg P.D. Novel wave intensity analysis of arterial pulse wave propagation accounting for peripheral reflections. Int. J. Numer. Methods Biomed. Eng. 2014;30:249–279. doi: 10.1002/cnm.2602. PubMed DOI PMC
Sugawara M., Niki K., Ohte N., Okada T., Harada A. Clinical usefulness of wave intensity analysis. Med. Biol. Eng. Comput. 2009;47:197–206. doi: 10.1007/s11517-008-0388-x. PubMed DOI
Calabia J., Torguet P., Garcia M., Garcia I., Martin N., Guasch B., Faur D., Vallés M. Doppler ultrasound in the measurement of pulse wave velocity: Agreement with the complior method. Cardiovasc. Ultrasound. 2011;9:13. doi: 10.1186/1476-7120-9-13. PubMed DOI PMC
Jiang B., Liu B., McNeill K.L., Chowienczyk P.J. Measurement of pulse wave velocity using pulse wave Doppler ultrasound: Comparison with arterial tonometry. Ultrasound Med. Biol. 2008;34:509–512. doi: 10.1016/j.ultrasmedbio.2007.09.008. PubMed DOI
Salvi P., Lio G., Labat C., Ricci E., Pannier B., Benetos A. Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: The PulsePen device. J. Hypertens. 2004;22:2285–2293. doi: 10.1097/00004872-200412000-00010. PubMed DOI
Wassertheurer S., Kropf J., Weber T., van der Giet M., Baulmann J., Ammer M., Hametner B., Mayer C.C., Eber B., Magometschnigg D. A new oscillometric method for pulse wave analysis: Comparison with a common tonometric method. J. Hum. Hypertens. 2010;24:498–504. doi: 10.1038/jhh.2010.27. PubMed DOI PMC
Vappou J., Luo J., Okajima K., Di Tullio M., Konofagou E. Aortic pulse wave velocity measured by pulse wave imaging (PWI): A comparison with applanation tonometry. Artery Res. 2011;5:65–71. doi: 10.1016/j.artres.2011.03.002. PubMed DOI PMC
Asmar R., Benetos A., Topouchian J., Laurent P., Pannier B., Brisac A.M., Target R., Levy B.I. Assessment of arterial distensibility by automatic pulse wave velocity measurement: Validation and clinical application studies. Hypertension. 1995;26:485–490. doi: 10.1161/01.HYP.26.3.485. PubMed DOI
Salvi P., Grillo A., Parati G. Noninvasive estimation of central blood pressure and analysis of pulse waves by applanation tonometry. Hypertens. Res. 2015;38:646–648. doi: 10.1038/hr.2015.78. PubMed DOI
Hametner B., Parragh S., Mayer C., Weber T., Van Bortel L., De Buyzere M., Segers P., Rietzschel E., Wassertheurer S. Assessment of model based (input) impedance, pulse wave velocity, and wave reflection in the asklepios cohort. PLoS ONE. 2015;10:e0141656. doi: 10.1371/journal.pone.0141656. PubMed DOI PMC
Baulmann J., Schillings U., Rickert S., Uen S., Düsing R., Illyes M., Cziraki A., Nickering G., Mengden T. A new oscillometric method for assessment of arterial stiffness: Comparison with tonometric and piezo-electronic methods. J. Hypertens. 2008;26:523–528. doi: 10.1097/HJH.0b013e3282f314f7. PubMed DOI
Choi Y., Zhang Q., Ko S. Noninvasive cuffless blood pressure estimation using pulse transit time and Hilbert-Huang transform. Comput. Electr. Eng. 2013;39:103–111. doi: 10.1016/j.compeleceng.2012.09.005. DOI
Sone S., Hayase T., Funamoto K., Shirai A. Photoplethysmography and ultrasonic-measurement-integrated simulation to clarify the relation between two-dimensional unsteady blood flow field and forward and backward waves in a carotid artery. Med. Biol. Eng. Comput. 2017;55:719–731. doi: 10.1007/s11517-016-1543-4. PubMed DOI PMC
Solà J., Chételat O., Sartori C., Allemann Y., Rimoldi S.F. Chest pulse-wave velocity: A novel approach to assess arterial stiffness. IEEE Trans. Biomed. Eng. 2011;58:215–223. doi: 10.1109/TBME.2010.2071385. PubMed DOI
Gomez-Clapers J., Casanella R., Pallas-Areny R. A novel method to obtain proximal plethysmographic information from distal measurements using the impedance plethysmogram. J. Electr. Bioimpedance. 2015;6:44–48. doi: 10.5617/jeb.2575. DOI
Soukup L., Hruskova J., Jurak P., Halamek J., Zavodna E., Viscor I., Matejkova M., Vondra V. Comparison of noninvasive pulse transit time determined from Doppler aortic flow and multichannel bioimpedance plethysmography. Med. Biol. Eng. Comput. 2019;57:1151–1158. doi: 10.1007/s11517-018-01948-x. PubMed DOI
Vondra V., Jurak P., Viscor I., Halamek J., Leinveber P., Matejkova M., Soukup L. A multichannel bioimpedance monitor for full-body blood flow monitoring. Biomed. Tech. 2016;61:107–118. doi: 10.1515/bmt-2014-0108. PubMed DOI
Kööbi T., Kähönen M., Iivainen T., Turjanmaa V. Simultaneous non-invasive assessment of arterial stiffness and haemodynamics—A validation study. Clin. Physiol. Funct. Imaging. 2003;23:31–36. doi: 10.1046/j.1475-097X.2003.00465.x. PubMed DOI
Kusche R., Klimach P., Ryschka M. A multichannel real-time bioimpedance measurement device for pulse wave analysis. IEEE Trans. Biomed. Circuits Syst. 2018;12:614–622. doi: 10.1109/TBCAS.2018.2812222. PubMed DOI
Soukup L., Vondra V., Viscor I., Jurak P., Halamek J. Pulse wave velocity and cardiac output vs. heart rate in patients with an implanted pacemaker based on electric impedance method measurement; Proceedings of the XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT); Heilbad Heiligenstadt, Germany. 22–25 April 2013; p. 012050. DOI
Bernstein D.P. Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations. J. Electr. Bioimpedance. 2010;1:2–7. doi: 10.5617/jeb.51. DOI
Bernstein D.P., Lemmens H.J.M. Stroke volume equation for impedance cardiography. Med. Biol. Eng. Comput. 2005;43:443–450. doi: 10.1007/BF02344724. PubMed DOI
Langer P., Jurák P., Vondra V., Halámek J., Mešťaník M., Tonhajzerová I., Viščor I., Soukup L., Matejkova M., Závodná E., et al. Respiratory-induced hemodynamic changes measured by whole-body multichannel impedance plethysmography. Physiol. Res. 2018;67:571–581. doi: 10.33549/physiolres.933778. PubMed DOI
Halter R.J., Hartov A., Paulsen K.D. A broadband high-frequency electrical impedance tomography system for breast imaging. IEEE Trans. Biomed. Eng. 2008;55:650–659. doi: 10.1109/TBME.2007.903516. PubMed DOI
Otten D.M., Rubinsky B. Cryosurgical monitoring using bioimpedance measurements—A feasibility study for electrical impedance tomography. IEEE Trans. Biomed. Eng. 2000;47:1376–1381. doi: 10.1109/10.871411. PubMed DOI
Paulson K., Lionheart W., Pidcock M. Optimal experiments in electrical impedance tomography. IEEE Trans. Med. Imaging. 1993;12:681–686. doi: 10.1109/42.251118. PubMed DOI
Saulnier G.J., Blue R.S., Newell J.C., Isaacson D., Edic P.M. Electrical impedance tomography. IEEE Signal Process. Mag. 2001;18:31–43. doi: 10.1109/79.962276. DOI
Matejkova M., Vondra V., Soukup L., Plesinger F., Viscor I., Halamek J., Jurak P. Changes of pulse wave velocity in the lower limbs in hypertensive patients; Proceedings of the Computing in Cardiology; Nice, France. 6–9 September 2015; Manhattan, NY, USA: IEEE Computer Society; 2015. pp. 257–260.
Vondra V., Jurak P., Halamek J., Viscor I. Device for Blood Flow Property Measurement and Method of Its Connection. 9,167,984. U.S. Patent. 2015 October 27;
Koivistoinen T., Lyytikäinen L.P., Aatola H., Luukkaala T., Juonala M., Viikari J., Lehtimäki T., Raitakari O.T., Kähönen M., Hutri-Kähönen N. Pulse wave velocity predicts the progression of blood pressure and development of hypertension in young adults. Hypertension. 2018;71:451–456. doi: 10.1161/HYPERTENSIONAHA.117.10368. PubMed DOI
Kim E.J., Park C.G., Park J.S., Suh S.Y., Choi C.U., Kim J.W., Kim S.H., Lim H.E., Rha S.W., Seo H.S., et al. Relationship between blood pressure parameters and pulse wave velocity in normotensive and hypertensive subjects: Invasive study. J. Hum. Hypertens. 2006;21:141–148. doi: 10.1038/sj.jhh.1002120. PubMed DOI
Williams B., Mancia G., Spiering W., Rosei E.A., Azizi M., Burnier M., Clement D.L., Coca A., De Simone G., Dominiczak A., et al. 2018 ESC/ESH guidelines for themanagement of arterial hypertension. Eur. Heart J. 2018;39:3021–3104. doi: 10.1093/eurheartj/ehy339. PubMed DOI
Widimsky J., Filipovsky J., Ceral J., Cifkova R., Linhart A., Monhart V., Rosolova H., Seidlerova Mlikova J., Soucek M., Spinar J., et al. Diagnosticke a lecebne postupy u arterialni hypertenze—Verze 2017. Doporuceni ceske spolecnosti pro hypertenzi. Vnitr Lek. 2018;64:771–796. PubMed
Mattace-Raso F.U.S., Hofman A., Verwoert G.C., Wittemana J.C.M., Wilkinson I., Cockcroft J., McEniery C., Yasmina, Laurent S., Boutouyrie P., et al. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘Establishing normal and reference values’. Eur. Heart J. 2010;31:2338–2350. doi: 10.1093/eurheartj/ehq165. PubMed DOI PMC
McEniery C.M., Yasmin, Hall I.R., Qasem A., Wilkinson I.B., Cockcroft J.R. Normal vascular aging: Differential effects on wave reflection and aortic pulse wave velocity: The anglo-cardiff collaborative trial (ACCT) J. Am. Coll. Cardiol. 2005;46:1753–1760. doi: 10.1016/j.jacc.2005.07.037. PubMed DOI
Nichols W.W., O’Rourke M.F., Vlachopoulos C., Hoeks A.P., Reneman R.S. McDonald’s Blood Flow in Arteries Theoretical, Experimental and Clinical Principles. Hodder Arnold; London, UK: 2011.
Blacher J., Asmar R., Djane S., London G.M., Safar M.E. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension. 1999;33:1111–1117. doi: 10.1161/01.HYP.33.5.1111. PubMed DOI
Meyer M.L., Tanaka H., Palta P., Patel M.D., Camplain R., Couper D., Cheng S., Al Qunaibet A., Poon A.K., Heiss G. Repeatability of central and peripheral pulse wave velocity measures: The atherosclerosis risk in communities (ARIC) study. Am. J. Hypertens. 2016;29:470–475. doi: 10.1093/ajh/hpv127. PubMed DOI PMC
Baier D., Teren A., Wirkner K., Loeffler M., Scholz M. Parameters of pulse wave velocity: Determinants and reference values assessed in the population-based study LIFE-adult. Clin. Res. Cardiol. 1234;107:1050–1061. doi: 10.1007/s00392-018-1278-3. PubMed DOI PMC
Diaz A., Zócalo Y., Bia D., Wray S., Fischer E.C. Reference intervals and percentiles for carotid-femoral pulse wave velocity in a healthy population aged between 9 and 87 years. J. Clin. Hypertens. 2018;20:659–671. doi: 10.1111/jch.13251. PubMed DOI PMC