Miniaturized nanoelectrospray interface for coupling capillary electrophoresis with mass spectrometry detection
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
TO01000232
Technology Agency of the Czech Republic
GA24-11335J
The Czech Science Foundation
PubMed
39177276
PubMed Central
PMC11662199
DOI
10.1002/elps.202400090
Knihovny.cz E-zdroje
- Klíčová slova
- capillary electrophoresis, electrospray ionization, mass spectrometry, microfabrication, proteomics,
- MeSH
- cytochromy c * analýza chemie MeSH
- design vybavení MeSH
- elektroforéza kapilární * metody přístrojové vybavení MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací * metody přístrojové vybavení MeSH
- miniaturizace * přístrojové vybavení MeSH
- nanotechnologie * přístrojové vybavení MeSH
- proteomika metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytochromy c * MeSH
A miniaturized electrospray interface consisting of a microfluidic nanosprayer and nanospray module is reported in the presented short communication. The nanosprayer was fabricated using silicon (Si) technology suitable for cost-efficient high-volume mass production. The nanospray module enabled the positioning of the nanosprayer in front of a mass spectrometry entrance and its coupling with capillary electrophoresis based on the liquid junction principle. A case study of top-down and bottom-up proteomic analyses of intact cytochrome c and its tryptic digest demonstrates the practical applicability of the developed interface.
Zobrazit více v PubMed
Hrušková H, Ivona V, Roman Ř, František F. Current applications of capillary electrophoresis‐mass spectrometry for the analysis of biologically important analytes in urine (2017 to mid‐2021): a review. J Sep Sci. 2022;45:305–324. PubMed PMC
Řemínek, R , Foret, F , Chung, DS . Application of capillary electrophoresis‐nano‐electrospray ionization‐mass spectrometry for the determination of N‐nitrosodimethylamine in pharmaceuticals. Electrophoresis. 2021;42:334–341. PubMed
Václavek T, Foret F. Microfluidic device integrating single‐cell extraction and electrical lysis for mass spectrometry detection of intracellular compounds. Electrophoresis. 2023;44:313–322. PubMed
Sastre Toraño J, Ramautar R, de Jong G. Advances in capillary electrophoresis for the life sciences. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;15:116–136. PubMed
Shen X, Yang Z, McCool EN, Lubeckyj RA, Chen D, Sun L. Capillary zone electrophoresis‐mass spectrometry for top‐down proteomics. Trends Anal Chem. 2019;120:115644. PubMed PMC
Lee ED, Mück W, Henion JD, Covey TR. Liquid junction coupling for capillary zone electrophoresis/ion spray mass spectrometry. Biol Mass Spectrom. 1989;18:844–850.
Schultz GA, Corso TN, Prosser SJ, Zhang S. A fully integrated monolithic microchip electrospray device for mass spectrometry. Anal Chem. 2000;72:4058–4063. PubMed
Krenkova J, Kleparnik K, Luksch J, Foret F. Microfabricated liquid junction hybrid capillary electrophoresis‐mass spectrometry interface for fully automated operation. Electrophoresis. 2019;40:2263–2270. PubMed
Page JS, Kelly RT, Tang K, Smith RD. Ionization and transmission efficiency in an electrospray ionization‐mass spectrometry interface. J Am Soc Mass Spec. 2007;18:1582–1590. PubMed
Vereshchagina E, Václavek T, Summanwar A, Moe S, Nazareno L, Sordo G, Nordborg A, Vogl A, Foret F, Řemínek R. Microfluidic nanospray emitters with a liquid junction for sensitive bioanalyses. IEEE SENSORS. 2023;1:1–4.
Schultz GA. A silicon‐based ESI chip with integrated counter electrode and its applications combined with mass spectrometry. In: Le Gac S, van den Berg A, editors. Miniaturization and mass spectrometry. Cambridge: The Royal Society of Chemistry; 2008. p. 47–66.
Eleftheriadis T, Pissas G, Liakopoulos V, Stefanidis I. Cytochrome c as a potentially clinical useful marker of mitochondrial and cellular damage. Front Immunol. 2016;7:279. PubMed PMC
Srour B, Strampraad MJF, Hagen WR, Hagedoorn P‐L. Refolding kinetics of cytochrome c studied with microsecond timescale continuous‐flow UV–vis spectroscopy and rapid freeze‐quench EPR. J Inorg Biochem. 2018;184:42–49. PubMed