Recent Developments in Capillary and Microchip Electroseparations of Peptides (2023-mid 2025)

. 2026 Jan ; 47 (1) : 106-136. [epub] 20251106

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41199492

Grantová podpora
RVO 61388963 Czech Academy of Sciences, research project

This review presents a comprehensive overview of the developments and applications of high-performance capillary and microchip electromigration methods (zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical and biochemical characterization of peptides in the period from 2023 up to ca. the middle of 2025. Advances in the exploration of electromigration properties of peptides and various aspects of their analysis, such as sample preparation, sorption suppression, EOF regulation, and detection, are described. New developments in the particular CE methods are presented, and several types of their applications are reported. They include qualitative and quantitative analysis of synthetic or isolated peptides, determination of peptides in complex biomatrices, peptide profiling of biofluids and tissue extracts, and monitoring of chemical and enzymatic reactions and physicochemical changes of peptides. They also deal with amino acid and sequence analysis of peptides, peptide mapping of proteins, separation of stereoisomers of peptides, and their chiral analyses. In addition, micropreparative separations and physicochemical and biochemical characterizations of peptides and their interactions with other (bio)molecules by the above CE methods are described.

Zobrazit více v PubMed

Plackett B., “Macrocyclic Peptides: Aiming for the Perfect Fit,” Chemical & Engineering News 102 (2024): 21–24.

Ledenev O. V., Levitskaya O. V., and Syroeshkin A. V., “Drugs Based on Bioactive Oligopeptides,” Journal of Drug Delivery and Therapeutics 15 (2025): 244–252, 10.22270/jddt.v15i6.7194. DOI

Yuan H. L., Jiang M. X., Fang H. P., and Tian H. Y., “Recent Advances in Poly(Amino Acids), Polypeptides, and Their Derivatives in Drug Delivery,” Nanoscale 17 (2025): 3549–3584, 10.1039/D4NR04481A. PubMed DOI

Am A., Faccio M. E., Pinvidic M., et al., “A Methodological Approach by Capillary Electrophoresis Coupled to Mass Spectrometry via Electrospray Interface for the Characterization of Short Synthetic Peptides towards the Conception of Self‐Assembled Nanotheranostic Agents,” Journal of Chromatography A 1713 (2024): 464496, 10.1016/j.chroma.2023.464496. PubMed DOI

Ji S. Q., An F. Y., Zhang T. W., et al., “Antimicrobial Peptides: An Alternative to Traditional Antibiotics,” European Journal of Medicinal Chemistry 265 (2024): 116072, 10.1016/j.ejmech.2023.116072. PubMed DOI

Ahmed S. A. H., Saif B., and Qian L. H., “Antimicrobial Peptides from Different Sources: Isolation, Purification, and Characterization to Potential Applications,” Journal of Separation Science 47 (2024): e70043, 10.1002/jssc.70043. PubMed DOI

Hajigha M. N., Hajikhani B., Vaezjalali M., Kafil H. S., Anari R. K., and Goudarzi M., “Antiviral and Antibacterial Peptides: Mechanisms of Action,” Heliyon 10 (2024): e40121, 10.1016/j.heliyon.2024.e40121. PubMed DOI PMC

Qin X. Y., Cai X. D., and Xiao J. X., “Peptide‐based Specific Biosensors for Bioanalysis of human Health,” Trends in Analytical Chemistry 184 (2025): 118137, 10.1016/j.trac.2025.118137. DOI

Pascolo G., Bekchanov B., Soliman M. A. N., et al., “Microfluidics Enabling the Controlled Manufacturing of Peptide and Protein Micro and Nano Biomaterials for Biomedical Applications,” Biomacromolecules 26 (2025): 3903–3928, 10.1021/acs.biomac.4c01712. PubMed DOI

Tarraga W. A., Cathcarth M., Picco A. S., and Longo G. S., “Silica‐Binding Peptides: Physical Chemistry and Emerging Biomaterials Applications,” Journal of Physics‐Condensed Matter 37 (2025): 203001, 10.1088/1361-648X/adc6e2. PubMed DOI

Li X. Y., Zhou X. D., and Hu J. M., “Peptides in the Detection of Metal Ions,” Analytical Methods 16 (2024): 6589–6598, 10.1039/D4AY01232A. PubMed DOI

Cossu J., Ravelet C., Martel‐Frachet V., Peyrin E., and Boturyn D., “Peptide‐based CE‐SELEX Enables Convenient Isolation of Aptamers Specifically Recognizing CD20‐expressing Cells,” Bioorganic & Medicinal Chemistry 110 (2024): 117831, 10.1016/j.bmc.2024.117831. PubMed DOI

Bradshaw R. A., “On the Development of Proteomics: A Brief History,” Australian Journal of Chemistry 76 (2023): 418–428, 10.1071/CH23012. DOI

Hellinger R., Sigurdsson A., Wu W. X., et al., “Peptidomics,” Nature Reviews Methods Primers 3 (2023): 25, 10.1038/s43586-023-00205-2. PubMed DOI PMC

Mamani‐Huanca M., Villasenor A., Gonzalez‐Riano C., Lopez‐Lopez A., Lopez‐Gonzalvez A., and Barbas C., “Capillary Electrophoresis Mass Spectrometry‐based Untargeted Metabolomics to Approach Disease Diagnosis,” Trends in Analytical Chemistry 162 (2023): 117049, 10.1016/j.trac.2023.117049. DOI

Zhang Y. Y., Fonslow B. R., Shan B., Baek M. C., and Yates J. R., “Protein Analysis by Shotgun/Bottom‐up Proteomics,” Chemical Reviews 113 (2013): 2343–2394, 10.1021/cr3003533. PubMed DOI PMC

Stepanova S. and Kasicka V., “Recent Developments and Applications of Capillary and Microchip Electrophoresis in Proteomics and Peptidomics (Mid‐2018–2022),” Journal of Separation Science 46 (2023): 2300043, 10.1002/jssc.202300043. PubMed DOI

Lenco J., Jadeja S., Naplekov D. K., et al., “Reversed‐Phase Liquid Chromatography of Peptides for Bottom‐Up Proteomics: A Tutorial,” Journal of Proteome Research 21 (2022): 2846–2892, 10.1021/acs.jproteome.2c00407. PubMed DOI

Liu R., Lu G., Hu X. Z., Li J. H., Zhang Z. B., and Tang K. Q., “Capillary Zone Electrophoresis‐Tandem Mass Spectrometry for in‐depth Proteomics Analysis via Data‐Independent Acquisition,” Analytical and Bioanalytical Chemistry 416 (2024): 5805–5814, 10.1007/s00216-024-05502-7. PubMed DOI

Movassaghi C. S., Sun J., Jiang Y. M., et al. Analytical Chemistry 97 (2025): 4728–4749, 10.1021/acs.analchem.4c06750. PubMed DOI PMC

Schrader M. and Fricker L., Peptidomics: Methods and Strategies (Humana Press Inc., 2024).

Kasicka V., “Capillary Electrophoresis of Peptides,” Electrophoresis 20 (1999): 3084–3105, 10.1002/(SICI)1522-2683(19991001)20:15/16<3084::AID-ELPS3084>3.0.CO;2-4. PubMed DOI

Kasicka V., “Recent Advances in Capillary Electrophoresis of Peptides,” Electrophoresis 22 (2001): 4139–4162, 10.1002/1522-2683(200111)22:19<4139::AID-ELPS4139>3.0.CO;2-G. PubMed DOI

Kasicka V., “Recent Advances in Capillary Electrophoresis and Capillary Electrochromatography of Peptides,” Electrophoresis 24 (2003): 4013–4046, 10.1002/elps.200305660. PubMed DOI

Kasicka V., “Recent Developments in Capillary Electrophoresis and Capillary Electrochromatography of Peptides,” Electrophoresis 27 (2006): 142–175, 10.1002/elps.200500527. PubMed DOI

Kasicka V., “Recent Developments in CE and CEC of Peptides,” Electrophoresis 29 (2008): 179–206, 10.1002/elps.200700550. PubMed DOI PMC

Kasicka V., “Recent Advances in CE and CEC of Peptides (2007‐2009),” Electrophoresis 31 (2010): 122–146, 10.1002/elps.200900442. PubMed DOI

Kasicka V., “Recent Developments in CE and CEC of Peptides (2009‐2011),” Electrophoresis 33 (2012): 48–73, 10.1002/elps.201100419. PubMed DOI

Kasicka V., “Recent Developments in Capillary and Microchip Electroseparations of Peptides (2011–2013),” Electrophoresis 35 (2014): 69–95, 10.1002/elps.201300331. PubMed DOI

Kasicka V., “Recent Developments in Capillary and Microchip Electroseparations of Peptides (2013‐Middle 2015),” Electrophoresis 37 (2016): 162–188, 10.1002/elps.201500329. PubMed DOI

Kasicka V., “Recent Developments in Capillary and Microchip Electroseparations of Peptides (2015‐mid 2017),” Electrophoresis 39 (2018): 209–234, 10.1002/elps.201700295. PubMed DOI

Kasicka V., “Recent Developments in Capillary and Microchip Electroseparations of Peptides (2017‐mid 2019),” Electrophoresis 41 (2020): 10–35, 10.1002/elps.201900269. PubMed DOI

Kasicka V., “Recent Developments in Capillary and Microchip Electroseparations of Peptides (2019‐mid 2021),” Electrophoresis 43 (2022): 82–108, 10.1002/elps.202100243. PubMed DOI

Kasicka V., “Recent Developments in Capillary and Microchip Electroseparations of Peptides (2021‐mid‐2023),” Electrophoresis 45 (2024): 165–198, 10.1002/elps.202300152. PubMed DOI

D'Atri V., Barrientos R. C., Losacco G. L., et al., “Trends in Pharmaceutical Analysis: The Evolving Role of Liquid Chromatography,” Analytical Chemistry 97 (2025): 4706–4727, 10.1021/acs.analchem.4c06662. PubMed DOI

Stefanik O., Majerova P., Kovac A., Mikus P., and Piestansky J., “Capillary Electrophoresis in the Analysis of Therapeutic Peptides‐A Review,” Electrophoresis 45 (2024): 120–164, 10.1002/elps.202300141. PubMed DOI

Kilianova Z., Cizmarova I., Spaglova M., and Piestansky J., “Recent Trends in Therapeutic Drug Monitoring of Peptide Antibiotics,” Journal of Separation Science 47 (2024): e202400583, 10.1002/jssc.202400583. PubMed DOI

Li Y. Y., Miao S. Y., Tan J. H., Zhang Q., and Chen D. D. Y., “Capillary Electrophoresis: A Three‐Year Literature Review,” Analytical Chemistry 96 (2024): 7799–7816, 10.1021/acs.analchem.4c00857. PubMed DOI

Stepanova S. and Kasicka V., “Separation and Analysis of Proteins by Capillary Electromigration Methods in the Period Mid‐2021–2024,” Analytica Chimica Acta 1368 (2025): 344323, 10.1016/j.aca.2025.344323. PubMed DOI

Schrader M. and Fricker L. D., Peptidomics, Methods and Strategies (New York, NY: Humana Press, 2024).

Schairer J., Plathe F., Hudelmaier S., et al., “Ion Mobility in Gas and Liquid Phases: How Much Orthogonality Is Obtained in Capillary Electrophoresis‐Ion Mobility‐Mass Spectrometry?,” Electrophoresis 45 (2024): 735–742, 10.1002/elps.202300210. PubMed DOI

Kumar V., Kumar N., Ghosh U., and Sinha S. K., “Predicting the Electrophoretic Mobility of Charged Particles in an Aqueous Medium,” Langmuir 40 (2024): 16521–16529, 10.1021/acs.langmuir.4c01939. PubMed DOI

Vilenne F., Agten A., Appeltans S., Ertaylan G., and Valkenborg D., “CPred: Charge State Prediction for Modified and Unmodified Peptides in Electrospray Ionization,” Analytical Chemistry 96 (2024): 14382–14392, 10.1021/acs.analchem.4c01107. PubMed DOI

Persat A., Chambers R. D., and Santiago J. G., “Basic Principles of Electrolyte Chemistry for Microfluidic Electrokinetics. Part I: Acid‐Base Equilibria and pH Buffers,” Lab on A Chip 9 (2009): 2437–2453, 10.1039/b906465f. PubMed DOI

Persat A., Suss M. E., and Santiago J. G., “Basic Principles of Electrolyte Chemistry for Microfluidic Electrokinetics. Part II: Coupling Between Ion Mobility, Electrolysis, and Acid‐Base Equilibria,” Lab on A Chip 9 (2009): 2454–2469, 10.1039/b906468k. PubMed DOI

Corradini D., “Buffering Agents and Additives for the Background Electrolyte Solutions Used for Peptide and Protein Capillary Zone Electrophoresis,” Trends in Analytical Chemistry 164 (2023): 117080, 10.1016/j.trac.2023.117080. DOI

Kasicka V. and Prusik Z., “Application of Capillary Isotachophoresis in Peptide Analysis,” Journal of Chromatography 569 (1991): 123–174, 10.1016/0378-4347(91)80228-5. PubMed DOI

Janini G. M. and Issaq H. J., “Selection of Buffers in Capillary Zone Electrophoresis: Application to Peptide and Protein Analysis,” Chromatographia 53 (2001): S18–S26.

Righetti P. G., Sebastiano R., and Citterio A., “Capillary Electrophoresis and Isoelectric Focusing in Peptide and Protein Analysis,” Proteomics 13 (2013): 325–340, 10.1002/pmic.201200378. PubMed DOI

Kozlowski L. P., “Proteome‐pI 2.0: Proteome Isoelectric Point Database Update,” Nucleic Acids Research 50 (2022): D1535–D1540, 10.1093/nar/gkab944. PubMed DOI PMC

Kozlowski L. P., “IPC 2.0: Prediction of Isoelectric Point and pK(a) Dissociation Constants,” Nucleic Acids Research 49 (2021): W285–W292, 10.1093/nar/gkab295. PubMed DOI PMC

Solinova V. and Kasicka V., “Determination of Acidity Constants and Ionic Mobilities of Polyprotic Peptide Hormones by CZE,” Electrophoresis 34 (2013): 2655–2665, 10.1002/elps.201300119. PubMed DOI

Gas B., “PeakMaster and Simul—Software Tools for Mastering Electrophoresis,” Trends in Analytical Chemistry 165 (2023): 117134, 10.1016/j.trac.2023.117134. DOI

Avaro A. S., Sun Y. X., Jiang K. Y., Bahga S. S., and Santiago J. G., “Web‐Based Open‐Source Tool for Isotachophoresis,” Analytical Chemistry 93 (2021): 15768–15774, 10.1021/acs.analchem.1c03925. PubMed DOI

Francois Y. N., Biacchi M., Gahoual R., Vezin A., and Pansanel J., “CEToolbox: Specialized Calculator for Capillary Electrophoresis Users as an Android Application,” Electrophoresis 42 (2021): 1431–1435, 10.1002/elps.202100036. PubMed DOI

Jeong S., Hajba L., Guttman A., Seol J., and Chung D. S., “In‐Line Microextraction Techniques to Improve the Sensitivity and Selectivity of Capillary Electrophoresis Using Commercial Instruments,” Trends in Analytical Chemistry 163 (2023): 117058, 10.1016/j.trac.2023.117058. DOI

Tuma P., “Progress in on‐line, at‐line, and in‐line Coupling of Sample Treatment With Capillary and Microchip Electrophoresis Over the Past 10 Years: A Review,” Analytica Chimica Acta 1261 (2023): 341249, 10.1016/j.aca.2023.341249. PubMed DOI

Keyon A. S. A., Ng N., and Breadmore M. C., “Advancements in Multiple‐Step on‐Line Preconcentration Techniques for Enhanced Sensitivity in Capillary Electrophoresis,” Journal of Separation Science 47 (2024): e202400519, 10.1002/jssc.202400519. PubMed DOI

Bedair A., Hamed M., and Mansour F. R., “Reshaping Capillary Electrophoresis with State‐of‐the‐Art Sample Preparation Materials: Exploring New Horizons,” Electrophoresis 46 (2025): 494–512, 10.1002/elps.202400114. PubMed DOI

Bhattacharya S. and Rathore A. S., “A Novel Filter‐Assisted Protein Precipitation (FAPP) Based Sample Pre‐Treatment Method for LC‐MS Peptide Mapping for Biosimilar Characterization,” Journal of Pharmaceutical and Biomedical Analysis 234 (2023): 115527, 10.1016/j.jpba.2023.115527. PubMed DOI

Mancera‐Arteu M., Benavente F., Sanz‐Nebot V., and Gimenez E., “Sensitive Analysis of Recombinant Human Erythropoietin Glycopeptides by On‐Line Phenylboronic Acid Solid‐Phase Extraction Capillary Electrophoresis Mass Spectrometry,” Journal of Proteome Research 22 (2023): 826–836, 10.1021/acs.jproteome.2c00569. PubMed DOI PMC

Li N., Zhang Z. M., and Li G. K., “Recent Advance on Microextraction Sampling Technologies for Bioanalysis,” Journal of Chromatography A 1720 (2024): 464775, 10.1016/j.chroma.2024.464775. PubMed DOI

Zheng J., Kuang Y. X., Zhou S. X., Gong X. Y., and Ouyang G. F., “Latest Improvements and Expanding Applications of Solid‐Phase Microextraction,” Analytical Chemistry 95 (2023): 218–237, 10.1021/acs.analchem.2c03246. PubMed DOI

Rosado J. A. C. and Sun L. L., “Solid‐Phase Microextraction‐Aided Capillary Zone Electrophoresis‐Mass Spectrometry: Toward Bottom‐Up Proteomics of Single Human Cells,” Journal of the American Society for Mass Spectrometry 35 (2024): 1120–1127, 10.1021/jasms.3c00429. PubMed DOI PMC

Yu R. B. and Quirino J. P., “Pseudophase‐Aided In‐Line Sample Concentration for Capillary Electrophoresis,” Trends in Analytical Chemistry 161 (2023): 116914, 10.1016/j.trac.2023.116914. DOI

Yao J. S. T., Ladner Y., Amin N. C., and Perrin C., “Salting‐Out Assisted Liquid‐Liquid Extraction (SALLE): Principle, Optimization, and Applications in Blood Sample Analysis,” Journal of Pharmaceutical and Biomedical Analysis 257 (2025): 116720, 10.1016/j.jpba.2025.116720. PubMed DOI

Marakova K., Tomasovsky R., Opetova M., and Schug K. A., “Greenness of Proteomic Sample Preparation and Analysis Techniques for Biopharmaceuticals,” Trends in Analytical Chemistry 171 (2024): 117490, 10.1016/j.trac.2023.117490. DOI

da Silva W. B., Hispagnol G. F., Nunes E. V. D., Castro‐Gamboa I., and Pilon A. C., “Plant Sample Preparation for Metabolomics, Lipidomics, Ionomics, Fluxomics, and Peptidomics,” Separations 12 (2025): 21.

Gab‐Allah M. A. and Kim J., “A Comprehensive Review of Recent Advances in the Enrichment and Mass Spectrometric Analysis of Glycoproteins and Glycopeptides in Complex Biological Matrices,” Mass Spectrometry Letters 15 (2024): 1–25.

Zhang J., Miao Y. Q., Jing H., Wu J. W., and Liu C. Y., “Facial On‐Line Enrichment of Glycoproteins by Capillary Electrophoresis With Boronate‐Functionalized Poly(Glycidyl Methacrylate) Microparticles Coated Column,” Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences 1234 (2024): 124013, 10.1016/j.jchromb.2024.124013. PubMed DOI

Guzman N. A., Guzman D. E., and Blanc T., “Advancements in Portable Instruments Based on Affinity‐Capture‐Migration and Affinity‐Capture‐Separation for Use in Clinical Testing and Life Science Applications,” Journal of Chromatography A 1704 (2023): 464109, 10.1016/j.chroma.2023.464109. PubMed DOI

Luo Y. T., Wang B. C., Yi L. H., Ding C. F., Deng C. H., and Yan Y. H., “Mesoporous Materials for Glycopeptide Separation,” Trends in Analytical Chemistry 167 (2023): 117234, 10.1016/j.trac.2023.117234. DOI

Zhou M. L., Wang M., Deng H. W., et al., “Open‐Tubular Affinity Capillary Electrochromatography Based on Immobilized Receptor by Pore Entrapment with Metal‐Organic Frameworks,” Electrophoresis 46 (2025): 357–364, 10.1002/elps.8117. PubMed DOI

Wang G. X., Chen Y. L., Lu W. J., Chen H. L., and Chen X. G., “Recent Developments in the Application of Covalent Organic Frameworks in Capillary Electrochromatography,” Chinese Journal of Chromatography 41 (2023): 835–842, 10.3724/SP.J.1123.2023.04005. PubMed DOI PMC

Itterheimova P., Dosedelova V., and Kuban P., “Use of Metal Nanoparticles for Preconcentration and Analysis of Biological Thiols,” Electrophoresis 44 (2023): 135–157, 10.1002/elps.202200142. PubMed DOI

Makeeva D., Morgacheva V., Kolobova E., Solovyeva E., and Kartsova L., “Multilayer Coatings Based on Gold Nanoparticles and Polymers With Bovine Serum Albumin as a Functional Layer for the Chiral Separation in Capillary Electrochromatography,” Journal of Separation Science 47 (2024): 2300864, 10.1002/jssc.202300864. PubMed DOI

Qiu W., Evans C. A., Landels A., Pham T. K., and Wright P. C., “Phosphopeptide Enrichment for Phosphoproteomic Analysis—A Tutorial and Review of Novel Materials,” Analytica Chimica Acta 1129 (2020): 158–180, 10.1016/j.aca.2020.04.053. PubMed DOI

Malak M., Ebrahim H., Sonbol H., et al., “Highly Sensitive In‐Capillary Derivatization and Field Amplified Sample Stacking to Analyze Narcotic Drugs in Human Serum by Capillary Zone Electrophoresis,” Separations 10 (2023): 58, 10.3390/separations10010058. DOI

Kitagawa F., Sato S., Suzuki T., and Kawai T., “Combination of On‐Line Sample Preconcentration by Large‐Volume Dual Preconcentration by Isotachophoresis and Stacking (LDIS) With Field‐Amplified Sample Injection (FASI) on Y‐Channel Microchips,” Analytical Sciences 40 (2024): 2117–2124, 10.1007/s44211-024-00647-y. PubMed DOI

Otin J., Tran N. T., Benoit A., Buisson C., and Taverna M., “Online Large Volume Sample Staking Preconcentration and Separation of Enantiomeric GHRH Analogs by Capillary Electrophoresis,” Electrophoresis 44 (2023): 807–817, 10.1002/elps.202200278. PubMed DOI

Mala Z. and Gebauer P., “Analytical Isotachophoresis 1967‐2022: From Standard Analytical Technique to Universal On‐Line Concentration Tool,” Trends in Analytical Chemistry 158 (2023): 116837, 10.1016/j.trac.2022.116837. DOI

Mala Z. and Gebauer P., “Recent Progress in Analytical Capillary Isotachophoresis (2018 ‐ March 2022),” Journal of Chromatography A 1677 (2022): 463337, 10.1016/j.chroma.2022.463337. PubMed DOI

Opetova M., Tomasovsky R., Mikus P., and Marakova K., “Transient Isotachophoresis‐Capillary Zone Electrophoresis‐Mass Spectrometry Method With off‐line Microscale Solid Phase Extraction Pretreatment for Quantitation of Intact Low Molecular Mass Proteins in Various Biological Fluids,” Journal of Chromatography A 1718 (2024), 10.1016/j.chroma.2024.464697. PubMed DOI

Hu X. Z., Gao W. Q., Liu R., et al., “A Robust Polymetallic‐Coated Sheathless Interface With High Acid and Alkali Resistance for Coupling Capillary Electrophoresis With Mass Spectrometry,” Talanta 282 (2025): 127045, 10.1016/j.talanta.2024.127045. PubMed DOI

Serrano L. R., Mellors J. S., Thompson J. W., et al., “SPE‐CZE‐MS Quantifies Zeptomole Amounts of Phosphorylated Peptides,” Journal of Proteome Research 24 (2025): 3049–3061, 10.1021/acs.jproteome.5c00194. PubMed DOI PMC

Gong Y. and Gong M. J., “Sensitive Detection of Herbicide Residues Using Field‐Amplified Sample Injection Coupled With Electrokinetic Supercharging in Flow‐Gated Capillary Electrophoresis,” Analytical Methods 16 (2024): 2025–2032, 10.1039/D3AY01950K. PubMed DOI

Li Y., Li W. J., Zheng Y. J., Wang T., Pu R. J., and Zhang Z. P., “Desalting Strategies for Native Mass Spectrometry,” Talanta 281 (2025): 126824, 10.1016/j.talanta.2024.126824. PubMed DOI

Ivanov A. V., Popov M. A., Aleksandrin V., et al., “Simultaneous Determination of Cystine and Other Free Aminothiols in Blood Plasma Using Capillary Electrophoresis With pH‐Mediated Stacking,” Electrophoresis 45 (2024): 411–419, 10.1002/elps.202300196. PubMed DOI

Cizmarova I., Parrak V., Jr P. S., et al., “A Simple and Green Capillary Electrophoresis‐Mass Spectrometry Method for Therapeutic Drug Monitoring of Colistin in Clinical Plasma Samples,” Heliyon 9 (2023): e23111, 10.1016/j.heliyon.2023.e23111. PubMed DOI PMC

Kanao E., Tanaka S., Tomioka A., et al., “High‐Recovery Desalting Tip Columns for a Wide Variety of Peptides in Mass Spectrometry‐Based Proteomics,” Analytical Chemistry 96 (2024): 20390–20397, 10.1021/acs.analchem.4c03753. PubMed DOI PMC

Nagy C., Andrasi M., Szabo R., and Gaspar A., “CZE‐MS Peptide Mapping: To Desalt or Not to Desalt?,” Analytica Chimica Acta 1288 (2024): 342162, 10.1016/j.aca.2023.342162. PubMed DOI

Rye T. K., Lee C. Y., Zellner A., et al., “Electromembrane Extraction of Peptides Based on Charge, Hydrophobicity, and Size—A Large‐Scale Fundamental Study of the Extraction Window,” Journal of Separation Science 47 (2024), 10.1002/jssc.202400292. PubMed DOI

Dowlatshah S., Rye T. K., Hansen F. A., Halvorsen T. G., and Pedersen‐Bjergaard S., “Parallel Electromembrane Extraction of Peptides With Monoterpene and Medium‐Length Fatty Acid Deep Eutectic Solvents,” Analytica Chimica Acta 1297 (2024): 342360, 10.1016/j.aca.2024.342360. PubMed DOI

Glatz Z., “On‐Capillary Derivatisation as an Approach to Enhancing Sensitivity in Capillary Electrophoresis,” Electrophoresis 36 (2015): 744–763, 10.1002/elps.201400449. PubMed DOI

Gotti R., Pasquini B., Orlandini S., and Furlanetto S., “Recent Applications of the Derivatization Techniques in Capillary Electrophoresis,” Journal of Pharmaceutical and Biomedical Analysis Open 1 (2023): 100003, 10.1016/j.jpbao.2023.100003. DOI

Kwok T., Chan S. L., Shi J., et al., “Imaged Capillary Isoelectric Focusing Employing Fluorocarbon and Methylcellulose Coated Fused Silica Capillary for Characterization of Charge Heterogeneity of Protein Biopharmaceuticals,” Separation Science Plus 6 (2023): 2200160, 10.1002/sscp.202200160. DOI

Stefanik O., Mikus P., and Piestansky J., “Quantitative Analysis of Therapeutic Peptides by CZE Using Multiple Sample Injection in Hydrodynamically Closed Separation System,” Electrophoresis 46 (2025): 636–645, 10.1002/elps.202400039. PubMed DOI

Tomasovsky R., Opetova M., Havlikova J., Mikus P., and Marakova K., “Capillary Electrophoresis On‐Line Hyphenated With Mass Spectrometry for Analysis of Insulin‐Like Growth Factor‐1 in Pharmaceutical Preparations,” Electrophoresis 44 (2023): 1674–1681, 10.1002/elps.202300089. PubMed DOI

van der Burg D., Watzig H., and Sanger‐van de Griend C., “Method Development for Quantitative Monitoring of Monoclonal Antibodies in Upstream Cell‐culture Process Samples With Limited Sample Preparation—An Evaluation of Various Capillary Coatings,” Electrophoresis 44 (2023): 96–106, 10.1002/elps.202200144. PubMed DOI PMC

Logerot E., Perrin C., Ladner Y., Aubriet F., Carre V., and Enjalbal C., “Quantitating Alfa‐Amidated Peptide Degradation by Separative Technologies and Ultra‐High Resolution Mass Spectrometry,” Talanta 253 (2023): 124036, 10.1016/j.talanta.2022.124036. DOI

Roca S., Leclercq L., Gonzalez P., et al., “Modifying Last Layer in Polyelectrolyte Multilayer Coatings for Capillary Electrophoresis of Proteins,” Journal of Chromatography A 1692 (2023): 463837, 10.1016/j.chroma.2023.463837. PubMed DOI

Bloderer G., Grassi L., Cabrele C., and Stutz H., “An Imaged Capillary Isoelectric Focusing Separation of the Linear and Cyclic Variants of a Mimotope of the Cancer‐Related CD20 Antigen–Validation and Statistical Evaluation,” Journal of Separation Science 48 (2025): e70054, 10.1002/jssc.70054. PubMed DOI PMC

Sun C., Wang S. H., Li H. H., and Chen D. D. Y., “Characterization of Taurocholic Acid Binding with Insulin for Potential Oral Formulation Using Different Methods,” Electrophoresis 46 (2025): 468–477, 10.1002/elps.8139. PubMed DOI PMC

Li J. X., Huang L. S., Guo Y. T., Cupp‐Sutton K. A., and Wu S., “An Automated Spray‐Capillary Platform for the Microsampling and CE‐MS Analysis of Picoliter‐ and Nanoliter‐Volume Samples,” Analytical and Bioanalytical Chemistry 415 (2023): 6961–6973, 10.1007/s00216-023-04870-w. PubMed DOI PMC

Davoine C. and Fillet M., “Hyphenation of Affinity Capillary Electrophoresis With Mass Spectrometry for the Study of Ligand‐Protein Interactions: PubMed DOI

Stutz H., “Advances and Applications of Capillary Electromigration Methods in the Analysis of Therapeutic and Diagnostic Recombinant Proteins—A Review,” Journal of Pharmaceutical and Biomedical Analysis 222 (2023): 115089, 10.1016/j.jpba.2022.115089. PubMed DOI

Dhellemmes L., Leclercq L., Hochsmann A., et al., “Critical Parameters for Highly Efficient and Reproducible Polyelectrolyte Multilayer Coatings for Protein Separation by Capillary Electrophoresis,” Journal of Chromatography A 1695 (2023): 463912, 10.1016/j.chroma.2023.463912. PubMed DOI

Dhellemmes L., Leclercq L., Frick H., et al., “Investigating Cationic and Zwitterionic Successive Multiple Ionic‐Polymer Layer Coatings for Protein Separation by Capillary Electrophoresis,” Journal of Chromatography A 1720 (2024): 464802, 10.1016/j.chroma.2024.464802. PubMed DOI

Dhellemmes L., Leclercq L., Hochsmann A., Neususs C., Martin M., and Cottet H., “Getting the Best out of Capillary Electrophoresis and Capillary Electrophoresis‐Mass Spectrometry by Quantifying Sources of Peak Broadening for Proteins Using Polyelectrolyte Multilayer Coated Fused Silica Capillaries,” Analytical Chemistry 96 (2024): 15205–15212. PubMed

Roca S., Leclercq L., and Cottet H., “Size‐based Characterization of Dendrigraft Poly(L‐Lysine) by Free Solution Capillary Electrophoresis Using Polyelectrolyte Multilayer Coatings,” Journal of Chromatography A 1718 (2024): 464719, 10.1016/j.chroma.2024.464719. PubMed DOI

Prakobdi C., Dhellemmes L., Leclercq L., Rydzek G., and Cottet H., “Surfactant‐Based Coatings for Protein Separation by Capillary Electrophoresis—A Review,” Analytica Chimica Acta 1356 (2025): 343945, 10.1016/j.aca.2025.343945. PubMed DOI

Gouyon J., Clavie M., Raquel G. C., et al., “A Bioinspired Approach for the Modulation of Electroosmotic Flow and Protein‐Surface Interactions in Capillary Electrophoresis Using Silylated Amino‐Amides Blocks and Covalent Grafting,” Electrophoresis 45 (2023): 557–572, 10.1002/elps.202300168. PubMed DOI

Wang Q. J., Gao G. Y., Fang F., Wang Q. Y., Lundquist P. K., and Sun L. L., “A Simple and Efficient Approach for Preparing Cationic Coating With Tunable Electroosmotic Flow for Capillary Zone Electrophoresis‐Mass Spectrometry‐Based Top‐DOWN Proteomics,” Analytica Chimica Acta 1328 (2024): 343162, 10.1016/j.aca.2024.343162. PubMed DOI PMC

Konasova R., Butnariu M., Solinova V., Kasicka V., and Koval D., “Covalent Cationic Copolymer Coatings Allowing Tunable Electroosmotic Flow for Optimization of Capillary Electrophoretic Separations,” Analytica Chimica Acta 1178 (2021): 338789, 10.1016/j.aca.2021.338789. PubMed DOI

Solinova V., Tuma P., Butnariu M., Kasicka V., and Koval D., “Covalent Anionic Copolymer Coatings With Tunable Electroosmotic Flow for Optimization of Capillary Electrophoretic Separations,” Electrophoresis 43 (2022): 1953–1962, 10.1002/elps.202200130. PubMed DOI

Atia M. A., Smejkal P., Gupta V., Haddad P. R., and Breadmore M. C., “Chemical Vapour Deposition in Narrow Capillaries: Electro‐Osmotic Flow Control in Capillary Electrophoresis,” Analytica Chimica Acta 1280 (2023): 341847, 10.1016/j.aca.2023.341847. PubMed DOI

Kasicka V., Prusik Z., Sazelova P., Chiari M., Miksik I., and Deyl Z., “External Electric Field Control of Electroosmotic Flow in Non‐Coated and Coated Fused‐Silica Capillaries and Its Application for Capillary Electrophoretic Separations of Peptides,” Journal of Chromatography B 741 (2000): 43–54, 10.1016/S0378-4347(00)00076-1. PubMed DOI

De Silva M., Opallage P. M., and Dunn R. C., “Investigation of Induced Electroosmotic Flow in Small‐Scale Capillary Electrophoresis Devices: Strategies for Control and Reversal,” Electrophoresis 45 (2024): 1764–1774, 10.1002/elps.202400107. PubMed DOI PMC

Esene J. E., Nasman P. R., Miner D. S., Nordin G. P., and Woolley A. T., “High‐performance Microchip Electrophoresis Separations of Preterm Birth Biomarkers Using 3D Printed Microfluidic Devices,” Journal of Chromatography A 1706 (2023): 464242, 10.1016/j.chroma.2023.464242. PubMed DOI PMC

Kitagawa F., Takahashi Y., and Nukatsuka I., “LVSEP Analysis of Cationic Analytes in Non‐Aqueous Media on Cationic Polymer‐Coated Channel Microchips,” Chromatography 44 (2023): 145–149.

Hjerten S., “Free Zone Electrophoresis,” Chromatographic Reviews 9 (1967): 122–219, 10.1016/0009-5907(67)80003-6. PubMed DOI

Mikkers F. E. P., Everaerts F. M., and Verheggen T. P. E. M., “High‐Performance Zone Electrophoresis,” Journal of Chromatography 169 (1979): 11–20, 10.1016/0021-9673(75)85029-1. DOI

Jorgenson J. W. and Lukacs K. D., “Zone Electrophoresis in Open‐Tubular Glass‐Capillaries,” Analytical Chemistry 53 (1981): 1298–1302, 10.1021/ac00231a037. DOI

Uzma and Xiong H., “Trends Development and Applications on Electrophoresis Techniques of Slab Gel, Capillary, Microchip/Microfluidic Capillary, and Isotachophoresis,” Talanta 293 (2025): 128029, 10.1016/j.talanta.2025.128029. PubMed DOI

Maryutina T. A., Savonina E. Y., Fedotov P. S., Smith R. M., Siren H., and Hibbert D. B., “Terminology of Separation Methods (IUPAC Recommendations 2017),” Pure and Applied Chemistry 90 (2018): 181–231, 10.1515/pac-2017-0111. DOI

Hajba L., Jeong S., Chung D. S., and Guttman A., “Capillary Gel Electrophoresis of Proteins: Historical Overview and Recent Advances,” Trends in Analytical Chemistry 162 (2023), 10.1016/j.trac.2023.117024. DOI

Holland L. A. and Casto‐Boggess L. D., “Gels in Microscale Electrophoresis,” Annual Review of Analytical Chemistry 16 (2023): 161–179, 10.1146/annurev-anchem-091522-080207. PubMed DOI

Sarkozy D. and Guttman A., “Analysis of Peptides and Proteins by Native and SDS Capillary Gel Electrophoresis Coupled to Electrospray Ionization Mass Spectrometry via a Closed‐Circuit Coaxial Sheath Flow Reactor Interface,” Analytical Chemistry 95 (2023): 7082–7086, 10.1021/acs.analchem.2c04332. PubMed DOI

Delgado‐Povedano M. D., Lara F. J., Gamiz‐Gracia L., and Garcia‐Campana A. M., “Non‐Aqueous Capillary Electrophoresis‐Time of Flight Mass Spectrometry Method to Determine Emerging Mycotoxins,” Talanta 253 (2023): 123946, 10.1016/j.talanta.2022.123946. PubMed DOI

Kowalski P., Oledzka I., Plenis A., Roszkowska A., and Baczek T., “Strengths and Weaknesses of Ionic Liquids as Efficiency Enhancers in Capillary Electrophoresis,” Trends in Analytical Chemistry 162 (2023): 117031, 10.1016/j.trac.2023.117031. DOI

Marakova K., “Greening Separation and Purification of Proteins and Peptides,” Journal of Separation Science 47 (2024): e202400554, 10.1002/jssc.202400554. PubMed DOI

Ding S. H., Xu Y., Xue S., Li A., and Zhang Q., “Capillary Electrophoresis Separations With Deep Eutectic Solvents as Greener Separation Media: A Proof‐of‐Concept Study,” Journal of Chromatography A 1716 (2024): 464644, 10.1016/j.chroma.2024.464644. PubMed DOI

Lishchuk V. and Wiedmer S. K., “Recent Trends in Capillary Electrokinetic Chromatography with Liposomes, Lipid Aggregates, and Lipid Emulsions,” Journal of Chromatography Open 6 (2024): 100163, 10.1016/j.jcoa.2024.100163. DOI

Kumar R., Sarin D., and Rathore A. S., “High‐throughput Capillary Electrophoresis Analysis of Biopharmaceuticals Utilizing Sequential Injections,” Electrophoresis 44 (2023): 767–774, 10.1002/elps.202200208. PubMed DOI

Martin A. J. P. and Everaerts F. M., “Displacement Electrophoresis,” Analytica Chimica Acta 38 (1967): 233–237, 10.1016/S0003-2670(01)80582-1. PubMed DOI

Hjertén S., Ofverstedt L.‐G., and Johansson G., “Free Displacement Electrophoresis (isotachophoresis): An Absolute Determination of the Kohlrausch Functions and Their Use in Interaction Studies,” Journal of Chromatography 194 (1980): 1–10.

Verheggen T. P. E. M., Mikkers F. E. P., and Everaerts F. M., “Isotachophoresis in Narrow‐Bore Tubes. Influence of the Diameter of the Separation Compartment,” Journal of Chromatography 132 (1977): 205–215, 10.1016/S0021-9673(00)89293-6. DOI

Ramachandran A. and Santiago J. G., “Isotachophoresis: Theory and Microfluidic Applications,” Chemical Reviews 122 (2022): 12904–12976, 10.1021/acs.chemrev.1c00640. PubMed DOI PMC

Avaro A. S., Schwarzbach A., Jangra A., Bahga S. S., and Santiago J. G., “Highly Parallel Simulation Tool for the Design of Isotachophoresis Experiments,” Analytica Chimica Acta 1337 (2025): 343553, 10.1016/j.aca.2024.343553. PubMed DOI

Stepanova S. and Kasicka V., “Determination of Impurities and Counterions of Pharmaceuticals by Capillary Electromigration Methods,” Journal of Separation Science 37 (2014): 2039–2055, 10.1002/jssc.201400266. PubMed DOI

Zhu Q. F. and Scriba G. K. E., “Analysis of Small Molecule Drugs, Excipients and Counter Ions in Pharmaceuticals by Capillary Electromigration Methods—Recent Developments,” Journal of Pharmaceutical and Biomedical Analysis 147 (2018): 425–438, 10.1016/j.jpba.2017.06.063. PubMed DOI

Hjerten S. and Zhu M.‐D., “Adaptation of the Equipment for High‐Performance Electrophoresis to Isoelectric Focusing,” Journal of Chromatography 346 (1985): 265–270, 10.1016/S0021-9673(00)90512-0. DOI

Naghdi E., Reinau M. E., Krogh T. N., and Neususs C., “Chemical Mobilization‐Based Capillary Isoelectric Focusing‐Mass Spectrometry Using the nanoCEasy Interface for Pharmaceutical Protein Analysis,” Analytical Chemistry 96 (2024): 12827–12837, 10.1021/acs.analchem.4c02441. PubMed DOI

Vigh G. and Gas B., “Evolution of the Theoretical Description of the Isoelectric Focusing Experiment: II. An Open System Isoelectric Focusing Experiment Is a Transient, Bidirectional Isotachophoretic Experiment,” Electrophoresis 44 (2023): 675–688, 10.1002/elps.202200238. PubMed DOI

Vigh G. and Gas B., “Evolution of the Theoretical Description of the Isoelectric Focusing Experiment: III. Carrier Ampholyte Behavior in Transient, Bidirectional Isotachophoresis,” Electrophoresis 44 (2023): 689–700, 10.1002/elps.202200239. PubMed DOI

Ascione A., Belfiore M., Vesterinen J., Buda M., Holtkamp W., and Luciani F., “Charge Heterogeneity of Therapeutic Monoclonal Antibodies by Different cIEF Systems: Views on the Current Situation,” Mabs 16 (2024): 2313737, 10.1080/19420862.2024.2313737. PubMed DOI PMC

Dusa F., Kubesova A., Salplachta J., and Moravcova D., “Capillary Isoelectric Focusing‐The Role of Markers of Isoelectric Point and Recent Applications in the Field,” Trends in Analytical Chemistry 162 (2023): 117018, 10.1016/j.trac.2023.117018. DOI

Kerr C. M., Schneider O. L., Tichy S., Huge B. J., and Champion M. M., “Capillary Isoelectric Focusing of Proteins and Peptides Using an In‐Line cIEF‐ESI Interface With Improved MS Characteristics,” Analytical Chemistry 97 (2025): 649–657, 10.1021/acs.analchem.4c05010. PubMed DOI PMC

Wu J. Q., McElroy W., Pawliszyn J., and Heger C. D., “Imaged Capillary Isoelectric Focusing: Applications in the Pharmaceutical Industry and Recent Innovations of the Technology,” Trends in Analytical Chemistry 150 (2022): 116567, 10.1016/j.trac.2022.116567. DOI

Zhang X. X., Kwok T., Zhou M. K., et al., “Imaged Capillary Isoelectric Focusing (icIEF) Tandem High Resolution Mass Spectrometry for Charged Heterogeneity of Protein Drugs in Biopharmaceutical Discovery,” Journal of Pharmaceutical and Biomedical Analysis 224 (2023): 115178, 10.1016/j.jpba.2022.115178. PubMed DOI

Schlecht J., Moritz B., Kiessig S., and Neususs C., “Characterization of Therapeutic mAb Charge Heterogeneity by iCIEF Coupled to Mass Spectrometry (iCIEF‐MS),” Electrophoresis 44 (2023): 540–548, 10.1002/elps.202200170. PubMed DOI

Horejsi V., Ticha M., and Kocourek J., “Affinity Electrophoresis,” Trends in Biochemical Sciences 4 (1979): N6–N7, 10.1016/0968-0004(79)90231-7. DOI

Chu Y. H. and Whitesides G. M., “Affinity Capillary Electrophoresis Can Simultaneously Measure Binding Constants of Multiple Peptides to Vancomycin,” Journal of Organic Chemistry 57 (1992): 3524–3525, 10.1021/jo00039a003. DOI

Rudnev A. V., Aleksenko S. S., Semenova O., Hartinger C. G., Timerbaev A. R., and Keppler B. K., “Determination of Binding Constants and Stoichiometries for Platinum Anticancer Drugs and Serum Transport Proteins by Capillary Electrophoresis Using the Hummel‐Dreyer Method,” Journal of Separation Science 28 (2005): 121–127, 10.1002/jssc.200401930. PubMed DOI

Dvorak M., Svobodova J., Benes M., and Gas B., “Applicability and Limitations of Affinity Capillary Electrophoresis and Vacancy Affinity Capillary Electrophoresis Methods for Determination of Complexation Constants,” Electrophoresis 34 (2013): 761–767, 10.1002/elps.201200581. PubMed DOI

Kalaycioglu Z., “The Affinity of Histamine to Serum Albumin: Capillary Electrophoresis‐Frontal Analysis and In‐Silico Molecular Docking Approaches,” Journal of Separation Science 46 (2023): 2300391, 10.1002/jssc.202300391. PubMed DOI

Kalaycioglu Z. and Bilen D., “Capillary Electrophoresis‐Frontal Analysis (CE‐FA) and Molecular Docking Studies on the Albumin‐Binding Properties of Dopamine and Serotonin,” Journal of Separation Science 47 (2024): e70041, 10.1002/jssc.70041. PubMed DOI

Tang J., Shui F., Deng L., et al., “Development of a Frontal Analysis Capillary Electrophoresis Coupled With Time‐of‐flight Mass Spectrometry for Determining the Equilibrium Dissociation Constant Between Cyclophilin A and Cyclosporin A,” Analytical Sciences 41 (2025): 1061–1072, 10.1007/s44211-025-00790-0. PubMed DOI

Somnin C., Chamieh J., Leclercq L., Medina C., Rousseaux O., and Cottet H., “Study of Interactions between Gadolinium‐Based Contrast Agents and Collagen by Taylor Dispersion Analysis and Frontal Analysis Continuous Capillary Electrophoresis,” Pharmaceuticals 17 (2024): 1633, 10.3390/ph17121633. PubMed DOI PMC

Jego M., Smadja C., Trizac‐Mattern L., Mura S., and Taverna M., “Frontal Analysis Continuous Capillary Electrophoresis for Predicting Polymer Nanoparticle Interactions with Human Serum Albumin,” Talanta 295 (2025): 128338, 10.1016/j.talanta.2025.128338. PubMed DOI

Le A. T. H., Krylova S. M., and Krylov S. N., “Kinetic Capillary Electrophoresis in Screening Oligonucleotide Libraries for Protein Binders,” Trends in Analytical Chemistry 162 (2023): 117061, 10.1016/j.trac.2023.117061. DOI

Sharmeen S., Kyei I., Hatch A., and Hage D. S., “Analysis of Drug Interactions With Serum Proteins and Related Binding Agents by Affinity Capillary Electrophoresis: A Review,” Electrophoresis 43 (2022): 2302–2323, 10.1002/elps.202200191. PubMed DOI PMC

Asmari M., Michalcova L., Ibrahim A. E., Glatz Z., Watzig H., and El Deeb S., “Studying Molecular Interactions via Capillary Electrophoresis and Microscale Thermophoresis: A Review,” Electrophoresis 44 (2023): 1114–1142, 10.1002/elps.202200275. PubMed DOI

Ansorge M., Dubsky P., and Uselova K., “Into the Theory of the Partial‐Filling Affinity Capillary Electrophoresis and the Determination of Apparent Stability Constants of Analyte‐Ligand Complexes,” Electrophoresis 39 (2018): 742–751, 10.1002/elps.201700385. PubMed DOI

Dubsky P., Ordogova M., Maly M., and Riesova M., “CEval: All‐in‐One Software for Data Processing and Statistical Evaluations in Affinity Capillary Electrophoresis,” Journal of Chromatography A 1445 (2016): 158–165, 10.1016/j.chroma.2016.04.004. PubMed DOI

Terabe S., Otsuka K., and Ando T., “Electrokinetic Chromatography With Micellar Solution and Open‐Tubular Capillary,” Analytical Chemistry 57 (1985): 834–841, 10.1021/ac00281a014. DOI

Terabe S., “Capillary Separation: Micellar Electrokinetic Chromatography,” Annual Review of Analytical Chemistry 2 (2009): 99–120, 10.1146/annurev.anchem.1.031207.113005. PubMed DOI

Ryan R., Altria K., McEvoy E., Donegan S., and Power J., “A Review of Developments in the Methodology and Application of Microemulsion Electrokinetic Chromatography,” Electrophoresis 34 (2013): 159–177, 10.1002/elps.201200375. PubMed DOI

Shieh Y. T., Chang C. T., Toh J. J., et al., “Cyclodextrin‐Micellar Electrokinetic Chromatography of Apolipoproteins on human Very Low‐Density Lipoprotein,” Electrophoresis 41 (2020): 1333–1343, 10.1002/elps.202000065. PubMed DOI

Gao F., Wang X. F., and Zhang B., “Research and Application Progress of Micellar Electrokinetic Chromatography in Separation of Proteins,” Chinese Journal of Analytical Chemistry 47 (2019): 805–813, 10.1016/S1872-2040(19)61163-1. DOI

Minkner R. and Watzig H., “Electrokinetic Chromatography‐based Micro Methods for Separation and Physiochemical Characterization of Very Hydrophobic Pharmaceuticals,” Journal of Separation Science 48 (2025): e70127, 10.1002/jssc.70127. PubMed DOI PMC

Fan M. J., Mehra M., Yang K. W., Chadha R. S., Anber S., and Kovarik M. L., “Cross‐Species Applications of Peptide Substrate Reporters to Quantitative Measurements of Kinase Activity,” Acs Measurement Science Au 4 (2024): 546–555, 10.1021/acsmeasuresciau.4c00030. PubMed DOI PMC

Kwan I., Askarisarvestani P., Wiberg A., Skagerlind P., Ek M., and Emmer Ă., “Suberin as a Green Surfactant Additive for Peptide Analysis Using Capillary Electrophoresis,” Journal of Chromatography A 1745 (2025): 465774, 10.1016/j.chroma.2025.465774. PubMed DOI

Zhang M., Chen J. Q., Xu G. F., Yu T., and Du Y. X., “A Chiral Metal‐Organic Framework Synthesized by the Mixture of Chiral and Non‐Chiral Organic Ligands for Enantioseparation of Drugs by Open‐Tubular Capillary Electrochromatography,” Journal of Chromatography A 1699 (2023): 464029, 10.1016/j.chroma.2023.464029. PubMed DOI

Miao P. D., Zhu D. Y., Du S. J., and Du Y. X., “Synergistic Enantioseparation System Based on a Novel Nanomaterial Synthesized by Chiral Metal‐organic Framework and Chiral Molecularly Imprinted Polymer in Capillary Electrochromatography,” Microchimica Acta 191 (2024): 686, 10.1007/s00604-024-06773-8. PubMed DOI

Fu S. G., Qin G. Z., Dong J. Q., et al., “Construction of Chiral Crown Ethers in Robust Covalent Organic Frameworks for Electrochromatographic Enantioseparation,” National Science Review 11 (2024): nwae256, 10.1093/nsr/nwae256. PubMed DOI PMC

Ali N., Qiao J., and Qi L., “Preparation of pH‐responsive Block Copolymers for Separation of Cephalosporin Antibiotics by Open‐Tubular Capillary Electrochromatography,” Journal of Chromatography A 1694 (2023): 463926, 10.1016/j.chroma.2023.463926. PubMed DOI

Hong T. T., Liu X., Ji Y. B., Tan S. W., and Cai Z. Q., “Construction of Chiral Capillary Electrochromatography Microsystems Based on Aspergillus sp. CM96,” Microchimica Acta 190 (2023): 357, 10.1007/s00604-023-05926-5. PubMed DOI

Naithani V., Cheddah S., Yang K. G., et al., “Preparation of Open Tubular Capillary Column Covalently Coated With Polystyrene Sulfonate With 4,4 '‐Azobis(4‐cyanopentanoyl chloride) as Polymerization Initiator for Electrochromatographic Separation of Alkaloids, Sulfonamides, and Peptides,” Journal of Separation Science 46 (2023): 2200711, 10.1002/jssc.202200711. PubMed DOI

Chibuike M., Rathnayaka C., Shivanka S., et al., “Millisecond Label‐Free Single Peptide Detection and Identification Using Nanoscale Electrochromatography and Resistive Pulse Sensing,” Analytical Chemistry 97 (2024): 427–435, 10.1021/acs.analchem.4c04542. PubMed DOI PMC

Neequaye T. and Rassi Z. E., “Poly(Carboxyethyl Acrylate‐co‐Ethylene Glycol Dimethacrylate) Precursor Monolith With Bonded ( S )‐(‐)‐1‐(2‐Naphthyl) ethylamine Ligands for Use in Chiral and Achiral Separations by Capillary Electrochromatography,” Journal of Chromatography A 1688 (2023): 463713, 10.1016/j.chroma.2022.463713. PubMed DOI

Fanali C., la Posta S., Gentili A., Chankvetadze B., and Fanali S., “Recent Developments in Electromigration Techniques Related to Pharmaceutical and Biomedical Analysis—A Review,” Journal of Pharmaceutical and Biomedical Analysis 235 (2023): 115647, 10.1016/j.jpba.2023.115647. PubMed DOI

Li X. Y., Ma Q. J., Zheng X. T., Chen Q., and Sun X. D., “Recent Applications and Chiral Separation Development Based on Stationary Phases in Open Tubular Capillary Electrochromatography (2019‐2022),” Journal of Pharmaceutical Analysis 13 (2023): 323–339, 10.1016/j.jpha.2023.01.003. PubMed DOI PMC

Fanali C. and D'Orazio G., “Capillary Electrochromatography Applied to the Separation of Enantiomers Utilizing Packed Capillary Columns With Silica‐vancomycin. A Tutorial,” Journal of Chromatography Open 6 (2024): 100171, 10.1016/j.jcoa.2024.100171. DOI

Westermeier R., “Looking at Proteins From Two Dimensions: A Review on Five Decades of 2D Electrophoresis,” Archives of Physiology and Biochemistry 120 (2014): 168–172, 10.3109/13813455.2014.945188. PubMed DOI

Pomastowski P. and Buszewski B., “Two‐dimensional Gel Electrophoresis in the Light of New Developments,” Trends in Analytical Chemistry 53 (2014): 167–177, 10.1016/j.trac.2013.09.010. DOI

Konig S., “Differential vs. Comparative Gel Electrophoresis: New Technology Drives Standardisation and Quantification in Protein Two‐Dimensional Gel Electrophoresis,” Trends in Analytical Chemistry 122 (2020), 10.1016/j.trac.2019.115731. DOI

Kitagawa S., “Development of Novel Analytical Methods Based on Liquid Chromatography and Electrophoresis,” Chromatography 44 (2023): 1–9, 10.15583/jpchrom.2022.022. DOI

Hemmateenejad B., Rafatmah E., and Shojaeifard Z., “Microfluidic Paper and Thread‐Based Separations: Chromatography and Electrophoresis,” Journal of Chromatography A 1704 (2023): 464117, 10.1016/j.chroma.2023.464117. PubMed DOI

Bouvarel T., Camperi J., and Guillarme D., “Multi‐dimensional Technology—Recent Advances and Applications for Biotherapeutic Characterization,” Journal of Separation Science 47 (2024): 2300928, 10.1002/jssc.202300928. PubMed DOI

Yoshida K., Kato S., Nagai K., Shimamoto S., Onishi T., and Ohnishi A., “Impurity Profiling of Synthetic Cyclic Peptides Based on Orthogonality Between Hydrophilic‐Interaction and Reversed‐Phase Liquid Chromatography,” Journal of Chromatography A 1745 (2025): 465748, 10.1016/j.chroma.2025.465748. PubMed DOI

Knappe C., Jaag S. J., Dema T., et al., “Multicolumn Two‐Dimensional Liquid Chromatography Screening Platform for Stereopeptidomics and Application to Antimicrobial Peptide Polyene and Lipopeptide,” Analytical Chemistry 97 (2025): 14048–14057, 10.1021/acs.analchem.5c02658. PubMed DOI

Giddings J. C., “Concepts and Comparisons in Multidimensional Separation,” Journal of High Resolution Chromatography & Chromatography Communications 10 (1987): 319–323, 10.1002/jhrc.1240100517. DOI

Eeltink S., De Vos J., and Desmet G., “Toward Unrivaled Chromatographic Resolving Power in Proteomics: Design and Development of Comprehensive Spatial Three‐Dimensional Liquid‐Phase Separation Technology,” Annual Review of Analytical Chemistry 17 (2024): 475–493, 10.1146/annurev-anchem-061522-044510. PubMed DOI

Schlecht J., Jooss K., Moritz B., Kiessig S., and Neususs C., “Two‐Dimensional Capillary Zone Electrophoresis‐Mass Spectrometry: Intact mAb Charge Variant Separation Followed by Peptide Level Analysis Using in‐Capillary Digestion,” Analytical Chemistry 95 (2023): 4059–4066, 10.1021/acs.analchem.2c04578. PubMed DOI

Esene J. E., Nasman P. R., Akuoko Y., Tahir A., and Woolley A. T., “Past, Current, and Future Roles of 3D Printing in the Development of Capillary Electrophoresis Systems,” Trends in Analytical Chemistry 162 (2023): 117032, 10.1016/j.trac.2023.117032. PubMed DOI PMC

Hartung S., Minkner R., Olabi M., and Watzig H., “Performance of Capillary Electrophoresis Instruments‐State of the Art and Outlook,” Trends in Analytical Chemistry 163 (2023): 117056, 10.1016/j.trac.2023.117056. DOI

Kuban P. and Kuban P., “Novel Developments in Capillary Electrophoresis Miniaturization, Sampling, Detection and Portability: An Overview of the Last Decade,” Trends in Analytical Chemistry 159 (2023): 116941, 10.1016/j.trac.2023.116941. DOI

Warren C. G. and Dasgupta P. K., “Liquid Phase Detection in the Miniature Scale. Microfluidic and Capillary Scale Measurement and Separation Systems. A Tutorial Review,” Analytica Chimica Acta 1305 (2024): 342507, 10.1016/j.aca.2024.342507. PubMed DOI

Solinova V., Sazelova P., Masova A., Jiracek J., and Kasicka V., “Application of Capillary and Free‐Flow Zone Electrophoresis for Analysis and Purification of Antimicrobial Beta‐Alanyl‐Tyrosine From Hemolymph of Fleshfly Neobellieria Bullata,” Molecules (Basel, Switzerland) 26 (2021): 5636, 10.3390/molecules26185636. PubMed DOI PMC

Wu S. O. and Dovichi N. J., “Capillary Zone Electrophoresis Separation and Laser‐ Induced Fluorescence Detection of Zeptomole Quantities of Fluorescein Thiohydantoin Derivatives of Amino Acids,” Talanta 39 (1992): 173–178, 10.1016/0039-9140(92)80013-4. PubMed DOI

Sestak J., Guttman A., and Lavicka J., “Fluorescence Detection Setups in Capillary Electrophoresis and Microscale Liquid Chromatography: Developments Over the Past Decade,” Trends in Analytical Chemistry 181 (2024): 118001, 10.1016/j.trac.2024.118001. DOI

Dosedelova V. and Kuban P., “Investigation of Interactions Between Biological Thiols and Gold Nanoparticles by Capillary Electrophoresis With Laser‐induced Fluorescence,” Electrophoresis 45 (2024): 1418–1427, 10.1002/elps.202300248. PubMed DOI

Verma R., Pyreddy S., Redmond C. E., et al., “Detection and Identification of Amino Acids and Proteins Using Their Intrinsic Fluorescence in the Visible Light Spectrum,” Analytica Chimica Acta 1282 (2023): 341925, 10.1016/j.aca.2023.341925. PubMed DOI

Auer F. and Guttman A., “ PubMed DOI

Lapizco‐Encinas B. H., Zhang Y. V., Gqamana P. P., Lavicka J., and Foret F., “Capillary Electrophoresis as a Sample Separation Step to Mass Spectrometry Analysis: A Primer,” Trends in Analytical Chemistry 164 (2023): 117093, 10.1016/j.trac.2023.117093. DOI

Gosset‐Erard C., Aubriet F., Leize‐Wagner E., Francois Y. N., and Chaimbault P., “Hyphenation of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT‐ICR MS) With Separation Methods: The Art of Compromises and the Possible‐A Review,” Talanta 257 (2023): 124324, 10.1016/j.talanta.2023.124324. PubMed DOI

Schwenzer A. K., Kruse L., Jooss K., and Neususs C., “Capillary Electrophoresis‐Mass Spectrometry for Protein Analyses Under Native Conditions: Current Progress and Perspectives,” Proteomics 24 (2024): 2300135, 10.1002/pmic.202300135. PubMed DOI

Jiang Y. M., Rex D. A. B., Schuster D., et al., “Comprehensive Overview of Bottom‐Up Proteomics Using Mass Spectrometry,” ACS Measurement Science Au 4 (2024): 338–417, 10.1021/acsmeasuresciau.3c00068. PubMed DOI PMC

Wang Q. J., Wang Q. Y., Zhu G. J., and Sun L. L., “Capillary Electrophoresis‐Mass Spectrometry for Top‐Down Proteomics,” Annual Review of Analytical Chemistry 18 (2025): 125–147, 10.1146/annurev-anchem-071124-092242. PubMed DOI PMC

Wu Y. Y., Zhang W. M., Zhao Y. Y., Wang X. Y., and Guo G. S., “Technology Development Trend of Electrospray Ionization Mass Spectrometry for Single‐Cell Proteomics,” Trends in Analytical Chemistry 159 (2023): 116913, 10.1016/j.trac.2022.116913. DOI

Fenn J. B., Mann M., Meng C. K., Wong S. F., and Whitehouse C. M., “Electrospray Ionization for Mass‐Spectrometry of Large Biomolecules,” Science 246 (1989): 64–71, 10.1126/science.2675315. PubMed DOI

Karas M., Bachmann D., Bahr U., and Hillenkamp F., “Matrix‐Assisted Ultraviolet‐Laser Desorption of Nonvolatile Compounds,” International Journal of Mass Spectrometry and Ion Processes 78 (1987): 53–68, 10.1016/0168-1176(87)87041-6. DOI

Olivares J. A., Nguyen N. T., Yonker C. R., and Smith R. D., “On‐Line Mass Spectrometric Detection for Capillary Zone Electrophoresis,” Analytical Chemistry 59 (1987): 1230–1232, 10.1021/ac00135a034. DOI

Ng C. C. A., Zhou Y., and Yao Z. P., “Algorithms for De‐novo Sequencing of Peptides by Tandem Mass Spectrometry: A Review,” Analytica Chimica Acta 1268 (2023): 341330, 10.1016/j.aca.2023.341330. PubMed DOI

Moini M., “Simplifying CE‐MS Operation. 2. Interfacing Low‐Flow Separation Techniques to Mass Spectrometry Using a Porous Tip,” Analytical Chemistry 79 (2007): 4241–4246, 10.1021/ac0704560. PubMed DOI

Wojcik R., Dada O. O., Sadilek M., and Dovichi N. J., “Simplified Capillary Electrophoresis Nanospray Sheath‐Flow Interface for High Efficiency and Sensitive Peptide Analysis,” Rapid Communications in Mass Spectrometry 24 (2010): 2554–2560, 10.1002/rcm.4672. PubMed DOI

Jia D. S. and Nemes P., “Development and Validation of RoboCap, a Robotic Capillary Platform to Automate Capillary Electrophoresis Mass Spectrometry en Route to High‐Throughput Single‐Cell Proteomics,” Analytical Chemistry 96 (2024): 16985–16993, 10.1021/acs.analchem.4c04353. PubMed DOI PMC

Vaclavek T., Vereshchagina E., Nazareno L., Summanwar A., Foret F., and Reminek R., “Miniaturized Nanoelectrospray Interface for Coupling Capillary Electrophoresis With Mass Spectrometry Detection,” Electrophoresis 45 (2024): 1988–1994, 10.1002/elps.202400090. PubMed DOI PMC

Jiang J. L., Zhan L. P., Dai L. Y., et al., “Evaluation of the Reliability of MS1‐Based Approach to Profile Naturally Occurring Peptides With Clinical Relevance in Urine Samples,” Rapid Communications in Mass Spectrometry 39 (2025): e9369, 10.1002/rcm.9369. PubMed DOI

Hauser P. C. and Kuban P., “Contactless Conductivity Detection for Capillary Electrophoresis‐Developments from 2020 to 2024,” Electrophoresis 46 (2025): 829–862, 10.1002/elps.202400217. PubMed DOI PMC

Elbashir A. A., Osman A., Elawad M., Ziyada A. K., and Aboul‐Enein H. Y., “Application of Capillary Electrophoresis With Capacitively Contactless Conductivity Detection for Biomedical Analysis,” Electrophoresis 45 (2024): 400–410, 10.1002/elps.202300216. PubMed DOI

Tuma P., “Advances in the Design and Application of Contactless Conductivity Detectors for Separation, Flow‐Through, Microfluidic and Sensing Techniques: A Review,” Analytica Chimica Acta 1337 (2025): 343325, 10.1016/j.aca.2024.343325. PubMed DOI

Obma A., Bumrungpuech R., Hemwech P., et al., “Efficient Separation of Organic Anions in Beverages Using Aminosilane‐Functionalized Capillary Electrophoresis With Contactless Conductivity Detection,” Analytica Chimica Acta 1316 (2024): 342815, 10.1016/j.aca.2024.342815. PubMed DOI

Tuma P., Sommerova B., Koval D., Siklova M., and Koc M., “Plasma Levels of Creatine, 2‐Aminobutyric Acid, Acetyl‐carnitine and Amino Acids During Fasting Measured by Counter‐Current Electrophoresis in PAMAPTAC Capillary,” Microchemical Journal 187 (2023): 108426, 10.1016/j.microc.2023.108426. DOI

Tuma P., “Steady state Microdialysis of Microliter Volumes of Body Fluids for Monitoring of Amino Acids by Capillary Electrophoresis With Contactless Conductivity Detection,” Analytica Chimica Acta 1287 (2024): 342113, 10.1016/j.aca.2023.342113. PubMed DOI

Kartsova L. and Maliushevska A., “Determination of Amino Acids and Peptides Without Their Pre‐Column Derivatization by Capillary Electrophoresis With Ultraviolet and Contactless Conductivity Detection. An Overview,” Journal of Separation Science 47 (2024): 2400352, 10.1002/jssc.202400352. PubMed DOI

Pukles I., Páger C., Sakac N., et al., “Electrophoretic Determination of L‐Carnosine in Health Supplements Using an Integrated Lab‐on‐a‐Chip Platform With Contactless Conductivity Detection,” International Journal of Molecular Sciences 24 (2023): 14705, 10.3390/ijms241914705. PubMed DOI PMC

Brzezicka T., Mlcochova H., Glatz Z., and Kohutova L., “Contactless Conductivity Detector as a Tool for Improving Universality and Sensitivity of Capillary Electrophoresis‐frontal Analysis: Proof of Concept,” Journal of Separation Science 47 (2024): 2300667, 10.1002/jssc.202300667. PubMed DOI

Wang Y. C., Zeng Z. H., Yang L. Y., et al., “Three‐in‐One Detector by 3D Printing: Simultaneous Contactless Conductivity, Ultraviolet Absorbance, and Laser‐Induced Fluorescence Measurements for Capillary Electrophoresis,” Analytical Chemistry 95 (2023): 2146–2151, 10.1021/acs.analchem.2c04388. PubMed DOI

Selemani M. A. and Martin R. S., “Use of 3D Printing to Integrate Microchip Electrophoresis With Amperometric Detection,” Analytical and Bioanalytical Chemistry 416 (2024): 4749–4758, 10.1007/s00216-024-05260-6. PubMed DOI PMC

Bohm D., Koall M., and Matysik F. M., “Combining Amperometry and Mass Spectrometry as a Dual Detection Approach for Capillary Electrophoresis,” Electrophoresis 44 (2023): 492–500, 10.1002/elps.202200228. PubMed DOI

Stepanova S., Andris E., Gutten O., et al., “Acidity Constants and Protonation Sites of Cyclic Dinucleotides Determined by Capillary Electrophoresis, Quantum Chemical Calculations, and NMR Spectroscopy,” Electrophoresis 45 (2024): 687–705, 10.1002/elps.202300232. PubMed DOI

Bosc‐Bierne G., Ewald S., Kreuzer O. J., and Weller M. G., “Efficient Quality Control of Peptide Pools by UHPLC and Simultaneous UV and HRMS Detection,” Separations 11 (2024): 156, 10.3390/separations11050156. DOI

Kuril A. K., “The Critical Need for Implementing RRF in the Accurate Assessment of Impurities in Peptide Therapeutics,” Analytical Chemistry 97 (2025): 12480–12485, 10.1021/acs.analchem.5c02149. PubMed DOI

Stefanik O., Mikus P., and Piestansky J., “Capillary Electrophoresis With Diode Array Detection for the Quantification of Triptorelin and Lanreotide in Pharmaceutical Quality Control: Development, Validation, Greenness and Practicality Evaluation,” European Pharmaceutical Journal 2024 (2024), 10.2478/afpuc-2024-0012. DOI

Zimina T., Sitkov N., Karasev V., et al., “Design of Peptide Ligand for Lactoferrin and Study of Its Binding Specificity,” Chemosensors 11 (2023): 162, 10.3390/chemosensors11030162. DOI

Liu X. X., Du X., Huang Y. Z., et al., “Rapid Detection of Four Pathogens in Bloodstream Infection by Antimicrobial Peptide Capture Combined with Multiplex PCR and Capillary Electrophoresis,” Microchemical Journal 185 (2023): 108199, 10.1016/j.microc.2022.108199. DOI

Shen B. W., Zhou F., and Nemes P., “Electrophoresis‐Correlative Ion Mobility Deepens Single‐Cell Proteomics in Capillary Electrophoresis Mass Spectrometry,” Molecular & Cellular Proteomics 24 (2025): 100892, 10.1016/j.mcpro.2024.100892. PubMed DOI PMC

Campos M. A. J., Mavrogeorgis E., Latosinska A., et al., “Urinary Peptide Analysis to Predict the Response to Blood Pressure Medication,” Nephrology Dialysis Transplantation 39 (2024): 873–883, 10.1093/ndt/gfad223. PubMed DOI PMC

Tornhage C. J., Peters B., Latosinska A., et al., “Establishment of a Protocol for CE‐MS Based Peptidome Analysis of Human Saliva,” Proteomics 25 (2025): e00231, 10.1002/pmic.202400231. PubMed DOI PMC

Boutin L., Latosinska A., Mischak H., et al., “Subclinical and Clinical Acute Kidney Injury Share Similar Urinary Peptide Signatures and Prognosis,” Intensive Care Medicine 49 (2023): 1191–1202, 10.1007/s00134-023-07198-2. PubMed DOI

de Beer D., Mels C. M. C., Schutte A. E., et al., “Identifying a Urinary Peptidomics Profile for Hypertension in Young Adults: The African‐PREDICT Study Urinary Peptidomics and Hypertension,” Proteomics 23 (2023): 2200444, 10.1002/pmic.202200444. PubMed DOI

Deng F. Y., Wang R. Q., Wu L. Q., Yang G. W., Su R., and Liu Y. H., “Angiotensin Detection: A Comprehensive Review of Current Methods and Novel Technologies,” Microchemical Journal 206 (2024): 111592, 10.1016/j.microc.2024.111592. DOI

Men X., Wu C. X., Chen M. L., and Wang J. H., “Determination of Glutathione in Cells by Capillary Electrophoresis. Laser Induced Fluorescence,” Chinese Journal of Chromatography 41 (2023): 87–93, 10.3724/SP.J.1123.2022.04018. PubMed DOI PMC

Dominguez‐Rodriguez G., Montero L., Herrero M., Cifuentes A., and Castro‐Puyana M., “Capillary Electromigration Methods for Food Analysis and Foodomics: Advances and Applications in the Period March 2021 to March 2023,” Electrophoresis 45 (2024): 8–34, 10.1002/elps.202300126. PubMed DOI

Semail N. F., Yahaya N., Mohamed A. H., Chen D. D. Y., and Zain N. N. M., “Advances and Applications of Capillary Electrophoresis Mass Spectrometry in Food Analysis: Strategies for Online and Offline Preconcentration,” Electrophoresis 45 (2025): 263–278, 10.1002/elps.202400211. PubMed DOI

Stastna M., “Advances in Separation and Identification of Biologically Important Milk Proteins and Peptides,” Electrophoresis 45 (2024): 101–119, 10.1002/elps.202300084. PubMed DOI

Asensio‐Ramos M. and D'Orazio G., “Capillary Electromigration Techniques: Application to Coffee Analysis‐ A Review,” Journal of Chromatography Open 3 (2023): 100083, 10.1016/j.jcoa.2023.100083. DOI

Wang Y., Skinner E. L., and Roper M. G., “Comparison Between Capillary Electrophoresis and Fluorescence Anisotropy Competitive Immunoassay for Glucagon,” Electrophoresis 45 (2024): 1692–1700, 10.1002/elps.202400080. PubMed DOI PMC

Niaei N., Valis M., and Petr J., “Capillary Zone Electrophoresis Method for Quantification of Therapeutic Peptide Glatiramer Acetate,” Monatshefte Fur Chemie 155 (2024): 441–446, 10.1007/s00706-024-03190-8. DOI

Carmona‐Molero R., Carbonell‐Rozas L., Garcia‐Campana A. M., del Olmo‐Iruela M., and Lara F. J., “Toxic Cyanopeptides Monitoring in Thermal Spring Water by Capillary Electrophoresis Tandem Mass Spectrometry,” Toxins 17 (2025): 63, 10.3390/toxins17020063. PubMed DOI PMC

Qiu X. T., Hou X. B., Yang Y., Fang H., Cui F., and Yang X. Y., “An In‐Line Method for High‐Throughput Screening of Protein Tyrosine Phosphatase Receptor Type O Inhibitors by Capillary Electrophoresis Based on Electrophoretically Mediated Microanalysis,” Journal of Chromatography A 1713 (2024): 464511, 10.1016/j.chroma.2023.464511. PubMed DOI

Brzezicka T., Kohutova L., and Glatz Z., “Atypical Applications of Transverse Diffusion of Laminar Flow Profiles Methodology for In‐Capillary Reactions in Capillary Electrophoresis,” Journal of Separation Science 47 (2024): 2400157, 10.1002/jssc.202400157. PubMed DOI

Gao J., Adams E., Jiang Z. J., and Van Schepdael A., “A Versatile and Automatic On‐Line Screening Method: Transverse Diffusion of Laminar Flow Profiles‐Based Capillary Electrophoresis for Exploring PTP1B Inhibitors in Natural Products,” Journal of Chromatography A 1741 (2025): 465607, 10.1016/j.chroma.2024.465607. PubMed DOI

Su Y. Y., Shui F., Tang J., et al., “Recent Advances of Capillary Electrophoresis for Enzyme Analysis (2021‐2024),” Microchemical Journal 213 (2025): 113701, 10.1016/j.microc.2025.113701. DOI

Andrasi M., Vishwakarma G., Szabo R., Nagy C., and Gaspar A., “Comparative Study on the Deamidation of Three Recombinant Human Insulins Using Capillary Electrophoresis,” Journal of Chromatography A 1706 (2023): 464286, 10.1016/j.chroma.2023.464286. PubMed DOI

Fang F., Xu T., Hagar H. T. C., Hovde S., Kuo M. H., and Sun L. L., “Pilot Study for Deciphering Post‐Translational Modifications and Proteoforms of Tau Protein by Capillary Electrophoresis‐Mass Spectrometry,” Journal of Proteome Research 23 (2024): 5085–5095, 10.1021/acs.jproteome.4c00587. PubMed DOI PMC

Prinston J. E., Peng W. J., Provoncha K., et al., “A Target Affinity Enrichment Workflow to Characterize Critical Post‐Translational Modifications Within Therapeutic Antibodies,” Journal of Pharmaceutical Sciences 114 (2025): 103710, 10.1016/j.xphs.2025.103710. PubMed DOI

Ryan K. A. and Bruening M. L., “Online Protein Digestion in Membranes Between Capillary Electrophoresis and Mass Spectrometry,” Analyst 148 (2023): 1611–1619, 10.1039/D3AN00106G. PubMed DOI

Gebretsadik H., Kahsay G., Adams E., and Van Schepdael A., “A Comprehensive Review of Capillary Electrophoresis‐Based Techniques for Erythropoietin Isoforms Analysis,” Journal of Chromatography A 1708 (2023): 464331, 10.1016/j.chroma.2023.464331. PubMed DOI

Gao J., Jiang Z. J., Adams E., and Van Schepdael A., “A Fast and Efficient Method for Screening and Evaluation of Hypoglycemic Ingredients of Traditional Chinese Medicine Acting on PTP1B by Capillary Electrophoresis,” Journal of Pharmaceutical and Biomedical Analysis 244 (2024): 116125, 10.1016/j.jpba.2024.116125. PubMed DOI

Stepanova S. and Kasicka V., “Capillary Electrophoretic Methods Applied to the Investigation of Peptide Complexes,” Journal of Separation Science 38 (2015): 2708–2721, 10.1002/jssc.201500399. PubMed DOI

Matsuo M., Wakui K., Inami Y., Furukawa A., Sato S., and Yoshimoto K., “Proficiently Partitioning of Bioactive Peptide‐ssDNA Conjugates by Microbead‐assisted Capillary Electrophoresis (MACE),” Analytical Biochemistry 687 (2024): 115452, 10.1016/j.ab.2023.115452. PubMed DOI

Brzezicka T., Glatz Z., and Kohutova L., “Sensitivity Enhancement of Capillary Electrophoresis‐frontal Analysis‐based Method for Characterization of Drug‐protein Interactions Using on‐line Sample Preconcentration,” Journal of Separation Science 46 (2023): 2300152, 10.1002/jssc.202300152. PubMed DOI

Wang S. T., Sun M. F., Gao H., Shen B. B., and Fang W. J., “Monitoring of Low‐Molecular‐Weight Protein Aggregation by CE‐SDS as a Complementary Method to SE‐HPLC,” Journal of Pharmaceutical and Biomedical Analysis 234 (2023): 115521, 10.1016/j.jpba.2023.115521. PubMed DOI

Zhao Y., Zhang W. J., Hong J., et al., “Mobility Capillary Electrophoresis‐Native Mass Spectrometry Reveals the Dynamic Conformational Equilibrium of Calmodulin and Its Complexes,” Analyst 149 (2024): 3793–3802, 10.1039/D4AN00378K. PubMed DOI

Lobanov M. Y., Surin A. A., and Galzitskaya O. V., “What Can Be Learned by Knowing Only the Amino Acid Composition of Proteins?,” International Journal of Molecular Sciences 25 (2024): 13680, 10.3390/ijms252413680. PubMed DOI PMC

Luo X. E., Ng C. C. A., Lam H. H. N., and Yao Z. P., “Advances in Protein Sequencing: Techniques, Challenges and Prospects,” Trends in Analytical Chemistry 191 (2025): 118341, 10.1016/j.trac.2025.118341. DOI

Yin X. W., Adams E., and Van Schepdael A., “Overview of Chromatographic and Electrophoretic Methods for the Determination of Branched‐Chain Amino Acids,” Journal of Separation Science 46 (2023): 2300213, 10.1002/jssc.202300213. PubMed DOI

Armstrong D. W., “Analysis of D‐Amino Acids: Relevance in Human Disease,” Lcgc North America 40 (2022): 356–360, 10.56530/lcgc.na.mg4374l5. DOI

Liu Y. R., Wu Z. L., Armstrong D. W., Wolosker H., and Zheng Y. B., “Detection and Analysis of Chiral Molecules as Disease Biomarkers,” Nature Reviews Chemistry 7 (2023): 355–373, 10.1038/s41570-023-00476-z. PubMed DOI PMC

Wang Q. Y., Wang Q. J., Qi Z. H., Moeller W., Wysocki V. H., and Sun L. L., “Native Proteomics by Capillary Zone Electrophoresis‐Mass Spectrometry,” Angewandte Chemie‐International Edition 63 (2024): e202408370, 10.1002/anie.202408370. PubMed DOI PMC

Kasicka V., “Peptide Mapping of Proteins by Capillary Electromigration Methods,” Journal of Separation Science 45 (2022): 4245–4279, 10.1002/jssc.202200664. PubMed DOI

Dykstra A. B., Lubinsky T. G., Vitrac H., Campuzano I. D. G., Bondarenko P. V., and Simone A. R., “Utilization of Liquid Chromatography‐Mass Spectrometry and High‐Resolution Ion Mobility‐Mass Spectrometry to Characterize Therapeutically Relevant Peptides With Asparagine Deamidation and Isoaspartate,” Analytical Chemistry 97 (2024): 749–757, 10.1021/acs.analchem.4c05246. PubMed DOI

Leblanc Y., Cauquil N., Pasteau V., et al., “Comprehensive Characterization of IgG2 Disulfide Isoforms Using Native Cation Exchange Chromatography‐Mass Spectrometry and Peptide Mapping,” Analytical Chemistry 97 (2025): 9395–9404, 10.1021/acs.analchem.5c00578. PubMed DOI

Fei M. D., Zhang Q., Zhang L., et al., “Characterization Workflow for Fragments Detected in Capillary Electrophoresis Sodium Dodecyl Sulfate Analysis of Therapeutic Monoclonal Antibodies,” Electrophoresis 45 (2024): 1325–1338, 10.1002/elps.202300282. PubMed DOI

Muriithi B., Ippoliti S., Finny A., Addepalli B., and Lauber M., “Clean and Complete Protein Digestion With an Autolysis Resistant Trypsin for Peptide Mapping,” Journal of Proteome Research 23 (2024): 5221–5228, 10.1021/acs.jproteome.4c00598. PubMed DOI PMC

Mousseau C. B., Hu D. D., Schultz S. R., and Champion M. M., “Quenching Trypsin Is Unnecessary in Filter‐Based Bottom‐Up Proteomics,” Journal of the American Society for Mass Spectrometry 35 (2024): 2028–2031, 10.1021/jasms.4c00143. PubMed DOI PMC

Mansuri M. S., Bathla S., Lam T. T., Nairn A. C., and Williams K. R., “Optimal Conditions for Carrying out Trypsin Digestions on Complex Proteomes: From Bulk Samples to Single Cells,” Journal of Proteomics 297 (2024): 105109, 10.1016/j.jprot.2024.105109. PubMed DOI PMC

Pont L., Lobo G., Benavente F., and Gimenez E., “Microseparation Techniques Coupled to Mass Spectrometry for a Sensitive and Unequivocal Identification of Glycopeptides,” Microchemical Journal 200 (2024): 110386, 10.1016/j.microc.2024.110386. DOI

Brasseler M., Mischak H., Schanstra J. P., Michel J. M., Pape L., and Felderhoff‐Muser U., “Gestational Age‐Related Urinary Peptidome Changes in Preterm and Term Born Infants,” Neonatology 121 (2024): 305–313, 10.1159/000535355. PubMed DOI

Burgmaier K., Buffin‐Meyer B., Klein J., et al., “Urinary Peptide Signature Distinguishes Autosomal Recessive Polycystic Kidney Disease From Other Causes of Chronic Kidney Disease,” Clinical Kidney Journal 18 (2025): sfaf093, 10.1093/ckj/sfaf093. PubMed DOI PMC

Fernandez L., Breuil B., Froment C., et al., “Development and Validation of a Capillary Electrophoresis Coupled to Mass Spectrometry Pipeline for Comparable Assessment of the Plasma Peptidome,” Proteomics 25 (2025): e202400114, 10.1002/pmic.202400114. PubMed DOI PMC

Lumi R., Petri S., Siwy J., et al., “Small Peptide CSF Fingerprint of Amyotrophic Lateral Sclerosis,” PLoS ONE 19 (2024): e0302280, 10.1371/journal.pone.0302280. PubMed DOI PMC

Morvan M. and Miksik I., “Recent Advances in Chiral Analysis of Proteins and Peptides,” Separations 8 (2021): 112.

Qian H. L., Xu S. T., and Yan X. P., “Recent Advances in Separation and Analysis of Chiral Compounds,” Analytical Chemistry 95 (2023): 304–318, 10.1021/acs.analchem.2c04371. PubMed DOI

Zhang L., Tan Q. G., Fan J. Q., et al., “Microfluidics for Chiral Separation of Biomolecules,” Trends in Analytical Chemistry 158 (2023): 116842, 10.1016/j.trac.2022.116842. DOI

Busardo F. P., Tini A., Lo Faro A. F., Basile G., Farkas T., and Chankvetadze B., “Enantioselective Separation Techniques in Forensic Analysis and Clinical Toxicology,” Trends in Analytical Chemistry 175 (2024): 117733, 10.1016/j.trac.2024.117733. DOI

Badgujar D., Paritala S. T., Matre S., and Sharma N., “Enantiomeric Purity of Synthetic Therapeutic Peptides: A Review,” Chirality 36 (2024), 10.1002/chir.23652. PubMed DOI

Chankvetadze B. and Scriba G. K. E., “Cyclodextrins as Chiral Selectors in Capillary Electrophoresis: Recent Trends in Mechanistic Studies,” Trends in Analytical Chemistry 160 (2023): 116987, 10.1016/j.trac.2023.116987. DOI

Scriba G. K. E., “Update on Chiral Recognition Mechanisms in Separation Science,” Journal of Separation Science 47 (2024): 2400148, 10.1002/jssc.202400148. PubMed DOI

Scriba G. K. E., “Chiral Recognition in Separation Sciences. Part II: Macrocyclic Glycopeptide, Donor‐Acceptor, Ion‐Exchange, Ligand‐Exchange and Micellar Selectors,” Trends in Analytical Chemistry 119 (2019): 115628, 10.1016/j.trac.2019.115628. DOI

Kasicka V., “From Micro to Macro: Conversion of Capillary Electrophoretic Separations of Biomolecules and Bioparticles to Preparative Free‐Flow Electrophoresis Scale,” Electrophoresis 30 (2009): S40–S52, 10.1002/elps.200900156. PubMed DOI

Pes O. and Preisler J., “Off‐line Coupling of Microcolumn Separations to Desorption Mass Spectrometry,” Journal of Chromatography A 1217 (2010): 3966–3977, 10.1016/j.chroma.2010.02.058. PubMed DOI

Hruskova H., Reminek R., and Foret F., “Offline Preparative Separation Methods Based on Electromigration: An Overview and Current Trends,” Trends in Analytical Chemistry 170 (2024): 117428, 10.1016/j.trac.2023.117428. DOI

Stastna M. and Slais K., “Preparative Separation of Immunoglobulins From Bovine Colostrum by Continuous Divergent‐Flow Electrophoresis,” Journal of Separation Science 46 (2023): 2200679, 10.1002/jssc.202200679. PubMed DOI

Dusa F., Salplachta J., Horka M., et al., “Isoelectric Focusing Fractionation Method for Signal Enhancement in Detection of Inactivated Biological Agents Using Matrix‐Assisted Laser Desorption/Ionization Mass Spectrometry,” Electrophoresis 46 (2025): 212–220, 10.1002/elps.202400052. PubMed DOI PMC

Stastna M. and Slais K., “Preparative Continuous Flow Electrophoretic Instrumentation for Purification of Biological Samples,” Electrophoresis . PubMed

Kasicka V., Prusik Z., Sazelova P., Jiracek J., and Barth T., “Theory of the Correlation Between Capillary and Free‐Flow Zone Electrophoresis and Its Use for the Conversion of Analytical Capillary Separations to Continuous Free‐Flow Preparative Processes—Application to Analysis and Preparation of Fragments of Insulin,” Journal of Chromatography A 796 (1998): 211–220. PubMed

Kasicka V., Prusik Z., and Pospisek J., “Conversion of Capillary Zone Electrophoresis to Free‐Flow Zone Electrophoresis Using a Simple Model of Their Correlation—Application to Synthetic Enkephalin‐Type Peptide Analysis and Preparation,” Journal of Chromatography 608 (1992): 13–22, 10.1016/0021-9673(92)87101-D. DOI

Doria S., Yost J., and Gagnon Z., “Free‐flow Biomolecular Concentration and Separation of Proteins and Nucleic Acids Using Teichophoresis,” Talanta 255 (2023): 124198, 10.1016/j.talanta.2022.124198. PubMed DOI

Douma C. C. and Bowser M. T., “Assessing Surface Adsorption in Cyclic Olefin Copolymer Microfluidic Devices Using Two‐Dimensional Nano Liquid Chromatography‐Micro Free Flow Electrophoresis Separations,” Analytical Chemistry 95 (2023): 18379–18387, 10.1021/acs.analchem.3c03014. PubMed DOI PMC

Stepanova S. and Kasicka V., “Determination of Physicochemical Parameters of (bio)Molecules and (bio)Particles by Capillary Electromigration Methods,” Journal of Separation Science 47 (2024): 2400174, 10.1002/jssc.202400174. PubMed DOI

Cifuentes A. and Poppe H., “Behavior of Peptides in Capillary Electrophoresis: Effect of Peptide Charge, Mass and Structure,” Electrophoresis 18 (1997): 2362–2376, 10.1002/elps.1150181227. PubMed DOI

Solinova V., Kasicka V., Koval D., and Hlavacek J., “Separation and Investigation of Structure‐Mobility Relationships of Insect Oostatic Peptides by Capillary Zone Electrophoresis,” Electrophoresis 25 (2004): 2299–2308, 10.1002/elps.200405924. PubMed DOI

Solinova V., Poitevin M., Koval D., Busnel J. M., Peltre G., and Kasicka V., “Capillary Electrophoresis in Classical and Carrier Ampholytes‐Based Background Electrolytes Applied to Separation and Characterization of Gonadotropin‐Releasing Hormones,” Journal of Chromatography A 1267 (2012): 231–238, 10.1016/j.chroma.2012.07.059. PubMed DOI

Dubsky P., Dvorak M., and Ansorge M., “Affinity Capillary Electrophoresis: The Theory of Electromigration,” Analytical and Bioanalytical Chemistry 408 (2016): 8623–8641, 10.1007/s00216-016-9799-y. PubMed DOI

Wang T. Y., Ji H. C., Everton D., et al., “Fundamental Determinants of the Accuracy of Equilibrium Constants for Affinity Complexes,” Analytical Chemistry 95 (2023): 15826–15832, 10.1021/acs.analchem.3c03557. PubMed DOI

Wang T. Y., Rukundo J. L., Mao Z. Y., and Krylov S. N., “Maximizing the Accuracy of Equilibrium Dissociation Constants for Affinity Complexes: From Theory to Practical Recommendations,” Acs Chemical Biology 19 (2024): 1852–1867, 10.1021/acschembio.4c00259. PubMed DOI

Manzi S. J., Ranzuglia G. A., Centres P. M., and Pereyra V. D., “Relevance of the Calculation of the Diffusion Coefficient in a Capillary Electrophoresis Experiment,” Electrophoresis 45 (2024): 300–309, 10.1002/elps.202300148. PubMed DOI

Takayanagi T., Shimizu H., Mine M., and Mizuguchi H., “Kinetic Analyses of Two‐Steps Enzymatic Oxidation From Hypoxanthine to Uric Acid with Xanthine Oxidase by Capillary Electrophoresis/Dynamic Frontal Analysis,” Chromatography 44 (2023): 61–67, 10.15583/jpchrom.2023.009. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...