Peptide mapping of proteins by capillary electromigration methods

. 2022 Dec ; 45 (23) : 4245-4279. [epub] 20221013

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36200755

This review article provides a wide overview of important developments and applications of capillary electromigration methods in the area of peptide mapping of proteins in the period 1997-mid-2022, including review articles on this topic. It deals with all major aspects of peptide mapping by capillary electromigration methods: i) precleavage sample preparation involving purification, preconcentration, denaturation, reduction and alkylation of protein(s) to be analyzed, ii) generation of peptide fragments by off-line or on-line enzymatic and/or chemical cleavage of protein(s), iii) postcleavage preparation of the generated peptide mixture for capillary electromigration separation, iv) separation of the complex peptide mixtures by one-, two- and multidimensional capillary electromigration methods coupled with mass spectrometry detection, and v) a large application of peptide mapping for variable purposes, such as qualitative analysis of monoclonal antibodies and other protein biopharmaceuticals, monitoring of posttranslational modifications, determination of primary structure and investigation of function of proteins in biochemical and clinical research, characterization of proteins of variable origin as well as for protein and peptide identification in proteomic and peptidomic studies.

Zobrazit více v PubMed

Ingram VM. Hemoglobin peptide mapping. Biochimica et Biophysica Acta. 1958;28:539-45.

Lechner A, Giorgetti J, Gahoual R, Beck A, Leize-Wagner E, Francois YN. Insights from capillary electrophoresis approaches for characterization of monoclonal antibodies and antibody-drug conjugates in the period 2016-2018. J Chromatogr B Anal Technol Biomed Life Sci. 2019;1122:1-17.

Kumar R, Guttman A, Rathore AS. Applications of capillary electrophoresis for biopharmaceutical product characterization. Electrophoresis 2022;43:143-66.

Nagy C, Andrasi M, Hamidli N, Gyemant G, Gaspar A. Top-down proteomic analysis of monoclonal antibodies by capillary zone electrophoresis-mass spectrometry. J Chromatogr Open. 2022;2:100024.

Ren DY, Zhang J, Pritchett R, Liu HB, Kyauk J, Luo J, Amanullah A. Detection and identification of a serine to arginine sequence variant in a therapeutic monoclonal antibody. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879:2877-84.

Fonslow BR, Yates JR. Capillary electrophoresis applied to proteomic analysis. J Sep Sci. 2009;32:1175-88.

Zhang YY, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013;113:2343-94.

Stepanova S, Kasicka V. Recent developments and applications of capillary and microchip electrophoresis in proteomic and peptidomic analyses. J Sep Sci. 2016;39:198-211.

Zhang ZB, Qu YY, Dovichi NJ. Capillary zone electrophoresis-mass spectrometry for bottom-up proteomics. Trends Anal Chem. 2018;108:23-37.

Stepanova S, Kasicka V. Recent developments and applications of capillary and microchip electrophoresis in proteomics and peptidomics (2015-mid 2018). J Sep Sci. 2019;42:398-414.

Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367-72.

Bern M, Kil YJ, Becker C. Byonic: advanced peptide and protein identification software. Curr Protocol Bioinform. 2012;40:13.20.1-14.

The UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204-12.

Perez-Riverol Y, Csordas A, Bai JW, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Perez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A, Vizcaino JA. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442-50.

Vreeke GJC, Lubbers W, Vincken JP, Wierenga PA. A method to identify and quantify the complete peptide composition in protein hydrolysates. Anal Chim Acta. 2022;1201:339616.

Miksik I. Coupling of CE-MS for protein and peptide analysis. J Sep Sci. 2019, 42.

Stolz A, Jooss K, Hocker O, Romer J, Schlecht J, Neususs C. Recent advances in capillary electrophoresis-mass spectrometry: Instrumentation, methodology and applications. Electrophoresis. 2019;40:79-112.

Kuzyk VO, Somsen GW, Haselberg R. CE-MS for proteomics and intact protein analysis. In: Simionato AVC, editor. Separation techniques applied to omics sciences: from principles to relevant applications. CHAM: Springer International Publishing AG; 2021. p. 51-86.

Rickard EC, Towns JK. Applications of capillary zone electrophoresis to peptide mapping. In: Karger BL, Hancock WS, editors. High-resolution separation and analysis of biological macromolecules, PtB. Totowa: Academic Press Inc; 1996. p. 237-64.

Stepanova S, Kasicka V. Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal Chim Acta. 2016;933:23-42.

Dawod M, Arvin NE, Kennedy RT. Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst 2017;142:1847-66.

Stepanova S, Kasicka V. Applications of capillary electromigration methods for separation and analysis of proteins (2017-mid 2021)-A review. Anal Chim Acta. 2022;1209:339447.

Kasicka V. Recent developments in capillary and microchip electroseparations of peptides (2015-mid 2017). Electrophoresis. 2018;39:209-34.

Kasicka V. Recent developments in capillary and microchip electroseparations of peptides (2017-mid 2019). Electrophoresis. 2020;41:10-35.

Kasicka V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis. 2022;43:82-108.

Lundell N, Schreitmuller T. Sample preparation for peptide mapping - a pharmaceutical quality-control perspective. Anal Biochem. 1999;266:31-47.

Dick LW, Mahon D, Qiu DF, Cheng KC. Peptide mapping of therapeutic monoclonal antibodies: improvements for increased speed and fewer artifacts. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877:230-6.

Muraco CE. Drawing a better map: recent advances in protein digestion and peptide mapping. Lc Gc Europe. 2018;31:670-5.

Mouchahoir T, Schiel JE. Development of an LC-MS/MS peptide mapping protocol for the NISTmAb. Anal Bioanal Chem. 2018;410:2111-26.

Deb-Choudhury S, Plowman JE, Thomas A, Krsinic GL, Dyer JM, Clerens S. Electrophoretic mapping of highly homologous keratins: A novel marker peptide approach. Electrophoresis. 2010;31:2894-902.

Pomastowski P, Buszewski B. Two-dimensional gel electrophoresis in the light of new developments. Trends Anal Chem. 2014;53:167-77.

Hoff ER, Chloupek RC. Analytical peptide mapping of recombinant DNA-derived proteins by reversed-phase high-performance liquid chromatography. Methods Enzymol. 1996;271:51-68.

Mant CT, Chen YX, Yan Z, Popa TV, Kovacs JM, Mills JB, Tripet BP, Hodges RS. HPLC analysis and purification of peptides. In: Fields GB, editor. Peptide characterization and application protocols. Totowa: Humana Press; 2007. p. 3-55.

Dams M, Dores-Sousa JL, Lamers RJ, Treumann A, Eeltink S. High-resolution nano-liquid chromatography with tandem mass spectrometric detection for the bottom-up analysis of complex proteomic samples. Chromatographia. 2019;82:101-10.

Torano JS, Ramautar R, de Jong G. Advances in capillary electrophoresis for the life sciences. J Chromatogr B Anal Technol Biomed Life Sci. 2019;1118:116-36.

Kristoff CJ, Bwanali L, Veltri LM, Gautam GP, Rutto PK, Newton EO, Holland LA. Challenging bioanalyses with capillary electrophoresis. Anal Chem. 2020;92:49-66.

Doucette A, Craft D, Li L. Protein concentration and enzyme digestion on microbeads for MALDI-TOF peptide mass mapping of proteins from dilute solutions. ANAL CHEM. 2000;72:3355-62.

Aguilar MI, Clayton DJ, Holt P, Kronina V, Boysen RI, Purcell AW, Hearn MTW. RP HPLC binding domains of proteins. Anal Chem. 1998;70:5010-8.

Pont L, Pero-Gascon R, Gimenez E, Sanz-Nebot V, Benavente F. A critical retrospective and prospective review of designs and materials in in-line solid-phase extraction capillary electrophoresis. Anal Chim Acta. 2019;1079:1-19.

Pont L, Benavente F, Barbosa J, Sanz-Nebot V. On-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry using Fab' antibody fragments for the analysis of serum transthyretin. Talanta. 2017;170:224-32.

Han M, Wang YA, Cook K, Bala N, Soto M, Rock DA, Pearson JT, Rock BM. Universal Automated Immunoaffinity Purification-CE-MS Platform for Accelerating Next Generation Biologic Design. Anal Chem. 2021;93:5562-9.

Pero-Gascon R, Benavente F, Minic Z, Berezovski MV, Sanz-Nebot V. On-line aptamer affinity solid-phase extraction capillary electrophoresis-mass spectrometry for the analysis of blood alpha-Synuclein. Anal Chem. 2020;92:1525-33.

Breadmore MC, Grochocki W, Kalsoom U, Alves MN, Phung SC, Rokh MT, Cabot JM, Ghiasvand A, Li F, Shallan AI, Keyon ASA, Alhusban AA, See HH, Wuethrich A, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2016-2018). Electrophoresis. 2019;40:17-39.

Slampova A, Mala Z, Gebauer P. Recent progress of sample stacking in capillary electrophoresis (2016-2018). Electrophoresis. 2019;40:40-54.

Park ZY, Russell DH. Thermal denaturation: a useful technique in peptide mass mapping. Anal Chem. 2000;72:2667-70.

Issaq HJ, Chan KC, Liu CS, Li QB. Multidimensional high performance liquid chromatography - capillary electrophoresis separation of a protein digest: an update. Electrophoresis. 2001;22:1133-5.

Marie AL, Ray S, Lu SL, Jones J, Ghiran I, Ivanov AR. High-sensitivity glycan profiling of blood-derived immunoglobulin g, plasma, and extracellular vesicle isolates with capillary zone electrophoresis-mass spectrometry. Anal Chem. 2021;93:1991-2002.

Mayor T, Yang B, Tran NT, Bruneel A, Guttman A, Taverna M, Mai TD. High sensitivity capillary electrophoresis with fluorescent detection for glycan mapping. J Chromatogr A. 2021;1657:462593.

Krenkova J, Foret F. Immobilized microfluidic enzymatic reactors. Electrophoresis. 2004;25:3550-63.

Ma JF, Zhang LH, Liang Z, Shan YC, Zhang YK. Immobilized enzyme reactors in proteomics. Trends Anal Chem. 2011;30:691-702.

Liu XX, Yang JQ, Yang L. Capillary electrophoresis-integrated immobilized enzyme reactors. Rev Anal Chem. 2016;35:115-31.

Nagy C, Szabo R, Gaspar A. Microfluidic immobilized enzymatic reactors for proteomic analyses-recent developments and trends (2017-2021). Micromachines. 2022;13:311.

Sweeney PJ, Walker JM. Proteolytic enzymes for peptide production. In: Burrell MM, editor. Enzymes of molecular biology. Totowa: Humana Press; 1993. p. 277-303.

Dartiguenave C, Hamad H, Waldron KC. Immobilization of trypsin onto 1,4-diisothiocyanatobenzene-activated porous glass for microreactor-based peptide mapping by capillary electrophoresis: Effect of calcium ions on the immobilization procedure. Anal Chim Acta. 2010;663:198-205.

Appel W. Chymotrypsin - molecular and catalytic properties. Clin Biochem. 1986;19:317-22.

Vasseur C, Galacteros F, Groff P, Wajcman H. Cleavage by protease from Staphylococcus-Aureus V8 - an improvement in the sequence-analysis of human hemoglobin-variants. J Biochem Biophys Methods. 1991;22:195-205.

Jekel PA, Weijer WJ, Beintema JJ. Use of endoproteinase Lys-C from lysobacter-enzymogenes in protein-sequence analysis. Anal Biochem. 1983;134:347-54.

Boersema PJ, Taouatas N, Altelaar AFM, Gouw JW, Ross PL, Pappin DJ, Heck AJR, Mohammed S. Straightforward and de novo peptide sequencing by MALDI-MS/MS using a Lys-N metalloendopeptidase. Mol Cell Proteomics. 2009;8:650-60.

Taouatas N, Drugan MM, Heck AJR, Mohammed S. Straightforward ladder sequencing of peptides using a Lys-N metalloendopeptidase. Nat Methods. 2008;5:405-7.

Ingrosso D, Fowler AV, Bleibaum J, Clarke S. Specificity of Endoproteinase Asp-N (Pseudomonas-Fragi) - Cleavage at Glutamyl Residues in 2 Proteins. Biochem Biophys Res Commun. 1989;162:1528-34.

Samodova D, Hosfield CM, Cramer CN, Giuli MV, Cappellini E, Franciosa G, Rosenblatt MM, Kelstrup CD, Olsen JV. ProAlanase is an Effective Alternative to Trypsin for Proteomics Applications and Disulfide Bond Mapping. Mol Cell Proteomics. 2020;19:2139-57.

An Y, Zhang Y, Mueller HM, Shameem M, Chen XY. A new tool for monoclonal antibody analysis Application of IdeS proteolysis in IgG domain-specific characterization. Mabs. 2014;6:879-93.

Scriba GKE, Belal F. Advances in Capillary Electrophoresis-Based Enzyme Assays. Chromatographia. 2015;78:947-70.

Huang SY, Paul P, Ramana P, Adams E, Augustijns P, Van Schepdael A. Advances in Capillary Electrophoretically Mediated Microanalysis for On-line Enzymatic and Derivatization Reactions. Electrophoresis. 2018;39:97-110.

Rozenski J, Asfaw AA, Van Schepdael A. Overview of in-capillary enzymatic reactions using capillary electrophoresis. Electrophoresis. 2022;43:57-73.

Strader MB, Tabb DL, Hervey WJ, Pan CL, Hurst GB. Efficient and specific trypsin digestion of microgram to nanogram quantities of proteins in organic-aqueous solvent systems. Anal Chem. 2006;78:125-34.

Ren D, Pipes GD, Liu DJ, Shih LY, Nichols AC, Treuheit MJ, Brems DN, Bondarenko PV. An improved trypsin digestion method minimizes digestion-induced modifications on proteins. Anal Biochem. 2009;392:12-21.

Glatter T, Ludwig C, Ahrne E, Aebersold R, Heck AJR, Schmidt A. Large-Scale Quantitative Assessment of Different In-Solution Protein Digestion Protocols Reveals Superior Cleavage Efficiency of Tandem Lys-C/Trypsin Proteolysis over Trypsin Digestion. J Proteome Res. 2012;11:5145-56.

Perrin C, Burkitt W, Perraud X, O'Hara J, Jone C. Limited proteolysis and peptide mapping for comparability of biopharmaceuticals: An evaluation of repeatability, intra-assay precision and capability to detect structural change. J Pharm Biomed Anal. 2016;123:162-72.

Duhamel L, Gu Y, Barnett G, Tao YQ, Voronov S, Ding J, Mussa N, Li ZJ. Therapeutic protein purity and fragmented species characterization by capillary electrophoresis sodium dodecyl sulfate using systematic hybrid cleavage and forced degradation. Anal Bioanal Chem. 2019;411:5617-29.

Bao JM, Regnier FE. Ultramicro Enzyme Assays in a Capillary Electrophoretic System. J Chromatogr. 1992;608:217-24.

Krylova SM, Okhonin V, Krylov SN. Transverse diffusion of laminar flow profiles - a generic method for mixing reactants in capillary microreactor. J Sep Sci. 2009;32:742-56.

Chang HT, Yeung ES. On-Column Digestion of Protein for Peptide Mapping by Capillary Zone Electrophoresis with Laser-Induced Native Fluorescence Detection. Anal Chem. 1993;65:2947-51.

Zeisbergerova M, Adamkova A, Glatz Z. Integration of on-line protein digestion by trypsin in CZE by means of electrophoretically mediated microanalysis. Electrophoresis. 2009;30:2378-84.

Ladner Y, Coussot G, Ebner S, Ibrahim A, Vidal L, Perrin C. Optimization of a nano-enzymatic reactor for on-line tryptic digestion of polypeptide conjugates by capillary electrophoresis. Electrophoresis. 2016;37:256-66.

Ladner Y, Mas S, Coussot G, Bartley K, Montels J, Morel J, Perrin C. Integrated microreactor for enzymatic reaction automation: An easy step toward the quality control of monoclonal antibodies. J Chromatogr A. 2017;1528:83-90.

Ladner Y, Mas S, Coussot G, Montels J, Perrin C. In-line tryptic digestion of therapeutic molecules by capillary electrophoresis with temperature control. Talanta. 2019;193:146-51.

Dadouch M, Ladner Y, Bich C, Larroque M, Larroque C, Morel J, Bonnet PA, Perrin C. An in-line enzymatic microreactor for the middle-up analysis of monoclonal antibodies by capillary electrophoresis. Analyst. 2020;145:1759-67.

Dadouch M, Ladner Y, Bich C, Montels JM, Morel J, Bechara C, Perrin C. In-capillary (electrophoretic) digestion-reduction-separation: A smart tool for middle-up analysis of mAb. J Chromatogr A. 2021;1648:462213.

Cobb KA, Novotny M. High-sensitivity peptide mapping by capillary zone electrophoresis and microcolumn liquid chromatography, using immobilized trypsin for protein digestion. Anal Chem. 1989;61:2226-31.

Cobb KA, Novotny MV. Peptide Mapping of Complex Proteins at the Low-Picomole Level with Capillary Electrophoretic Separations. Anal Chem. 1992;64:879-86.

Amankwa LN, Kuhr WG. Trypsin-Modified Fused-Silica Capillary Microreactor for Peptide Mapping by Capillary Zone Electrophoresis. Anal Chem. 1992;64:1610-3.

Licklider L, Kuhr WG. Characterization of reaction dynamics in a trypsin- modified capillary microreactor. Anal Chem. 1998;70:1902-8.

Bonneil E, Mercier M, Waldron KC. Reproducibility of a solid-phase trypsin microreactor for peptide mapping by capillary electrophoresis. Anal Chim Acta. 2000;404:29-45.

Kecskemeti A, Gaspar A. Preparation and characterization of a packed bead immobilized trypsin reactor integrated into a PDMS microfluidic chip for rapid protein digestion. Talanta. 2017;166:275-83.

Kecskemeti A, Bako J, Csarnovics I, Csosz E, Gaspar A. Development of an enzymatic reactor applying spontaneously adsorbed trypsin on the surface of a PDMS microfluidic device. Anal Bioanal Chem. 2017;409:3573-85.

Cheng MX, Wang R, Zhang BF, Mao ZK, Chen ZL. Rapid proteolytic digestion and peptide separation using monolithic enzyme microreactor coupled with capillary electrophoresis. J Pharm Biomed Anal. 2019;165:129-34.

Bonneil E, Waldron KC. On-line system for peptide mapping by capillary electrophoresis at sub-micromolar concentrations. Talanta. 2000;53:687-99.

Gao J, Xu JD, Locascio LE, Lee CS. Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification. Anal Chem. 2001;73:2648-55.

Migneault I, Dartiguenave C, Vinh J, Bertrand MJ, Waldron KC. Two glutaraldehyde-immobilized trypsin preparations for peptide mapping by capillary zone electrophoresis, liquid chromatography, and mass spectrometry. J Liq Chromatogr Relat Technol. 2008;31:789-806.

Ghafourifar G, Fleitz A, Waldron KC. Development of glutaraldehyde-crosslinked chymotrypsin and an in situ immobilized enzyme microreactor with peptide mapping by capillary electrophoresis. Electrophoresis. 2013;34:1804-11.

Ghafourifar G, Waldron KC. Capillary Electrophoretic Peptide Mapping to Probe the Immobilization/Digestion Conditions of Glutaraldehyde-crosslinked Chymotrypsin. Curr Anal Chem. 2015;12:65-73.

Ghafourifar G, Waldron KC. Capillary Electrophoretic Peptide Mapping to Probe the Immobilization/Digestion Conditions of Glutaraldehyde-crosslinked Chymotrypsin. Curr Anal Chem. 2016;12:65-73.

Wang YJ, Sun SC, Azhar I, Zhang Q, Qu QS, Yang L. Core-shell silica microsphere-based trypsin nanoreactor for low molecular-weight proteome analysis. Anal Chim Acta. 2017;985:194-201.

Villegas L, Pero-Gascon R, Benavente F, Barbosa J, Sanz-Nebot V. On-line protein digestion by immobilized enzyme microreactor capillary electrophoresis-mass spectrometry. Talanta. 2019;199:116-23.

Cheng MX, Chen ZL. Trypsin inhibitor screening in traditional Chinese medicine by using an immobilized enzyme microreactor in capillary and molecular docking study. J Sep Sci. 2017;40:3168-74.

Nagy C, Szabo R, Gaspar A. Development of an In-Line Enzyme Reactor Integrated into a Capillary Electrophoresis System. Molecules. 2021;26:5902.

Schroeder WA, Shelton JB, Shelton JR. An Examination of Conditions for Cleavage of Polypeptide Chains with Cyanogen Bromide - Application to Catalase. Arch Biochem Biophys. 1969;130:551-5.

Miksik I, Novotna J, Uhrova M, Jelinkova D, Deyl Z. Capillary electrophoresis of large cyanogen bromide peptides of fibre-forming collagens with special reference to cross-linking. J Chromatogr A. 1997;772:213-20.

Deyl Z, Miksik I. Comparison of different electrokinetic separation modes applicable to a model peptide mixture (Collagen type I and IIICNBr fragments). J Chromatogr B. 2000;745:251-60.

Wu J, Watson JT. Optimization of the cleavage reaction for cyanylated cysteinyl proteins for efficient and simplified mass mapping. Anal Biochem. 1998;258:268-76.

Mahoney WC, Hermodson MA. High-Yield Cleavage of Tryptophanyl Peptide-Bonds by Ortho-Iodosobenzoic Acid. Biochemistry. 1979;18:3810-4.

Buranaprapuk A, Kumar CV, Jockusch S, Turro NJ. Photochemical protein scissors: Role of aromatic residues on the binding affinity and photocleavage efficiency of pyrenyl peptides. Tetrahedron. 2000;56:7019-25.

Shihabi ZK. Peptide stacking by acetonitrile-salt mixtures for capillary zone electrophoresis. J Chromatogr A. 1996;744:231-40.

Shihabi ZK. Stacking for nonaqueous capillary electrophoresis. Electrophoresis. 2002;23:1628-32.

Mala Z, Gebauer P. Recent progress in analytical capillary isotachophoresis. Electrophoresis. 2019;40:55-64.

Mala Z, Gebauer P. Recent progress in analytical capillary isotachophoresis (2018 - March 2022). J Chromatogr A. 2022;1677:463337.

Settlage RE, Russo PS, Shabanowitz J, Hunt DF. A novel mu-ESI source for coupling capillary electrophoresis and mass spectrometry: Sequence determination of tumor peptides at the attomole level. J Microcolumn. 1998;10:281-5.

Shihabi ZK. Transient pseudo-isotachophoresis for sample concentration in capillary electrophoresis. Electrophoresis. 2002;23:1612-7.

Imami K, Monton MRN, Ishihama Y, Terabe S. Simple on-line sample preconcentration technique for peptides based on dynamic pH junction in capillary electrophoresis-mass spectrometry. J Chromatogr A. 2007;1148:250-5.

Zhu GJ, Sun LL, Dovichi NJ. Dynamic pH junction preconcentration in capillary electrophoresis-electrospray ionization-mass spectrometry for proteomics analysis. Analyst. 2016;141:5216-20.

Righetti PG, Sebastiano R, Citterio A. Capillary electrophoresis and isoelectric focusing in peptide and protein analysis. Proteomics. 2013;13:325-40.

Zhu R, Kok WT. Postcolumn derivatization of peptide with fluorescamine in capillary electrophoresis. J Chromatogr A. 1998;814:213-21.

Liu HJ, Krull IS, Cohen SA. Femtomole peptide mapping by derivatization, high-performance liquid chromatography, and fluorescence detection. Anal Biochem. 2001;294:7-18.

Ye ML, Hu S, Schoenherr RM, Dovichi NJ. On-line protein digestion and peptide mapping by capillary electrophoresis with post-column labeling for laser-induced fluorescence detection. Electrophoresis. 2004;25:1319-26.

Kasicka V, Prusik Z. Isotachophoretic electrodesorption of proteins from an affinity adsorbent on a microscale. J Chromatogr. 1983;273:117-28.

Guzman NA, Trebilcock MA, Advis JP. The use of a concentration step to collect urinary components separated by capillary electrophoresis and further characterization of collected analytes by mass spectrometry. J Liq Chromatogr. 1991;14:997-1015.

Debets AJJ, Mazereeuw M, Voogt WH, Vaniperen DJ, Lingeman H, Hupe KP, Brinkman UAT. Switching valve with internal micro precolumn for on-line sample enrichment in capillary zone electrophoresis. J Chromatogr. 1992;608:151-8.

Strausbauch MA, Madden BJ, Wettstein PJ, Landers JP. Sensitivity enhancement and second-dimensional information from solid phase extraction-capillary electrophoresis of entire high-performance liquid chromatography fractions. Electrophoresis. 1995;16:541-8.

Tomlinson AJ, Benson LM, Braddock WD, Oda RP, Naylor S. On-line preconcentration capillary electrophoresis mass spectrometry (PC-CE-MS). HRC-J High Res Chromatogr. 1994;17:729-31.

Beattie JH, Self R, Richards MP. The use of solid phase concentrators for on-line preconcentration of metallothionein prior to isoform separation by capillary zone electrophoresis. Electrophoresis. 1995;16:322-8.

Barroso MB, de Jong AP. A new design for large, dilute sample loading in capillary electrophoresis. J Capillary Electrophor. 1998;5:1-7.

Barroso MB, Dejong AP. Sheathless preconcentration-capillary zone electrophoresis- mass spectrometry applied to peptide analysis. J Amer Soc Mass Spectrom. 1999;10:1271-8.

Figeys D, Ducret A, Aebersold R. Identification of proteins by capillary electrophoresis tandem mass spectrometry - Evaluation of an on-line solid- phase extraction device. J Chromatogr A. 1997;763:295-306.

Figeys D, Corthals GL, Gallis B, Goodlett DR, Ducret A, Corson MA, Aebersold R. Data-dependent modulation of solid phase extraction capillary electrophoresis for the analysis of complex peptide and phosphopeptide mixtures by tandem mass spectrometry: Application to endothelial nitric oxide synthase. Anal Chem. 1999;71:2279-87.

Bateman KP, White RL, Thibault P. Evaluation of adsorption preconcentration/capillary zone electrophoresis/nanoelectrospray mass spectrometry for peptide and glycoprotein analyses. J Mass Spectrom. 1998;33:1109-23.

Tong W, Link A, Eng JK, Yates JR. Identification of proteins in complexes by solid phase microextraction multistep elution capillary electrophoresis tandem mass spectrometry. Anal Chem. 1999;71:2270-8.

Bonneil E, Waldron KC. Characterization of a solid-phase extraction device for discontinuous on-line preconcentration in capillary electrophoresis-based peptide mapping. J Chromatogr B. 1999;736:273-87.

Yang Q, Tomlinson AJ, Naylor S. Membrane preconcentration CE. Anal Chem. 1999;71:183A-9A.

Naylor S, Ji QC, Johnson KL, Tomlinson AJ, Kieper WC, Jameson SC. Enhanced sensitivity for sequence determination of major histocompatibility complex class I peptides by membrane preconcentration - capillary electrophoresis - microspray - tandem mass spectrometry. Electrophoresis. 1998;19:2207-12.

Naylor S, Tomlinson AJ. Membrane preconcentration-capillary electrophoresis tandem mass spectrometry (mPC-CE-MS/MS) in the sequence analysis of biologically derived peptides. Talanta. 1998;45:603-12.

Rohde E, Tomlinson AJ, Johnson DH, Naylor S. Protein analysis by membrane preconcentration-capillary electrophoresis: systematic evaluation of parameters affecting preconcentration and separation. J Chromatogr B. 1998;713:301-11.

Zhang ZB, Sun LL, Zhu GJ, Yan XJ, Dovichi NJ. Integrated strong cation-exchange hybrid monolith coupled with capillary zone electrophoresis and simultaneous dynamic pH junction for large-volume proteomic analysis by mass spectrometry. Talanta. 2015;138:117-22.

Zhang ZB, Yan XJ, Sun LL, Zhu GJ, Dovichi NJ. Detachable Strong Cation Exchange Monolith, Integrated with Capillary Zone Electrophoresis and Coupled with pH Gradient Elution, Produces Improved Sensitivity and Numbers of Peptide Identifications during Bottom-up Analysis of Complex Proteomes. Anal Chem. 2015;87:4572-7.

Wang LY, Cheng JH, Mcnutt JE, Morin GB, Chen DDY. Dynamic pH barrage junction focusing of amino acids, peptides, and digested monoclonal antibodies in capillary electrophoresis-mass spectrometry. Electrophoresis. 2020;41:1832-42.

Mancera-Arteu M, Gimenez E, Benavente F, Barbosa J, Sanz-Nebot V. Analysis of O-Glycopeptides by Acetone Enrichment and Capillary Electrophoresis-Mass Spectrometry. J Proteome Res. 2017;16:4166-76.

Zhang CH, Woolfork AG, Suh K, Ovbude S, Bi C, Elzoeiry M, Hage DS. Clinical and pharmaceutical applications of affinity ligands in capillary electrophoresis: A review. J Pharm Biomed Anal. 2020;177:112882.

Miksik I. Capillary electrochromatography of proteins and peptides (2006-2015). J Sep Sci. 2017;40:251-71.

Fekete S, Schappler J, Veuthey JL, Guillarme D. Current and future trends in UHPLC. Trends Anal Chem. 2014;63:2-13.

Murisier A, Lauber M, Shiner SJ, Guillarme D, Fekete S. Practical considerations on the particle size and permeability of ion-exchange columns applied to biopharmaceutical separations. J Chromatogr A. 2019;1604:460487.

Biedermann F, Nau WM, Schneider HJ. The Hydrophobic Effect Revisited-Studies with Supramolecular Complexes Imply High-Energy Water as a Noncovalent Driving Force. Angewandte Chemie. 2014;53:11158-71.

Yeung D, Klaassen N, Mizero B, Spicer V, Krokhin OV. Peptide retention time prediction in hydrophilic interaction liquid chromatography: Zwitter-ionic sulfoalkylbetaine and phosphorylcholine stationary phases. J Chromatogr A. 2020:460909.

Persat A, Chambers RD, Santiago JG. Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: Acid-base equilibria and pH buffers. Lab Chip. 2009;9:2437-53.

Persat A, Suss ME, Santiago JG. Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part II: Coupling between ion mobility, electrolysis, and acid-base equilibria. Lab Chip. 2009;9:2454-69.

Kasicka V, Prusik Z. Application of Capillary Isotachophoresis in Peptide Analysis. J Chromatogr. 1991;569:123-74.

Janini GM, Issaq HJ. Selection of buffers in capillary zone electrophoresis: Application to peptide and protein analysis. Chromatographia. 2001;53:S18-26.

Scriba GKE, Psurek A. Separation of peptides by capillary electrophoresis. In: Schmitt-Kopplin P, editor. Capillary electrophoresis. Totowa, NJ: Humana Press Inc.; 2008, p. 483-506.

Moritz B, Locatelli V, Niess M, Bathke A, Kiessig S, Entler B, Finkler C, Wegele H, Stracke J. Optimization of capillary zone electrophoresis for charge heterogeneity testing of biopharmaceuticals using enhanced method development principles. Electrophoresis. 2017;38:3136-46.

Pero-Gascon R, Tascon M, Sanz-Nebot V, Gagliardi LG, Benavente F. Improving separation optimization in capillary electrophoresis by using a general quality criterion. Talanta. 2020;208:120399.

Ferreira CMH, Pinto ISS, Soares EV, Soares H. (Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions - a review. RSC Adv. 2015;5:30989-1003.

Kozlowski LP. Proteome-pI: proteome isoelectric point database. Nucleic Acids Res. 2017;45:D1112-6.

Audain E, Ramos Y, Hermjakob H, Flower DR, Perez-Riverol Y. Accurate estimation of isoelectric point of protein and peptide based on amino acid sequences. Bioinformatics. 2016;32:821-7.

Kozlowski LP. IPC - Isoelectric Point Calculator. Biol Direct. 2016;11:55.

Pergande MR, Cologna SM. Isoelectric Point Separations of Peptides and Proteins. Proteomes. 2017;5:4.

Solinova V, Kasicka V. Determination of acidity constants and ionic mobilities of polyprotic peptide hormones by CZE. Electrophoresis. 2013;34:2655-65.

Kasicka V. Capillary electrophoresis of peptides. Electrophoresis. 1999;20:3084-105.

Solinova V, Kasicka V, Koval D, Barth T, Ciencialova A, Zakova L. Analysis of synthetic derivatives of peptide hormones by capillary zone electrophoresis and micellar electrokinetic chromatography with ultraviolet-absorption and laser-induced fluorescence detection. J Chromatogr B Anal Technol Biomed Life Sci. 2004;808:75-82.

Solinova V, Kasicka V, Sazelova P, Barth T, Miksik I. Separation and investigation of structure-mobility relationship of gonadotropin-releasing hormones by capillary zone electrophoresis in conventional and isoelectric acidic background electrolytes. J Chromatogr A. 2007;1155:146-53.

Le Potier I, Taverna M, Fattal E, Benzaki J, Chevalier M, Ferrier D. Performance evaluation of capillary surface treatments for peptide mapping by capillary zone electrophoresis. Chromatographia. 2001;53:563-70.

Miksik I, Charvatova J, Eckhardt A, Deyl Z. Peptide mapping by capillary electrophoresis with Pluronic F127. J Chromatogr B Anal Technol Biomed Life Sci. 2004;800:155-60.

Hajba L, Guttman A. Recent advances in column coatings for capillary electrophoresis of proteins. Trends Anal Chem. 2017;90:38-44.

Roca S, Dhellemmes L, Leclercq L, Cottet H. Polyelectrolyte Multilayers in Capillary Electrophoresis. Chempluschem. 2022;87:e202200028.

Konasova R, Butnariu M, Solinova V, Kasicka V, Koval D. Covalent cationic copolymer coatings allowing tunable electroosmotic flow for optimization of capillary electrophoretic separations. Anal Chim Acta. 2021;1178:338789.

Maryutina TA, Savonina EY, Fedotov PS, Smith RM, Siren H, Hibbert DB. Terminology of separation methods (IUPAC Recommendations 2017). Pure Appl Chem. 2018;90:181-231.

Janini GM, Metral CJ, Issaq HJ, Muschik GM. Peptide mobility and peptide mapping in capillary zone electrophoresis - Experimental determination and theoretical simulation. J Chromatogr A. 1999;848:417-33.

Janini GM, Metral CJ, Issaq HJ. Peptide mapping by capillary zone electrophoresis: How close is theoretical simulation to experimental determination. J Chromatogr A. 2001;924:291-306.

Simo C, Cifuentes A, Capillary electrophoresis-mass spectrometry of peptides from enzymatic protein hydrolysis: Simulation and optimization. Electrophoresis. 2003;24:834-42.

Simo C, Gonzalez R, Barbas C, Cifuentes A. Combining peptide modeling and capillary electrophoresis mass spectrometry for characterization of enzymes cleavage patterns: Recombinant versus natural bovine pepsin A. Anal Chem. 2005;77:7709-16.

Barroso A, Gimenez E, Benavente F, Barbosa J, Sanz-Nebot V. Modelling the electrophoretic migration behaviour of peptides and glycopeptides from glycoprotein digests in capillary electrophoresis-mass spectrometry. Anal Chim Acta. 2015;854:169-77.

Krokhin OV, Anderson G, Spicer V, Sun LL, Dovichi NJ. Predicting Electrophoretic Mobility of Tryptic Peptides for High-Throughput CZE-MS Analysis. Anal Chem. 2017;89:2000-8.

Jalali-Heravi M, Shen Y, Hassanisadi M, Khaledi MG. Artificial neural network modeling of peptide mobility and peptide mapping in capillary zone electrophoresis. J Chromatogr A. 2005;1096:58-68.

Corradini D, Cogliandro E, Nicoletti I. Improved peptide mapping by capillary zone electrophoresis using triethylenetetramine phosphate buffer as the electrolyte solution. J Liq Chromatogr Relat Technol. 2001;24:2785-800.

Cianciulli C, Hahne T, Watzig H. Capillary gel electrophoresis for precise protein quantitation. Electrophoresis. 2012;33:3276-80.

Kubota K, Kobayashi N, Yabuta M, Ohara M, Naito T, Kubo T, Otsuka K. Identification and characterization of a thermally cleaved fragment of monoclonal antibody-A detected by sodium dodecyl sulfate-capillary gel electrophoresis. J Pharm Biomed Anal. 2017;140:98-104.

Amini A, Olofsson IM. Analysis of calcitonin and its analogues by capillary zone electrophoresis and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry. J Sep Sci. 2004;27:675-85.

Dolnik V. Borate-containing background electrolytes to improve CE separation in bare capillaries. Electrophoresis. 2020;41:1073-80.

Simionato AVC, Carrilho E, Tavares MFM. Characterization of protein hydrolysates of cosmetic use by CE-MS. J Sep Sci. 2011;34:947-56.

Sazelova P, Kasicka V, Leon C, Ibanez E, Cifuentes A. Capillary electrophoretic profiling of tryptic digests of water soluble proteins from Bacillus thuringiensis-transgenic and non-transgenic maize species. Food Chem. 2012;134:1607-15.

Moini M, Martinez B. Ultrafast capillary electrophoresis/mass spectrometry with adjustable porous tip for a rapid analysis of protein digest in about a minute. Rapid Commun Mass Spectrom. 2014;28:305-10.

Morani M, Taverna M, Mai TD. A fresh look into background electrolyte selection for capillary electrophoresis-laser induced fluorescence of peptides and proteins. Electrophoresis. 2019;40:2618-24.

Boley DA, Zhang ZB, Dovichi NJ. Multisegment injections improve peptide identification rates in capillary zone electrophoresis-based bottom-up proteomics. J Chromatogr A. 2017;1523:123-6.

Faserl K, Sarg B, Sola L, Lindner HH. Enhancing Proteomic Throughput in Capillary Electrophoresis-Mass Spectrometry by Sequential Sample Injection. Proteomics. 2017;17:1700310.

Gahoual R, Biacchi M, Chicher J, Kuhn L, Hammann P, Beck A, Leize-Wagner E, Francois YN. Monoclonal antibodies biosimilarity assessment using transient isotachophoresis capillary zone electrophoresis-tandem mass spectrometry. Mabs. 2014;6:1464-73.

Schmailzl J, Vorage MW, Stutz H. Intact and middle-down CIEF of commercial therapeutic monoclonal antibody products under non-denaturing conditions. Electrophoresis. 2020;41:1109-17.

Yu XC, Joe K, Zhang Y, Adriano A, Wang YN, Gazzano-Santoro H, Keck RG, Deperalta G, Ling V. Accurate Determination of Succinimide Degradation Products Using High Fidelity Trypsin Digestion Peptide Map Analysis. Anal Chem. 2011;83:5912-9.

Huang J, Kang JW. A simple peptide mapping method by partial filling micellar electrokinetic capillary chromatography with a zwitterionic-nonionic mixed micelle. J Chromatogr B Anal Technol Biomed Life Sci. 2007;846:364-7.

Krull IS, Sebag A, Stevenson R. Specific applications of capillary electrochromatography to biopolymers, including proteins, nucleic acids, peptide mapping, antibodies, and so forth. J Chromatogr A. 2000;887:137-63.

Miksik I, Sedlakova P. Capillary electrochromatography of proteins and peptides. J Sep Sci. 2007;30:1686-703.

Sedlakova P, Eckhardt A, Lacinova K, Pataridis S, Miksik I, Kral V, Kasicka V. Separation of tryptic peptides of native and glycated BSA using open-tubular CEC with salophene-lanthanide-Zn2+ complex as stationary phase. J Sep Sci. 2009;32:3930-5.

Miksik I, Lacinova K, Zmatlikova Z, Sedlakova P, Kral V, Sykora D, Rezanka P, Kasicka V. Open-tubular capillary electrochromatography with bare gold nanoparticles-based stationary phase applied to separation of trypsin digested native and glycated proteins. J Sep Sci. 2012;35:994-1002.

Cao P, Moini M. A novel sheathless interface for capillary electrophoresis/electrospray ionization mass spectrometry using an in-capillary electrode. J Amer Soc Mass Spectrom. 1997;8:561-4.

Cao P, Moini M. Capillary electrophoresis electrospray ionization high mass accuracy time-of-flight mass spectrometry for protein identification using peptide mapping. Rapid Commun Mass Spectrom. 1998;12:864-70.

Cao P, Moini M. Analysis of peptides, proteins, protein digests, and whole human blood by capillary electrophoresis/electrospray ionization-mass spectrometry using an in-capillary electrode sheathless interface. J Amer Soc Mass Spectrom. 1998;9:1081-8.

Wetterhall M, Palmblad M, Hakansson P, Markides KE, Bergquist J. Rapid analysis of tryptically digested cerebrospinal fluid using capillary electrophoresis-electrospray ionization-Fourier transform ion cyclotron resonance-mass spectrometry. J Proteome Res. 2002;1:361-6.

Erny GL, Cifuentes A. Simplified 2-D CE-MS mapping: Analysis of proteolytic digests. Electrophoresis. 2007;28:1335-44.

Faserl K, Sarg B, Kremser L, Lindner H. Optimization and Evaluation of a Sheathless Capillary Electrophoresis-Electrospray Ionization Mass Spectrometry Platform for Peptide Analysis: Comparison to Liquid Chromatography-Electrospray Ionization Mass Spectrometry. Anal Chem. 2011;83:7297-305.

Bachmann S, Bakry R, Huck CW, Polato F, Corradini D, Bonn GK. Peptide mapping using capillary electrophoresis offline coupled to matrix-assisted laser desorption ionization time of flight mass spectrometry. Electrophoresis. 2011;32:2830-9.

Wojcik R, Dada OO, Sadilek M, Dovichi NJ. Simplified capillary electrophoresis nanospray sheath-flow interface for high efficiency and sensitive peptide analysis. Rapid Commun Mass Spectrom. 2010;24:2554-60.

Sun LL, Zhu GJ, Li YH, Wojcik R, Yang P, Dovichi NJ. CZE-ESI-MS/MS system for analysis of subnanogram amounts of tryptic digests of a cellular homogenate. Proteomics. 2012;12:3013-9.

Sun LL, Li YH, Champion MM, Zhu GJ, Wojcik R, Dovichi NJ. Capillary zone electrophoresis-multiple reaction monitoring from 100 pg of RAW 264.7 cell lysate digest. Analyst. 2013;138:3181-8.

Sun LL, Zhu GJ, Zhao YM, Yan XJ, Mou S, Dovichi NJ. Ultrasensitive and Fast Bottom-up Analysis of Femtogram Amounts of Complex Proteome Digests. Angewandte Chemie. 2013;52:13661-4.

Sun LL, Zhu GJ, Zhang ZB, Mou S, Dovichi NJ. Third-Generation Electrokinetically Pumped Sheath-Flow Nanospray Interface with Improved Stability and Sensitivity for Automated Capillary Zone Electrophoresis-Mass Spectrometry Analysis of Complex Proteome Digests. J Proteome Res. 2015;14:2312-21.

Schiavone NM, Sarver SA, Sun LL, Wojcik R, Dovichi NJ. High speed capillary zone electrophoresis-mass spectrometry via an electrokinetically pumped sheath flow interface for rapid analysis of amino acids and a protein digest. J Chromatogr B Anal Technol Biomed Life Sci. 2015;991:53-8.

Ludwig KR, Sun LL, Zhu GJ, Dovichi NJ, Hummon AB. Over 2300 Phosphorylated Peptide Identifications with Single-Shot Capillary Zone Electrophoresis-Tandem Mass Spectrometry in a 100 min Separation. Anal Chem. 2015;87:9532-7.

Chen DY, Shen XJ, Sun LL. Capillary zone electrophoresis-mass spectrometry with microliter-scale loading capacity, 140 min separation window and high peak capacity for bottom-up proteomics. Analyst. 2017;142:2118-27.

Whitmore CD, Gennaro LA. Capillary electrophoresis-mass spectrometry methods for tryptic peptide mapping of therapeutic antibodies. Electrophoresis. 2012;33:1550-6.

Wenz C, Barbas C, Lopez-Gonzalvez A, Garcia A, Benavente F, Sanz-Nebot V, Blanc T, Freckleton G, Britz-McKibbin P, Shanmuganathan M, de L'Escaille F, Far J, Haselberg R, Huang S, Huhn C, Pattky M, Michels D, Mou S, Yang F, Neusuess C, Tromsdorf N, Baidoo EEK, Keasling JD, Park SS. Interlaboratory study to evaluate the robustness of capillary electrophoresis-mass spectrometry for peptide mapping. J Sep Sci. 2015;38:3262-70.

Dada OO, Zhao YM, Jaya N, Salas-Solano O. High-Resolution Capillary Zone Electrophoresis with Mass Spectrometry Peptide Mapping of Therapeutic Proteins: Improved Separation with Mixed Aqueous-Aprotic Dipolar Solvents (N,N-Dimethylacetamide and N,N-Dimethylformamide) as the Background Electrolyte. Anal Chem. 2017;89:11227-35.

Dada OO, Zhao YM, Jaya N, Salas-Solano O. High-Resolution Capillary Zone Electrophoresis with Mass Spectrometry Peptide Mapping of Therapeutic Proteins: Peptide Recovery and Post-translational Modification Analysis in Monoclonal Antibodies and Antibody-Drug Conjugates. Anal Chem. 2017;89:11236-42.

Cao L, Fabry D, Lan K. Rapid and comprehensive monoclonal antibody Characterization using microfluidic CE-MS. J Pharm Biomed Anal. 2021;204:114251.

Dykstra AB, Flick TG, Lee B, Blue LE, Angell N. Chip-Based Capillary Zone Electrophoresis Mass Spectrometry for Rapid Resolution and Quantitation of Critical Quality Attributes in Protein Biotherapeutics. J Am Soc Mass Spectrom. 2021;32:1952-63.

Stromqvist M. Peptide mapping using combinations of size-exclusion chromatography, reversed-phase chromatography and capillary electrophoresis. J Chromatogr A. 1994;667:304-10.

Hynek R, Kasicka V, Kucerova Z, Kas J. Application of reversed-phase high-performance liquid chromatography and capillary zone electrophoresis to the peptide mapping of pepsin isoenzymes. J Chromatogr B Bio Med Appl. 1996;681:37-45.

Hynek R, Kasicka V, Kucerova Z, Kas J. Fast detection of phosphorylation of human pepsinogen A, human pepsinogen C and swine pepsinogen using a combination of reversed- phase high-performance liquid chromatography and capillary zone electrophoresis for peptide mapping. J Chromatogr B. 1997;688:213-20.

Wu SL. The use of sequential high-performance liquid chromatography and capillary zone electrophoresis to separate the glycosylated peptides from recombinant tissue plasminogen activator to a detailed level of microheterogeneity. Anal Biochem. 1997;253:85-97.

Moore AW, Jorgenson JW. Rapid comprehensive two dimensional separations of peptides via RPLC optically gated capillary zone electrophoresis. Anal Chem. 1995;67:3448-55.

Moore AW, Jorgenson JW. Comprehensive three-dimnensional separation of peptides using size exclusion chromatography reversed phase liquid chromatography optically gated capillary zone electrophoresis. Anal Chem. 1995;67:3456-63.

Lewis KC, Opiteck GJ, Jorgenson JW, Sheeley DM. Comprehensive on-line RPLC-CZE-MS of peptides. J Amer Soc Mass Spectrom. 1997;8:495-500.

Kang SH, Gong XY, Yeung ES. High-throughput comprehensive peptide mapping of proteins by multiplexed capillary electrophoresis. Anal Chem. 2000;72:3014-21.

He Y, Zhong WW, Yeung ES. Multiplexed on-column protein digestion and capillary electrophoresis for high-throughput comprehensive peptide mapping. J Chromatogr B. 2002;782:331-41.

Kumar R, Shah RL, Rathore AS. Harnessing the power of electrophoresis and chromatography: Offline coupling of reverse phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry for peptide mapping for monoclonal antibodies. J Chromatogr A. 2020;1620:460954.

Weaver SD, Schuster-Little N, Whelan RJ. Preparative capillary electrophoresis (CE) fractionation of protein digests improves protein and peptide identification in bottom-up proteomics. Anal Methods. 2022;14:1103-10.

Bihoreau N, Ramon C, Vincentelli R, Levillain JP, Troalen F. Peptide mapping characterization by capillary electrophoresis of a human monoclonal anti-Rh(D) antibody produced for clinical study. J Capillary Electrophor. 1995;2:197-202.

Liu JP, Zhao HR, Volk KJ, Klohr SE, Kerns EH, Lee MS. Analysis of monoclonal antibody and immunoconjugate digests by capillary electrophoresis and capillary liquid chromatography. J Chromatogr A. 1996;735:357-66.

Bihoreau N, Ramon C, Lazard M, Schmitter JM. Combination of capillary electrophoresis and matrix-assisted laser desorption ionization mass spectrometry for glycosylation analysis of a human monoclonal anti-Rhesus (D) antibody. J Chromatogr B. 1997;697:123-33.

Hunt G, Nashabeh W. Capillary electrophoresis sodium dodecyl sulfate nongel sieving analysis of a therapeutic recombinant monoclonal antibody: A biotechnology perspective. Anal Chem. 1999;71:2390-7.

Ma S, Nashabeh W. Analysis of protein therapeutics by capillary electrophoresis. Chromatographia. 2001;53:S75-89.

Righetti PG. Capillary electrophoretic analysis of proteins and peptides of biomedical and pharmacological interest. Biopharm Drug Dispos. 2001;22:337-51.

Gennaro LA, Salas-Solano O, Ma S. Capillary electrophoresis-mass spectrometry as a characterization tool for therapeutic proteins. Anal Biochem. 2006;355:249-58.

Kotia RB, Raghani AR. Analysis of monoclonal antibody product heterogeneity resulting from alternate cleavage sites of signal peptide. Anal Biochem. 2010;399:190-5.

Ma JF, Zhang LH, Liang Z, Zhang WB, Zhang YK. Recent advances in immobilized enzymatic reactors and their applications in proteome analysis. Anal Chim Acta. 2009;632:1-8.

Wang TT, Ma JF, Zhu GJ, Shan YC, Liang Z, Zhang LH, Zhang YK. Integration of capillary isoelectric focusing with monolithic immobilized pH gradient, immobilized trypsin microreactor and capillary zone electrophoresis for on-line protein analysis. J Sep Sci. 2010;33:3194-200.

Iqbal J, Iqbala S, Muller CE. Advances in immobilized enzyme microbioreactors in capillary electrophoresis. Analyst. 2013;138:3104-16.

Sun LL, Zhu GJ, Dovichi NJ. Integrated Capillary Zone Electrophoresis-Electrospray Ionization Tandem Mass Spectrometry System with an Immobilized Trypsin Microreactor for Online Digestion and Analysis of Picogram Amounts of RAW 264.7 Cell Lysate. Anal Chem. 2013;85:4187-94.

Li YH, Wojcik R, Dovichi NJ. A replaceable microreactor for on-line protein digestion in a two-dimensional capillary electrophoresis system with tandem mass spectrometry detection. J Chromatogr A. 2011;1218:2007-11.

Mou S, Sun LL, Dovichi NJ. Accurate Determination of Peptide Phosphorylation Stoichiometry Via Automated Diagonal Capillary Electrophoresis Coupled with Mass Spectrometry: Proof of Principle. Anal Chem. 2013;85:10692-6.

Mou S, Sun LL, Wojcik R, Dovichi NJ. Coupling immobilized alkaline phosphatase-based automated diagonal capillary electrophoresis to tandem mass spectrometry for phosphopeptide analysis. Talanta. 2013;116:985-90.

Zhu GJ, Sun LL, Heidbrink-Thompson J, Kuntumalla S, Lin HY, Larkin CJ, Mcgivneyiv JB, Dovichi NJ. Capillary zone electrophoresis tandem mass spectrometry detects low concentration host cell impurities in monoclonal antibodies. Electrophoresis. 2016;37:616-22.

Zhang ZB, Albanetti T, Linkous T, Larkin CJ, Schoner R, Mcgivney JI, Dovichi NJ. Comprehensive analysis of host cell impurities in monoclonal antibodies with improved sensitivity by capillary zone electrophoresis mass spectrometry. Electrophoresis. 2017;38:401-7.

Belov AM, Zang L, Sebastiano R, Santos MR, Bush DR, Karger BL, Ivanov AR. Complementary middle-down and intact monoclonal antibody proteoform characterization by capillary zone electrophoresis - mass spectrometry. Electrophoresis. 2018;39:2069-82.

Dadouch M, Ladner Y, Bich C, Montels J, Morel J, Perrin C. Fast in-line bottom-up analysis of monoclonal antibodies: Toward an electrophoretic fingerprinting approach. Electrophoresis. 2021;42:1229-37.

Giorgetti J, Beck A, Leize-Wagner E, Francois YN. Combination of intact, middle-up and bottom-up levels to characterize 7 therapeutic monoclonal antibodies by capillary electrophoresis = Mass spectrometry. J Pharm Biomed Anal. 2020;182:113107.

Varadi C, Jakes C, Bones J. Analysis of cetuximab N-Glycosylation using multiple fractionation methods and capillary electrophoresis mass spectrometry. J Pharm Biomed Anal. 2020;180:113035.

Fussl F, Trappe A, Carillo S, Jakes C, Bones J. Comparative Elucidation of Cetuximab Heterogeneity on the Intact Protein Level by Cation Exchange Chromatography and Capillary Electrophoresis Coupled to Mass Spectrometry. Anal Chem. 2020;92:5431-8.

Haselberg R, De Vijlder T, Heukers R, Smit MJ, Romijn EP, Somsen GW, Dominguez-Vega E. Heterogeneity assessment of antibody-derived therapeutics at the intact and middle-up level by low-flow sheathless capillary electrophoresis-mass spectrometry. Anal Chim Acta. 2018;1044:181-90.

Zigoneanu IG, Sims CE, Allbritton NL. Separation of peptide fragments of a protein kinase C substrate fused to a beta-hairpin by capillary electrophoresis. Anal Bioanal Chem. 2015;407:8999-9008.

Mainz ER, Dobes NC, Allbritton NL. Pronase e-based generation of fluorescent peptide fragments: tracking intracellular peptide fate in single cells. Anal Chem. 2015;87:7987-95.

Gimenez E, Ramos-Hernan R, Benavente F, Barbosa J, Sanz-Nebot V. Capillary electrophoresis time-of-flight mass spectrometry for a confident elucidation of a glycopeptide map of recombinant human erythropoietin. Rapid Commun Mass Spectrom. 2011;25:2307-16.

Gimenez E, Ramos-Hernan R, Benavente F, Barbosa J, Sanz-Nebot V. Analysis of recombinant human erythropoietin glycopeptides by capillary electrophoresis electrospray-time of flight-mass spectrometry. Anal Chim Acta. 2012;709:81-90.

Barroso A, Gimenez E, Benavente F, Barbosa J, Sanz-Nebot V. Analysis of human transferrin glycopeptides by capillary electrophoresis and capillary liquid chromatography-mass spectrometry. Application to diagnosis of alcohol dependence. Anal Chim Acta. 2013;804:167-75.

Barroso A, Gimenez E, Benavente F, Barbosa J, Sanz-Nebot V. Improved tryptic digestion assisted with an acid-labile anionic surfactant for the separation and characterization of glycopeptide glycoforms of a proteolytic-resistant glycoprotein by capillary electrophoresis time-of-flight mass spectrometry. Electrophoresis. 2016;37:987-97.

Michalusova I, Sazelova P, Cejnar P, Kuckova S, Hynek R, Kasicka V. Capillary electrophoretic profiling of in-bone tryptic digests of proteins as a potential tool for the detection of inflammatory states in oral surgery. J Sep Sci. 2020;43:3949-59.

Kammeijer GSM, Jansen BC, Kohler I, Heemskerk AAM, Mayboroda OA, Hensbergen PJ, Schappler J, Wuhrer M. Sialic acid linkage differentiation of glycopeptides using capillary electrophoresis - electrospray ionization - mass spectrometry. Sci Rep. 2017, 7.

Simo C, Dominguez-Vega E, Marina ML, Garcia MC, Dinelli G, Cifuentes A. CE-TOF MS analysis of complex protein hydrolyzates from genetically modified soybeans - A tool for foodomics. Electrophoresis. 2010;31:1175-83.

Simo C, Cifuentes A, Kasicka V. Capillary electrophoresis-mass spectrometry for peptide analysis: Target-based approaches and proteomics/peptidomics strategies. In: Volpi N, Maccari F, editors. Capillary electrophoresis of biomolecules. Methods and protocols. New York: Humana Press (Springer); 2013. p. 139-51.

Pobozy E, Sentkowska A, Piskor A. Comparison of three modifications of fused-silica capillaries and untreated capillaries for protein profiling of maize extracts by capillary electrophoresis. J Sep Sci. 2014;37:2388-94.

Righetti PG, Nembri F, Bossi A, Mortarino M. Continuous enzymatic hydrolysis of beta-casein and isoelectric collection of some of the biologically active peptides in an electric field. Biotechnol Progr. 1997;13:258-64.

Olguin-Arredondo HA, Vallejo-Cordoba B, Gonzalez-Cordova AF. Micropreparative separation, fractionation, and peptide mapping of beta-lactoglobulin A and B variants by capillary electrophoresis. J Capillary Electrophor. 2005;9:65-70.

Somma A, Ferranti P, Addeo F, Mauriello R, Chianese L. Peptidomic approach based on combined capillary isoelectric focusing and mass spectrometry for the characterization of the plasmin primary products from bovine and water buffalo beta-casein. J Chromatogr A. 2008;1192:294-300.

Moller KK, Rattray FP, Ardo Y. Camel and bovine chymosin hydrolysis of bovine alpha(S1)- and beta-caseins studied by comparative peptide mapping. J Agric Food Chem. 2012;60:11421-32.

Moller KK, Rattray FP, Sorensen JC, Ardo Y. Comparison of the hydrolysis of bovine kappa-casein by camel and bovine chymosin: A kinetic and specificity study. J Agric Food Chem. 2012;60:5454-60.

Miksik I, Sedlakova P, Mikulikova K, Eckhardt A, Kasicka V. Comparison of CE-MS and LC-MS analyses of avian eggshell matrix proteins. Chromatographia. 2008;67:S89-96.

Sun LL, Zhu GJ, Yan XJ, Dovichi NJ. High sensitivity capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for the rapid analysis of complex proteomes. Curr Opin Chem Biol. 2013;17:795-800.

Zhu GJ, Sun LL, Yan XJ, Dovichi NJ. Single-shot proteomics using capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry with production of more than 1 250 escherichia coli peptide identifications in a 50 min separation. Anal Chem. 2013;85:2569-73.

Sun LL, Hebert AS, Yan XJ, Zhao YM, Westphall MS, Rush MJP, Zhu GJ, Champion MM, Coon JJ, Dovichi NJ. Over 10000 peptide identifications from the hela proteome by using single-shot capillary zone electrophoresis combined with tandem mass spectrometry. Angewandte Chemie. 2014;53:13931-3.

Zhang ZB, Sun LL, Zhu GJ, Cox OF, Huber PW, Dovichi NJ. Nearly 1000 protein identifications from 50 ng of xenopus laevis zygote homogenate using online sample preparation on a strong cation exchange monolith based microreactor coupled with capillary zone electrophoresis. Anal Chem. 2016;88:877-82.

Gusenkov S, Stutz H. Top-down and bottom-up characterization of nitrated birch pollen allergen Bet v 1a with CZE hyphenated to an Orbitrap mass spectrometer. Electrophoresis. 2018;39:1190-200.

Zhang ZB, Hebert AS, Westphall MS, Qu YY, Coon JJ, Dovichi NJ. Production of over 27000 peptide and nearly 4400 protein identifications by single-shot capillary-zone electrophoresis-mass spectrometry via combination of a very-low-electroosmosis coated capillary, a third-generation electrokinetically-pumped sheath-flow nanospray interface, an orbitrap fusion lumos tribrid mass spectrometer, and an advanced-peak-determination algorithm. Anal Chem. 2018;90:12090-3.

Zhang ZB, Hebert AS, Westphall MS, Coon JJ, Dovichi NJ. Single-shot capillary zone electrophoresis-tandem mass spectrometry produces over 4400 phosphopeptide identifications from a 220 ng sample. J Proteome Res. 2019;18:3166-73.

Chen DY, Ludwig KR, Krokhin OV, Spicer V, Yang ZC, Shen XJ, Hummon AB, Sun LL. Capillary zone electrophoresis-tandem mass spectrometry for large-scale phosphoproteomics with the production of over 11,000 phosphopeptides from the colon carcinoma HCT116 cell line. Anal Chem. 2019;91:2201-8.

Portero EP, Nemes P. Dual cationic-anionic profiling of metabolites in a single identified cell in a live Xenopus laevis embryo by microprobe CE-ESI-MS. Analyst. 2019;144:892-900.

Tsuchiya T, Nakayama A, Kawamura T, Sasaki K. Capillary electrophoresis electrospray ionization-mass spectrometry for peptidomics-based processing site determination. Biochem Biophys Res Commun. 2020;533:872-8.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...