Direct In-Bone Protein Digestion With Subsequent LC Separation and Trap Ion Mobility MS Detection of Released Peptides as an Effective Tool for the Proteomic Characterization of Bone Tissues

. 2025 Sep ; 48 (9) : e70277.

Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40965984

Common pathological changes in bone tissues like osteomas or exostoses remain not fully understood at the molecular level due to the difficulties in analyzing bone tissues in which they occur. Therefore, new rapid and powerful techniques are needed that could become routine tools for such analysis. The primary aim of this study was to evaluate whether direct in-bone tryptic protein digestion followed by LC separation and trap ion mobility MS detection and identification of released peptides is able to identify sufficient numbers of proteins in above mentioned bone tissues. The second aim was to verify whether the mathematical analysis of the obtained MS data would have a potential to distinguish pathological and control healthy bone tissues. It turned out that this approach made possible to identify altogether 4810 proteins in samples of control healthy skull bone tissues, 6284 proteins in pathological skull bone tissues, and 3000 proteins in mandibular bone tissues. Mathematical analysis of obtained MS data enabled to discriminate control healthy and pathological skull bone tissues samples with accuracy of 87%. Thus, the reported approach seems to have a high potential for routine and effective characterization of bone tissues, in which pathological changes like exostoses or osteomas may occur. Data are available via ProteomeXchange with identifier PXD065656.

Zobrazit více v PubMed

Graham M. D., “Osteomas and Exostoses of the External Auditory Canal,” Annals of Otology, Rhinology and Laryngology 88, no. 4 (1979): 566–572, 10.1177/000348947908800422. PubMed DOI

Wong B. J., Cervantes W., and Doyle K. J., “Prevalence of External Auditory Canal Exostoses in Surfers,” Archives of Otolaryngology – Head and Neck Surgery 125, no. 9 (1999): 969, 10.1001/archotol.125.9.969. PubMed DOI

Smitha K. and Smitha G. P., “Alveolar Exostosis – Revisited: A Narrative Review of the Literature,” Saudi Journal for Dental Research 6, no. 1 (2015): 67–72, 10.1016/j.sjdr.2014.02.001. DOI

Timofeev I., Notkina N., and Smith I. M., “Exostoses of the External Auditory Canal: A Long‐Term Follow‐Up Study of Surgical Treatment,” Clinical Otolaryngology & Allied Sciences 29, no. 6 (2004): 588–594, 10.1111/j.1365-2273.2004.00865.x. PubMed DOI

Carbone P. N. and Nelson B. L., “External Auditory Osteoma,” Head and Neck Pathology 6, no. 2 (2012): 244–246, 10.1007/s12105-011-0314-7. PubMed DOI PMC

Barbon D., Hegde R., Li S., Baredes S., Eloy J. A., and Park R. C. W., “Bilateral External Auditory Exostoses Causing Conductive Hearing Loss: A Case Report,” Cureus 9, no. 10 (2017): e1810, 10.7759/cureus.1810. PubMed DOI PMC

Ravi A., Gowda Venkatesha R. R., and Mohan K. R., “Mandibular Bony Exostoses or Hyperostosis: A Case Report,” Cureus 16, no. 11 (2024): e72941, 10.7759/cureus.72941. PubMed DOI PMC

Nielson C. M., Jacobs J. M., and Orwoll E. S., “Proteomic Studies of Bone and Skeletal Health Outcomes,” Bone 125 (2019): 37–44, 10.1016/j.bone.2019.04.017. PubMed DOI PMC

Fretwurst T., Tritschler I., Rothweiler R., et al., “Proteomic Profiling of Human Bone From Different Anatomical Sites—A Pilot Study,” Proteomics Clinical Applications 16, no. 5 (2022): e2100049, 10.1002/prca.202100049. PubMed DOI

Kroon D. F., Lawson M. L., Derkay C. S., Hoffmann K., and McCook J., “Surfer's Ear: External Auditory Exostoses Are More Prevalent in Cold Water Surfers,” Otolaryngology – Head and Neck Surgery 126, no. 5 (2002): 499–504, 10.1067/mhn.2002.124474. PubMed DOI

Zhang H., Recker R., Lee W. N., and Xiao G. G., “Proteomics in Bone Research,” Expert Review of Proteomics 6, no. 5 (2009): 519–526, 10.1586/epr.09.90. PubMed DOI PMC

Whitaker S. R., Cordier A., Kosjakov S., and Charbonneau R., “Treatment of External Auditory Canal Exostoses,” Laryngoscope 108, no. 2 (1998): 195–199, 10.1097/00005537-199802000-00007. PubMed DOI

Mouchahoir T. and Schiel J. E., “Development of an LC‐MS/MS Peptide Mapping Protocol for the NISTmAb,” Analytical and Bioanalytical Chemistry 410 (2018): 2111–2126. PubMed PMC

Kašička V., “Peptide Mapping of Proteins by Capillary Electromigration Methods,” Journal of Separation Science 45 (2022): 4245–4279. PubMed

Michalus I., Trubačová D., Cejnar P., Kučková Š., Šantrůček J., and Hynek R., “Direct Tryptic Cleavage in Bone Tissue Followed by LC‐MS/MS as a First Step Towards Routine Characterization of Proteins Embedded in Alveolar Bones,” International Journal of Mass Spectrometry 455 (2020): 116375, 10.1016/j.ijms.2020.116375. DOI

Michalusová I., Sázelová P., Cejnar P., Kučková Š., Hynek R., and Kašička V., “Capillary Electrophoretic Profiling of In‐Bone Tryptic Digests of Proteins as a Potential Tool for the Detection of Inflammatory States in Oral Surgery,” Journal of Separation Science 43, no. 15 (2020): 3949–3959, 10.1002/jssc.202000718. PubMed DOI

Hynek R., Michalus I., Cejnar P., et al., “In‐Bone Protein Digestion Followed by LC‐MS/MS Peptide Analysis as a New Way Towards the Routine Proteomic Characterization of Human Maxillary and Mandibular Bone Tissue in Oral Surgery,” Electrophoresis 42, no. 15 (2021): 2552–2562, 10.1002/elps.202100211. PubMed DOI

Michalus I., Van Nguyen T., Viktorová J., et al., “LC‐MS/MS of Peptides From Insoluble Bone Matrix for Rapid Discrimination of Induced Pathological States,” Journal of Separation Science 45, no. 24 (2022): 4388–4396, 10.1002/jssc.202200298. PubMed DOI

Kuckova S., Smirnova T. A., Straka D., et al., “Proteotypic Peptides of Hairs for Species Identification Using In‐Sample Digestion and MS,” Journal of Separation Science 46, no. 12 (2023): e2300064, 10.1002/jssc.202300064. PubMed DOI

Nguyen Tran V., Strnad O., Šuman J., et al., “Cannabidiol Nanoemulsion for Eye Treatment: In Vitro Analysis,” International Journal of Pharmaceutics 643 (2023): 123202, 10.1016/j.ijpharm.2023.123202. PubMed DOI

Tesařová M., Boušková T., Cejnar P., et al., “Characterization of Vestibular Schwannoma Tissues Using LC‐MS/MS,” Journal of Separation Science 46, no. 12 (2023): e2300543, 10.1002/jssc.202300543. PubMed DOI

Perez‐Riverol Y., Bandla C., Kundu D. J., et al., “The PRIDE Database at 20 Years: 2025 Update,” Nucleic Acids Research 53, no. D1 (2025): D543–D553, 10.1093/nar/gkae1011. PubMed DOI PMC

Tyanova S., Temu T., and Cox J., “The MaxQuant Computational Platform for Mass Spectrometry‐Based Shotgun Proteomics,” Nature Protocols 11 (2016): 2301–2319, 10.1038/nprot.2016.136. PubMed DOI

Elias J. E. and Gygi S. P., “Target‐Decoy Search Strategy for Mass Spectrometry‐Based Proteomics,” in Proteome Bioinformatics, ed. Hubbard S. J. and Jones A. R. (Humana Press, 2010), 55–71. PubMed PMC

Barker M. and Rayens W., “Partial Least Squares for Discrimination,” Journal of Chemometrics 17 (2003): 166–173, 10.1002/cem.785. DOI

Team RC , R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2025).

Halstenbach T., Topitsch A., Schilling O., et al., “MS‐Based Proteomic Applications in Dental Implant Research,” Proteomics Clinical Applications 18 (2024): e2300019, 10.1002/prca.202300019. PubMed DOI

Yang H. Y., Kwon J., Kook M. S., et al., “Proteomic Analysis of Gingival Tissue and Alveolar Bone During Healing,” Molecular & Cellular Proteomics 12, no. 10 (2013): 2674–2688, 10.1074/mcp.M112.026740. PubMed DOI PMC

Komori T., Pham H., Jani P., et al., “The Role of Type VI Collagen in Alveolar Bone,” International Journal of Molecular Sciences 23, no. 22 (2022): 14347, 10.3390/ijms232214347. PubMed DOI PMC

Salmon C. R., Giorgetti A. P. O., Paes Leme A. F., et al., “Microproteome of Dentoalveolar Tissues,” Bone 101 (2017): 219–229, 10.1016/j.bone.2017.04.005. PubMed DOI

Salmon C. R., Tomazela D. M., Ruiz K. G. S., et al., “Proteomic Analysis of Human Dental Cementum and Alveolar Bone,” Journal of Proteomics 91 (2013): 544–555, 10.1016/j.jprot.2013.08.006. PubMed DOI PMC

Bell P. A., Solis N., Kizhakkedathu J. N., et al., “TAILS Analyses of Human Alveolar Bone Proteins,” Journal of Proteome Research 18, no. 12 (2019): 4167–4179, 10.1021/acs.jproteome.9b00533. PubMed DOI

Konson A., Pradeep S., and D'Acunto C. W., “Role of PEDF in Physiology and Neovascularization,” Cellular Physiology and Biochemistry 49, no. 2 (2018): 512–529, 10.1159/000492990. PubMed DOI

Chen L. and DiPietro L. A., “PEDF in Keratinocytes,” Experimental Dermatology 23, no. 6 (2014): 436–438, 10.1111/exd.12411. PubMed DOI PMC

Liu J. T., Chen Y. L., Chen W. C., et al., “Role of Pigment Epithelium‐Derived Factor in Stem/Progenitor Cell‐Associated Neovascularization,” Journal of Biomedicine and Biotechnology 2012, no. 1 (2012): 871272, 10.1155/2012/871272. PubMed DOI PMC

Becerra S. P., Dass C. R., Yabe T., et al., “PEDF: Structure, Biology, and Applications,” Journal of Biomedicine and Biotechnology 2012 (2012): 830975, 10.1155/2012/830975. PubMed DOI PMC

Li F., Song N., Tombran‐Tink J., and Niyibizi C., “PEDF Enhances Stem Cell Differentiation,” Stem Cells 31, no. 12 (2013): 2714–2723, 10.1002/stem.1505. PubMed DOI

Belinsky G. S., Sreekumar B., Andrejecsk J. W., et al., “PEDF Restores Bone in Osteogenesis Imperfecta via Wnt3a Blockade,” Faseb Journal 30, no. 8 (2016): 2837–2848, 10.1096/fj.201500027R. PubMed DOI PMC

Hirano M., Galarza‐Muñoz G., Nagasawa C., et al., “DDX39B RNA Helicase Regulates FOXP3 Splicing,” Elife 12 (2023): e76927, 10.7554/eLife.76927. PubMed DOI PMC

Taniguchi I., Hirose T., and Ohno M., “DDX39 and Nuclear Export of U snRNA,” Nucleic Acids Research 52, no. 17 (2024): 10668–10682, 10.1093/nar/gkae622. PubMed DOI PMC

Benjamini Y. and Hochberg Y., “Controlling the False Discovery Rate—A Practical and Powerful Approach to Multiple Testing,” Journal of the Royal Statistical Society: Series B (Methodological) 57 (1995): 289–300.

Wang H., Nie Y., Sun Z., et al., “SAP Component: Structure, Activity and Clinical Potential,” Molecular Immunology 172 (2024): 1–8, 10.1016/j.molimm.2024.05.009. PubMed DOI

Song Z., Cai L., Guo L., et al., “SAP Expression in Human Atherosclerotic Lesions,” Atherosclerosis 211, no. 1 (2010): 90–95, 10.1016/j.atherosclerosis.2010.01.046. PubMed DOI PMC

Diamant I., Clarke D. J. B., Evangelista J. E., et al., “Harmonizome 3.0: Integrated Omics Resource,” Nucleic Acids Research 53, no. D1 (2025): D1016–D1028, 10.1093/nar/gkae1080. PubMed DOI PMC

Rouillard A. D., Gundersen G. W., Fernandez N. F., et al., “The Harmonizome: Mining Gene/Protein Knowledge,” Database 2016 (2016): baw100, 10.1093/database/baw100. PubMed DOI PMC

Collins T., Stone J. R., and Williams A. J., “All in the Family: The BTB/POZ, KRAB, and SCAN Domains,” Molecular and Cellular Biology 21, no. 11 (2001): 3609–3615, 10.1128/MCB.21.11.3609-3615.2001. PubMed DOI PMC

Fontana F., Hickman‐Brecks C. L., Salazar V. S., et al., “N‐Cadherin Regulation of Bone Is Stage‐Specific,” Journal of Bone and Mineral Research 32, no. 6 (2017): 1332–1342, 10.1002/jbmr.3112. PubMed DOI PMC

Marie P. J. and Haÿ E., “Cadherins and Wnt Signalling: Functional Link in Bone Formation,” BoneKEy Reports 2 (2013): 330, 10.1038/bonekey.2013.64. PubMed DOI PMC

Warinner C., Richter K. K., and Collins M. J., “Chemical Insights Into Ancient Proteins,” Chemical Reviews 122, no. 16 (2022): 13401–13446, 10.1021/acs.chemrev.1c00703. PubMed DOI PMC

Fagernäs Z., Troché G., Olsen J. V., and Welker F., “Consecutive Digestion of Ancient Skeletal Proteomes,” Journal of Proteomics 298 (2024): 105143, 10.1016/j.jprot.2024.105143. PubMed DOI

Deutsch E. W., Bandeira N., Perez‐Riverol Y., et al., “The ProteomeXchange Consortium at 10 Years: 2023 Update,” Nucleic Acids Research 51, no. D1 (2023): D1539–D1548. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...