Proteotypic peptides of hairs for the identification of common European domestic and wild animal species revealed by in-sample protein digestion and mass spectrometry analysis

. 2023 Jul ; 46 (13) : e2300064. [epub] 20230503

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37084407

The aim of this work is to offer an alternative or complementary analytical tool to the time-consuming and expensive methods commonly used for the recognition of animal species according to their hair. The paper introduces a simple and fast way for species differentiation of animal hairs called in-sample digestion. A total of 10 European animal species, including cat, cow, common degu, dog, fallow deer, goat, horse, sika deer, rabbit, roe deer, and 17 different breeds of dogs were examined using specific tryptic cleavage directly in hair followed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography-electrospray ionization quadrupole time of flight. Principal component analysis was used for the subsequent mass spectrometric data evaluation. This novel approach demonstrates the ability to distinguish among individual animal species, which is supported by finding characteristic m/z values obtained by the mass spectrometry for each animal species. The approach was successfully tested on two "blind" samples. On the other hand, the attempt to distinguish among hairs of different dog breeds has not been successful due to the very similar protein composition and their amino acid sequences.

Zobrazit více v PubMed

Tarditi CR, Grahn RA, Evans JJ, Jeffrey J, Kurushima D, Lyons LA, Mitochondrial DNA sequencing of cat hair: an informative forensic tool. J Forensic Sci. 2011;56(1):S36-46.

Sato I, Nakaki S, Murata K, Takeshita H, Mukai T. Forensic hair analysis to identify animal species on a case of pet animal abuse. Int J Legal Med. 2010;124:249-56.

Tridico S. Examination, analysis, and application of hair in forensic science - animal hair. Forensic Sci Rev. 2005;17(1):17-28.

Spangenberg JE, Ferrer M, Tschudin P, Volken M, Hafner A. Microstructural, chemical and isotopic evidence for the origin of late neolithic leather recovered from an ice field in the Swiss Alps. J Archeol Sci. 2010;37(8):1851-65.

Hollemeyer K, Altmeyer W, Heinzle E, Pitra C. Species identification of Oetzi's clothing with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based on peptide pattern similarities of hair digests. Rapid Commun Mass Spectrom. 2008;22(18):2751-67.

Hollemeyer K, Altmeyer W, Heinzle E, Pitra C. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry combined with multidimensional scaling, binary hierarchical cluster tree and selected diagnostic masses improves species identification of Neolithic keratin sequences from furs of the Tyrolean iceman Oetzi. Rapid Commun Mass Spectrom. 2012;26(16):1735-45.

Solazzo C. Follow-up on the characterization of peptidic markers in hair and fur for the identification of common North American species. Rapid Commun. Mass Spectrom. 2017;31(17):1375-84.

Regulation (EC) No 1523/2007 of the European Parliament and of the Council of 11 December 2007 banning the placing on the market and the import to, or export from, the Community of cat and dog fur, and products containing such fur. http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32007R1523 Accessed February 11, 2020

de Oliveira CD R, Yonamine M, de Moraes Moreau RL. Headspace solid-phase microextraction of cannabinoids in human head hair samples. J Sep Sci. 2007;30(1):128-34.

Naddaf E, Ebrahimi M, Es'haghi Z, Bamoharram FF. Application of carbon nanotubes modified with a Keggin polyoxometalate as a new sorbent for the hollow-fiber micro-solid-phase extraction of trace naproxen in hair samples with fluorescence spectrophotometry using factorial experimental design. J Sep Sci. 2015;38(13):2348-56.

Karačonji I B, Zimić L, Brajenović N, Skender L, Optimisation of a solid-phase microextraction method for the analysis of nicotine in hair. J Sep Sci. 2011;34(19):2726-31.

Xiao P, Bao C, Jia Q, Su R, Zhou W, Jia J, Determination of nitroanilines in hair dye using polymer monolith microextraction coupled with HPLC. J Sep Sci. 2011;34(6):675-80.

Bagheri H, Zavareh A F, Koruni M H, Graphene oxide assisted electromembrane extraction with gas chromatography for the determination of methamphetamine as a model analyte in hair and urine samples. J Sep Sci. 2016;39(6):1182-8.

Yu W, Cai W, Shao X, Chemometric approach for fast analysis of prometryn in human hair by GC-MS. J Sep Sci. 2013;36(14):2277-82.

Štefan J, Hladík J. Soudní lékařství a jeho moderní trendy. 1st ed. Praha: Grada Publishing; 2012.

Tridico SR, Houck MM, Kirkbride KP, Smith ME, Yates BC, Morphological identification of animal hairs: myths and misconceptions, possibilities and pitfalls. Forensic Sci Int. 2014;238:101-7.

Sahajpal V, Goyal SP, Identification of a forensic case using microscopy and forensically informative nucleotide sequencing (FINS): a case study of small Indian civet (Viverricula indica). Sci Justice. 2010;50:94-7.

Mariacher A, Garofalo L, Fanelli R. Lorenzini R, Fico R, A combined morphological and molecular approach for hair identification to comply with the European ban on dog and cat fur trade. PEERJ. 2019;7:e7955.

Wortmann FJ, Augustin P, Quantitative fiber mixture analysis by scanning electron microscopy: part VII: modeling the microscopic analysis of binary animal fiber blends. Text Res J. 2004;74(3):248-52.

Wortmann FJ, Phan KH, Augustin P, Quantitative fiber mixture analysis by scanning electron microscopy: part VI: possibilities and limitations of the analysis of binary specialty fiber/wool blends in view of test method IWTO-58. Text Res J. 2003;73(9):781-6.

Wortmann FJ, Phan KH, Augustin P, Quantitative fiber mixture analysis by scanning electron microscopy: part V: analyzing pure fiber samples and samples with small admixtures according to test method IWTO-58. Text Res J. 2003;73(8):727-32.

Harizi T, Thermoanalytical characterisation of dromedary hair. J Tex Inst. 2010;101(7) 668-73.

Kerkhoff K, Cescutti G, Kruse L, Müssig J, Development of a DNA-analytical method for the identification of animal hair fibers in textiles. Text Res J. 2009;79(1):69-75.

Melton T, Holland C, Routine forensic use of the mitochondrial 12S ribosomal RNA gene for species identification. J Forensic Sci. 2007;52(6):1305-7.

Houck M, Budowle B, Correlation of microscopic and mitochondrial DNA hair comparisons. J Forensic Sci. 2002;47(5):964-7.

Elkins KM, Forensic DNA biology: a laboratory manual. 1st ed. San Diego, USA: Elsevier Science & Technology; 2012.

Kitano T, Umetsu K, Tian W, Osawa M, Two universal primer sets for species identification among vertebrates. Int J Legal Med. 2007;121(5):423-7.

Mills LS, Pilgrim KL, Schwartz MK, McKelvey K, Identifying lynx and other North American felids based on mtDNA analysis. Conserv Genet. 2000;1:285-8.

Pilli E, Casamassima R, Vai S, Virgili A, Barni, F, D'Errico G, et al. Pet fur or fake fur? A forensic approach. Investig Genet. 2014;5:1-18.

Solazzo C, Wadsley M, Dyer JM, Clerens S, Collins MJ, Plowman J, Characterisation of novel α-keratin peptide markers for species identification in keratinous tissues using mass spectrometry. Rapid Commun Mass Spectrom. 2013;27:2685-98.

Wang B, Yang W, McKittrick J, Meyers MA, Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci. 2016;76:229-318.

Bai L, Wang J, Zhou H, Gong H, Tao J, Hickford JG, Identification of ovine KRTAP28-1 and its association with wool fibre diameter. Animals. 2019;9(4):142.

Folin M, Contiero E, Electrophoretic analysis of non-human primates hair keratin. Forensic Sci Int. 1996;83(3):191-9.

Khawar SL, Watson K, Jones GL, Peptide mapping of S-carboxymethylated hair and feather proteins using two-dimensional electrophoresis. Int J Biochem Cell Biol. 1996;28(10):1155-62.

Hollemeyer K, Altmeyer W, Heinzle E, Identification of furs of domestic dog, racoon dog, rabbit and domestic cat by hair analysis using MALDI TOF mass spectrometry. Spectrosc Eur. 2007;19:8-15.

Hollemeyer K, Altmeyer W, Heinzle E, Identification and quantification of feathers, down, and hair of avian and mammalian origin using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 2002;74(23):5960-68.

Solazzo C, Wadsley M, Dyer JM, Clerens S, Collins MJ, Plowman J, Characterisation of novel α-keratin peptide markers for species identification in keratinous tissues using mass spectrometry. Rapid Commun Mass Spectrom. 2013;27(23):2685-98.

Zeman A, Smid M, Havelcova M, Coufalova L, Kuckova S, Velcovska M, et al. The structure and material composition of ossified aortic valves identified using a set of scientific methods. J Asian Earth Sci. 2013;77:311-7.

Kuckova S, Zitkova K, Novotny O, Smirnova T, Verification of cheeses authenticity by mass spectrometry. J Sep Sci. 2019;42(22):3487-96.

Hynek R, Kuckova S, Hradilova J, Kodicek M, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as a tool for fast identification of protein binders in color layers of paintings. Rapid Commun Mass Spectrom. 2004;18(17):1896-900.

Krizkova MC, Kuckova SH, Santrucek J, Hynek R, Peptide mass mapping as an effective tool for historical mortar analysis. Constr Build Mat. 2014;50:219-25.

Kuckova SH, Schultz J, Veiga R, Murta E, Sandu ICA, Proteomics tools for the contemporary identification of proteinaceous binders in gilded samples. Int J Conserv Sci. 2015;6:507-18.

Krizova I, Schultz J, Nemec I, Cabala R, Hynek R, Kuckova S, Comparison of analytical tools appropriate for identification of proteinaceous additives in historical mortars. Anal Bioanal Chem. 2018;410(1):189-200.

Strohalm M, Hassman M, Kosata B, Kodicek M, mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun Mass Spectrom. 2008;22(6):905-8.

Strohalm M, Kavan D, Novak P, Volny M, Havlicek V, mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem. 2010;82(11):4648-51.

Kuckova S, Rambouskova G, Hynek R, Cejnar P, Oltrogge D, Fuchs R, Evaluation of mass spectrometric data using principal component analysis for determination of the effects of organic lakes on protein binder identification. J Mass Spectrom. 2015;50(11):1270-8.

Cejnar P, Kuckova S, Prochazka A, Karamonova L, Svobodova B, Principal component analysis of normalized full spectrum mass spectrometry data in multiMS-toolbox: an effective tool to identify important factors for classification of different metabolic patterns and bacterial strains. Rapid Commun Mass Spectrom. 2018;15(11):871-81.

Smirnova T A, Viskin A, Hoskova M, Habartova L, Setnicka V, Cejnar P, et al. Comparison of proteomic approaches used for the detection of potential biomarkers of Alzheimer's disease in blood plasma. J Sep Sci. 2021;44(22):41324140.

Cejnar P, Smirnova T A, Kuckova S, Prochazka A, Zak I, Harant K, et al. Acute and chronic blood serum proteome changes in patients with methanol poisoning. Sci Rep. 2022;12(1):21379.

Tyanova S, Temu T, Cox J, The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11:2301-19.

Elias JE, Gygi SR, Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol Biol. 2010;604:55-71.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...