Liquid chromatography-tandem mass spectrometry analysis of peptides separated from the insoluble matrix by in-sample tryptic protein digestion for rapid discrimination of various induced pathological states of human bone models in oral surgery
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LTC19007
The Czech Ministry of Education, Youth and Sports Inter-Cost
LTAIN1907
The Czech Ministry of Education, Youth and Sports Inter-Cost
RVO 61388963
The Czech Academy of Sciences
PubMed
36222229
DOI
10.1002/jssc.202200694
Knihovny.cz E-zdroje
- Klíčová slova
- cancer, in-sample protein digestion, inflammation, liquid chromatography, mass spectrometry,
- MeSH
- chromatografie kapalinová metody MeSH
- lidé MeSH
- peptidy analýza MeSH
- proteiny chemie MeSH
- proteolýza MeSH
- proteomika metody MeSH
- stomatochirurgické výkony * MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- trypsin chemie MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peptidy MeSH
- proteiny MeSH
- trypsin MeSH
For the understanding of pathological states of bone tissues in oral surgery, it would be desirable to have the possibility to simulate these processes on bone cell models in vitro. These cultures, similarly to bone tissues, contain numerous proteins entrapped in the insoluble matrix. The major goal of this study was to verify whether a method based on direct in-matrix protein digestion could be suitable for the discrimination between different induced pathological states of bone cell models cultivated in vitro. Using in-sample specific protein digestion with trypsin followed by liquid chromatography-tandem mass spectrometry analysis of released peptides, 446 proteins (in average per sample) were identified in a bone cell in vitro model with induced cancer, 440 proteins were found in a model with induced inflammation, 451 proteins were detected in control in vitro culture, and 491 proteins were distinguished in samples of vestibular laminas of maxillary bone tissues originating from six different patients. Subsequent partial least squares - discrimination analysis of obtained liquid chromatography-tandem mass spectrometry data was able to discriminate among in vitro cultures with induced cancer, with induced inflammation, and control cultivation. Thus, the direct in-sample protein digestion by trypsin followed by liquid chromatography-tandem mass spectrometry analysis of released specific peptide fragments from the insoluble matrix and mathematical analysis of the mass spectrometry data seems to be a promising tool for the routine proteomic characterization of in vitro human bone models with induced different pathological states.
Zobrazit více v PubMed
Křížková MC, Kučková SH, Šantrůček J, Hynek R. Peptide mass mapping as an effective tool for historical mortar analysis. Constr Build Mater. 2014;50:219-25. https://doi.org/10.1016/j.conbuildmat.2013.09.059
Hynek R, Kučková S, Hradilová J, Kodíček M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry as a tool for fast identification of protein binders in color layers of paintings. Rapid Commun Mass Spectrom. 2004;18:1896-900. https://doi.org/10.1002/rcm.1570
Smrhová T, Junková P, Kučková S, Suchý T, Supová M. Peptide mass mapping in bioapatites isolated from animal bones. J Mater Sci Mater Med. 2020;31:32. https://doi.org/10.1007/s10856-020-06371-z
Kučková S, Cejnar P, Šantrůček J, Hynek R. Characterization of proteins in cultural heritage using MALDI-TOF and LC-MS/MS mass spectrometric techniques. Phys Sci Rev. 2019;4-5:20180011. https://doi.org/10.1515/psr-2018-0011
Hrdličková Kučková S, Rambousková G, Hynek R, Cejnar P, Oltrogge D, Fuchs R. Evaluation of mass spectrometric data using principal component analysis for determination of the effects of organic lakes on protein binder identification. J Mass Spectrom. 2015;50:1270-8. https://doi.org/10.1002/jms.3699
Zeman A, Šmíd M, Havelcová M, Coufalová L, Kučková Š, Velčovská M, Hynek R. The structure and material composition of ossified aortic valves identified using a set of scientific methods. J Asian Earth Sci. 2013;77:311-7. https://doi.org/10.1016/j.jseaes.2013.07.001
Michalusová I, Sázelová P, Cejnar P, Kučková Š, Hynek R, Kašička V. Capillary electrophoretic profiling of in-bone tryptic digests of proteins as a potential tool for the detection of inflammatory states in oral surgery. J Sep Sci. 2020;43:3949-59. https://doi.org/10.1002/jssc.202000718
Michalusová I, Trubačová D, Cejnar P, Kučková S, Šantrůček J, Hynek R. Direct tryptic cleavage in bone tissue followed by LC-MS/MS as a first step towards routine characterization of proteins embedded in alveolar bones. Int J Mass Spectrom. 2020;455:116375. https://doi.org/10.1016/j.ijms.2020.116375
Hynek R, Michalus I, Cejnar P, Šantrůček J, Seidlová S, Kučková Š, Sázelová P, Kašička V. In-bone protein digestion followed by LC-MS/MS peptide analysis as a new way towards the routine proteomic characterization of human maxillary and mandibular bone tissue in oral surgery. Electrophoresis 2021;42:2552-62. https://doi.org/10.1002/elps.202100211
Sieberath A, Della Bella E, Ferreira AM, Gentile P, Eglin D, Dalgarno K. A Comparison of osteoblast and osteoclast in vitro co-culture models and their translation for preclinical drug testing applications. Int J Mol Sci. 2020;21:912.
Borciani G, Montalbano G, Baldini N, Cerqueni G, Vitale-Brovarone C, Ciapetti G. Co-culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomater. 2020;108:22-45. https://doi.org/10.1016/j.actbio.2020.03.043
Penolazzi L, Lolli A, Sardelli L, Angelozzi M, Lambertini E, Trombelli L, Ciarpella F, Vecchiatini R, Piva R. Establishment of a 3D-dynamic osteoblasts-osteoclasts co-culture model to simulate the jawbone microenvironment in vitro. Life Sci. 2016;152:82-93. https://doi.org/10.1016/j.lfs.2016.03.035
Jeon OH, Panicker LM, Lu Q, Chae JJ, Feldman RA, Elisseeff JH. Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials. Sci Rep. 2016;6:26761 https://doi.org/10.1038/srep26761
Mandatori D, Penolazzi L, Pelusi L, Lambertini E, Michelucci F, Porreca A, Cerritelli P, Pipino C, Di Iorio A, Bruni D, Di Nicola M, Buda R, Piva R, Pandolfi A. Three-Dimensional Co-Culture system of human osteoblasts and osteoclast precursors from osteoporotic patients as an innovative model to study the role of nutrients: focus on vitamin K2. Nutrients 2021;13:2823.
Lambertini E, Penolazzi L, Pandolfi A, Mandatori D, Sollazzo V, Piva R. Human osteoclasts/osteoblasts 3D dynamic co-culture system to study the beneficial effects of glucosamine on bone microenvironment. Int J Mol Med. 2021;47:57. https://doi.org/10.3892/ijmm.2021.4890
Forte L, Torricelli P, Boanini E, Gazzano M, Rubini K, Fini M, Bigi A. Antioxidant and bone repair properties of quercetin-functionalized hydroxyapatite: An in vitro osteoblast-osteoclast-endothelial cell co-culture study. Acta Biomater. 2016;32:298-308 https://doi.org/10.1016/j.actbio.2015.12.013
Dolci LS, Panzavolta S, Torricelli P, Albertini B, Sicuro L, Fini M, Bigi A, Passerini N. Modulation of Alendronate release from a calcium phosphate bone cement: An in vitro osteoblast-osteoclast co-culture study. Int J Pharm. 2019;554:245-55 https://doi.org/10.1016/j.ijpharm.2018.11.023
Hayden RS, Vollrath M, Kaplan DL. Effects of clodronate and alendronate on osteoclast and osteoblast co-cultures on silk-hydroxyapatite films. Acta Biomater. 2014;10:486-93 https://doi.org/10.1016/j.actbio.2013.09.028
Smieszek A, Marcinkowska K, Pielok A, Sikora M, Valihrach L, Marycz K. The Role of miR-21 in Osteoblasts-Osteoclasts coupling in vitro. Cells 2020;9:479.
Mercatali L, Spadazzi C, Miserocchi G, Liverani C, De Vita A, Bongiovanni A, Recine F, Amadori D, Ibrahim T. Development of a human preclinical model of osteoclastogenesis from peripheral blood monocytes co-cultured with breast cancer cell lines. JoVE 2017:e56311. https://doi.org/10.3791/56311
Lanning B, Webber J, Uysal-Onganer P, Jiang WG, Clayton A, Dart DA. Prostate cancer cell extracellular vesicles increase mineralisation of bone osteoblast precursor cells in an in vitro model. Biology 2021;10:318.
Kaigler D, Krebsbach PH, West ER, Horger K, Huang YC, Mooney DJ. Endothelial cell modulation of bone marrow stromal cell osteogenic potential. FASEB J. 2005;19:1-26. https://doi.org/10.1096/fj.04-2529fje
Schmid FV, Kleinhans C, Schmid FF, Kluger PJ. Osteoclast formation within a human Co-Culture system on bone material as an in vitro model for bone remodeling processes. J Funct Morphol Kinesiol. 2018;3:17.
Marino S, Bishop RT, de Ridder D, Delgado-Calle J, Reagan MR. 2D and 3D In Vitro Co-Culture for cancer and bone cell interaction studies. Meth Mol Biol. 2019;1914:71-98. https://doi.org/10.1007/978-1-4939-8997-3_5
Fasolino I, Raucci MG, Soriente A, Demitri C, Madaghiele M, Sannino A, Ambrosio L. Osteoinductive and anti-inflammatory properties of chitosan-based scaffolds for bone regeneration. Mater Sci Eng C. 2019;105:110046. https://doi.org/10.1016/j.msec.2019.110046
Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11:2301-19. https://doi.org/10.1038/nprot.2016.136
Elias JE, Gygi SP, in: Hubbard SJ, Jones AR, editors. Proteome bioinformatics. Totowa, NJ: Humana Press; 2010, pp. 55-71.
Barker M, Rayens W. Partial least squares for discrimination. J Chemometr. 2003;17:166-73. https://doi.org/10.1002/cem.785
Team RC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2021.
Elola MT, Wolfenstein-Todel C, Troncoso MF, Vasta GR, Rabinovich GA. Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cell Mol Life Sci. 2007;64:1679-700. https://doi.org/10.1007/s00018-007-7044-8
Martinez-Bosch N, Barranco LE, Orozco CA, Moreno M, Visa L, Iglesias M, Oldfield L, Neoptolemos JP, Greenhalf W, Earl J, Carrato A, Costello E, Navarro P. Increased plasma levels of galectin-1 in pancreatic cancer: potential use as biomarker. Oncotarget 2018;9:32984-96. 10.18632/oncotarget.26034
Chen L, Yao Y, Sun L, Zhou J, Liu J, Wang J, Li J, Tang J. Clinical implication of the serum galectin-1 expression in epithelial ovarian cancer patients. J Ovar Res. 2015;8:78. https://doi.org/10.1186/s13048-015-0206-7
Carlini MJ, Roitman P, Nuñez M, Pallotta MG, Boggio G, Smith D, Salatino M, Joffé EDBdK, Rabinovich GA, Puricelli LI. Clinical relevance of galectin-1 expression in non-small cell lung cancer patients. Lung Cancer. 2014;84:73-8. https://doi.org/10.1016/j.lungcan.2014.01.016
Zhao X-Y, Chen T-T, Xia L, Guo M, Xu Y, Yue F, Jiang Y, Chen G-Q, Zhao K-W. Hypoxia inducible factor-1 mediates expression of galectin-1: the potential role in migration/invasion of colorectal cancer cells. Carcinogenesis 2010;31:1367-75. https://doi.org/10.1093/carcin/bgq116
White NMA, Masui O, Newsted D, Scorilas A, Romaschin AD, Bjarnason GA, Siu KWM, Yousef GM. Galectin-1 has potential prognostic significance and is implicated in clear cell renal cell carcinoma progression through the HIF/mTOR signaling axis. Br J Cancer. 2014;110:1250-9. https://doi.org/10.1038/bjc.2013.828
Lv Q, Zhang J, Yi Y, Huang Y, Wang Y, Wang Y, Zhang W. Proliferating cell nuclear antigen has an association with prognosis and risks factors of cancer patients: a systematic review. Mol Neurobiol. 2016;53:6209-17. https://doi.org/10.1007/s12035-015-9525-3
Chi J-R, Yu Z-H, Liu B-W, Zhang D, Ge J, Yu Y, Cao X-C. SNHG5 promotes breast cancer proliferation by sponging the miR-154-5p/PCNA axis. Mol Ther Nucl Acids. 2019;17:138-49. https://doi.org/10.1016/j.omtn.2019.05.013
Malkas LH, Herbert BS, Abdel-Aziz W, Dobrolecki LE, Liu Y, Agarwal B, Hoelz D, Badve S, Schnaper L, Arnold RJ, Mechref Y, Novotny MV, Loehrer P, Goulet RJ, Hickey RJ. A cancer-associated PCNA expressed in breast cancer has implications as a potential biomarker. Proc Natl Acad Sci. 2006;103:19472-7. https://doi.org/10.1073/pnas.0604614103
Juríková M, Danihel Ľ, Polák Š, Varga I. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochem. 2016;118:544-52. https://doi.org/10.1016/j.acthis.2016.05.002
Wang J-L, Zheng B-Y, Li X-D, Ångström T, Lindström MS, Wallin K-L. Predictive significance of the alterations of p16INK4A, p14ARF, p53, and proliferating cell nuclear antigen expression in the progression of cervical cancer. Clin Cancer Res. 2004;10:2407-14. https://doi.org/10.1158/1078-0432.CCR-03-0242
Yang M, Zhai X, Xia B, Wang Y, Lou G. Long noncoding RNA CCHE1 promotes cervical cancer cell proliferation via upregulating PCNA. Tumor Biol. 2015;36:7615-22. https://doi.org/10.1007/s13277-015-3465-4
Courson DS, Cheney RE. Myosin-X and disease. Exp Cell Res. 2015;334:10-5. https://doi.org/10.1016/j.yexcr.2015.03.014
Arjonen A, Kaukonen R, Mattila E, Rouhi P, Högnäs G, Sihto H, Miller BW, Morton JP, Bucher E, Taimen P, Virtakoivu R, Cao Y, Sansom OJ, Joensuu H, Ivaska J. Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis. J Clin Invest. 2014;124:1069-82. https://doi.org/10.1172/jci67280
Cao R, Chen J, Zhang X, Zhai Y, Qing X, Xing W, Zhang L, Malik YS, Yu H, Zhu X. Elevated expression of myosin X in tumours contributes to breast cancer aggressiveness and metastasis. Br J Cancer. 2014;111:539-50. https://doi.org/10.1038/bjc.2014.298
Zhang X, Fang Q, Ma Y, Zou S, Liu Q, Wang H. Protease activated receptor 2 mediates tryptase-induced cell migration through MYO10 in colorectal cancer. Am J Cancer Res. 2019;9:1995-2006.
Feng Z, Zhou W, Wang J, Qi Q, Han M, Kong Y, Hu Y, Zhang Y, Chen A, Huang B, Chen A, Zhang D, Li W, Zhang Q, Bjerkvig R, Wang J, Thorsen F, Li X. Reduced expression of proteolipid protein 2 increases ER stress-induced apoptosis and autophagy in glioblastoma. J Cell Mol Med. 2020;24:2847-56 https://doi.org/10.1111/jcmm.14840
Bai H, Zhu Y, Xu P, Chen B. PLP2 expression as a prognostic and therapeutic indicator in high-risk multiple myeloma. Bio Med Res Int. 2020;2020:1. https://doi.org/10.1155/2020/4286101
Chen Y-H, Hueng D-Y, Tsai W-C. Proteolipid protein 2 overexpression indicates aggressive tumor behavior and adverse prognosis in human gliomas. Int J Mol Sci. 2018;19:3353.
Ding Z, Jian S, Peng X, Liu Y, Wang J, Zheng L, Ou C, Wang Y, Zeng W, Zhou M. Loss of MiR-664 expression enhances cutaneous malignant melanoma proliferation by upregulating PLP2. Medicine 2015;94:e1327. https://doi.org/10.1097/md.0000000000001327
Xiao W, Wang C, Chen K, Wang T, Xing J, Zhang X, Wang X. MiR-765 functions as a tumour suppressor and eliminates lipids in clear cell renal cell carcinoma by downregulating PLP2. EBio Med. 2020;51:102622. https://doi.org/10.1016/j.ebiom.2019.102622
Zou Y, Chen Y, Yao S, Deng G, Liu D, Yuan X, Liu S, Rao J, Xiong H, Yuan X, Yu S, Zhu F, Wang Y, Xiong H. MiR-422a weakened breast cancer stem cells properties by targeting PLP2. Cancer Biol Ther. 2018;19:436-44 https://doi.org/10.1080/15384047.2018.1433497