Preparative continuous flow electrophoretic instrumentation for purification of biological samples
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34370314
DOI
10.1002/elps.202100160
Knihovny.cz E-zdroje
- Klíčová slova
- Bidirectional isotachophoresis, Biological samples, Divergent continuous flow, Moving boundary electrophoresis, Separation,
- MeSH
- elektrody MeSH
- izotachoforéza * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We constructed a preparative instrumentation and developed the methods that are based on separation of the samples by bidirectional isotachophoresis/moving boundary electrophoresis in continuous divergent flow. The described instrumentation can be used for a variety of the samples, however, it can be easily optimized and tailored for the specific sample. The trapezoid separation bed from nonwoven textile exhibited minimum adsorption effect for sample and it can be used repeatedly. By the addition of different spacers via separation space inlets, the sections of pH gradient can be modified to enhance the separation. The liquid flow from two inlets positioned on each side of the sample inlet prevented the contact of the sample with anolyte and catholyte at the analysis beginning. One pair of thin electrodes (graphite and stainless-steel) was placed at the separation space output. The electrode products were washed out into drains without disturbing the focusing process. The influence of EOF was managed by tilting the separation bed in the direction from cathodic to anodic side. The components of spirulina supernatant and color pI markers were separated in the pH gradient from 3.9 to 10.1. pH gradient was stable for at least 4.5 h and spirulina supernatant from about 0.12 g of dry powder was processed. Compared to other preparative methods used for spirulina separation, the presented method/instrumentation working with a continuous divergent flow had essential advantages. The efficient separation was fast, and no intermediate steps were necessary to obtain liquid fractions with separated components compatible with further biological experiments.
Zobrazit více v PubMed
Barrollier, J., Watzke, E., Gibian, H., Z. Naturforsch. 1958, 13b, 754-755.
Hannig, K., Z. Anal. Chem. 1961, 181, 244-254.
Weber, G., Bocek, P., Electrophoresis 1996, 17, 1906-1910.
Weber, G., Bocek, P., Electrophoresis 1998, 19, 1649-1653.
Weber, G., Bocek, P., Electrophoresis 1998, 19, 3094-3095.
Soulet, N., Roux-de Balmann, H., Sanchez, V., Electrophoresis 1998, 19, 1294-1299.
Fu, J., Schoch, R. B., Stevens, A. L., Tannenbaum, S. R., Han, J., Nat. Nanotechnol. 2007, 2, 121-128.
Hoving, S., Janasek, D., Novo, P., Anal. Chim. Acta 2018, 1044, 77-85.
Duan, L., Cao, Z., Yobas, L., Anal. Chem. 2017, 89, 10022-10028.
Hannig, K., Kowalski, M., Klock, G., Zimmermann, U., Mang, V., Electrophoresis 1990, 11, 600-604.
Pietsch, J., Kussian, R., Sickmann, A., Bauer, J., Weber, G., Nissum, M., Westphal, K., Egli, M., Grosse, J., Schonberger, J., Wildgruber, R., Infanger, M., Grimm, D., Proteomics 2010, 10, 904-913.
Hosken, B. D., Li, C., Mullappally, B., Co, C., Zhang, B., Anal. Chem. 2016, 88, 5662-5669.
Parsons, H. T., Fernandez-Nino, S. M., Haezlewood, J. L., Methods Mol. Biol. 2014, 1072, 527-539.
Li, C. M., Miao, Y., Lingeman, R. G., Hickey, R. J., Malkas, L. H. , PLoS One 2016, 11, e0169259.
Islinger, M., Li, K. W., Loos, M., Liebler, S., Angermuller, S., Eckerskorn, C., Weber, G., Abdolzade, A., Volkl, A., J. Proteome Res. 2010, 9, 113-124.
Slais, K., Electrophoresis 2008, 29, 2451-2457.
Stastna, M., Slais, K., Electrophoresis 2008, 29, 4503-4507.
Stastna, M., Slais, K., Electrophoresis 2010, 31, 433-439.
Dusa, F., Moravcova, D., Slais, K., Anal. Chim. Acta 2019, 1076, 144-153.
Janasek, D., Schilling, M., Franzke, J., Manz, A., Anal. Chem. 2006, 78, 3815-3819.
Hirokawa, T., Ikuta, N., Ischikawa, M., Murakami, R., Hayakawa, S., Biol. Sci. Space 2000, 14, 260-261.
Slais, K., Stastna, M., Electrophoresis 2014, 35, 2438-2445.
Stastna, M., Slais, K., Electrophoresis 2015, 36, 2579-2586.
Khan, Z., Bhadouria, P., Bisen, P.S., Curr. Pharm. Biotechnol. 2005, 6, 373-379.
Glazer, A.N., J. Appl. Phycol. 1994, 6, 105-112.
Li, W., Su, H.N., Pu, Y., Chen, J., Liu, L.N., Liu, Q., Qin, S., Biotechnol. Adv. 2019, 37, 340-353.
Yan, S.G., Zhu, L.P., Su, H.N., Zhang, X.Y., Chen, X.L., Zhou, B.C., Zhang, Y.Z., J. Appl. Phycol. 2011, 23, 1-6.
Wang, G.C., Zhou, B.C., Tseng, C.K. Photosynthetica 1997, 34, 57-65.
Jespersen, L., Stromdahl, L.D., Olsen, K., Skibsted, L.H., Eur. Food Res. Technol. 2005, 220, 261-266.
Ge, B., Qin, S., Han, L., Lin, F., Ren, Y., J. Photochem. Photobiol. B 2006, 84, 175-180.
Mishra, S. K., Shrivastav, A., Mishra, S., Protein Expr. Purif. 2011, 80, 234-238.
Pu, Y., Wei, M., Witkowski, A., Krzywda, M., Wang, Y., Li, W., Biochem. Biophys. Res. Commun. 2020, 533, 573-579.
Wang, H., Liu, Y., Gao, X., Carter, C.L., Liu, Z.R., Cancer Lett. 2007, 247, 150-158.
Shih, S.R., Tsai, K.N., Li, Y.S., Chueh, C.C., Chan, E.C., J. Med. Virol. 2003, 70, 119-125.
Su, H.N., Xie, B.B., Chen, X.L., Wang, J.X., Zhang, X.Y., Zhou, B. C., Zhang, Y.Z., J. Appl. Phycol. 2010, 22, 65-70.
Kissoudi, M., Sarakatsianos, I., Samanidou, V., J. Sep. Sci. 2018, 41, 975-981.
Kumar, D., Dhar, D.W., Pabbi, S, Kumar, N., Walia, S., Ind. J. Plant Physiol. 2014, 19, 184-188.
Liao, X., Zhang, B., Wang, X., Yan, H., Zhang, X., Chromatographia 2011, 73, 291-296.
Kost-Reyes, E., Schneider, S., John, W., Fischer, R., Scheer, H., Kost, H.P., Electrophoresis 1987, 8, 335-336.
Stastna, M., Travnicek, M., Slais, K., Electrophoresis 2005, 26, 53-59.
Slais, K., Friedl, Z., J. Chromatogr. A 1994, 661, 249-256.
Slais, K., Friedl, Z., J. Chromatogr. A 1995, 695, 113-122.
Glazer, A.N., Cohen-Bazire, G., Proc. Nat. Acad. Sci. USA 1971, 68, 1398-1401.