Atypical applications of transverse diffusion of laminar flow profiles methodology for in-capillary reactions in capillary electrophoresis
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NU23-08-00229
Czech Health Research Council
GA19-08358S
Czech Science Foundation
PubMed
38982555
DOI
10.1002/jssc.202400157
Knihovny.cz E-zdroje
- Klíčová slova
- capillary electrophoresis, high‐throughput screening technology, in‐capillary reaction, transverse diffusion of laminar flow profiles methodology,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Capillary electrophoresis (CE) is a powerful separation technique offering quick and efficient analyses in various fields of bioanalytical chemistry. It is characterized by many well-known advantages, but one, which is perhaps the most important for this application field, is somewhat overlooked. It is the possibility to perform chemical and biochemical reactions at the nL scale inside the separation capillary. There are two basic formats applicable for this purpose, heterogeneous and homogeneous. In the former, one reactant is immobilized onto a particle or monolithic support or directly on the capillary wall, and the other is injected. In the latter, the reactant mixing inside a capillary is based on electromigration or diffusion. One of the diffusion-based methodologies, termed Transverse Diffusion of Laminar Flow Profiles, is the subject of this review. Since most studies utilizing in-capillary reactions in CE focus on enzymes, which are being continuously and exhaustively reviewed, this review covers the atypical applications of this methodology, but still in the bioanalytical field. As can be seen from the demonstrated applications, they are not limited to reactions, but can also be utilized for other biochemical systems.
Zobrazit více v PubMed
Reuss FF. Sur un nouvel effet de l'electricite galvanique. Mem Soc Imp Nat Moscou. 1809;2:327–337.
Tiselius A. A new apparatus for electrophoretic analysis of colloidal mixtures. Trans Faraday Soc. 1937;33:524–531.
Hjerten S. Free zone electrophoresis. Preliminary note. Arkiv for Kemi. 1958;13:151–152.
Everaerts FM. Isotachophoresis. J Chromatogr A. 1972;65:3–17.
Jorgenson JW, Lukacs KD. Zone electrophoresis in open‐tubular glass‐capillaries. Anal Chem. 1981;53:1298–1302.
Dovichi NJ, Zhang JZ. How capillary electrophoresis sequenced the human genome. Angew Chem Int Edit. 2000;39:4463–4468.
Krylova SM, Okhonin V, Evenhuis CJ, Krylov SN. The inject‐mix‐react‐separate‐and‐quantitate (IMReSQ) approach to studying reactions in capillaries. Trac Trends Anal Chem. 2009;28:987–1010.
Bao JJ, Fujima JM, Danielson ND. Determination of minute enzymatic activities by means of capillary electrophoretic techniques. J Chromatogr B. 1997;699:481–497.
Nováková S, Van Dyck S, Van Schepdael A, Hoogmartens J, Glatz Z. Electrophoretically mediated microanalysis. J Chromatogr A. 2004;1032:173–184.
Glatz Z. Determination of enzymatic activity by capillary electrophoresis. J Chromatogr B. 2006;841:23–37.
Fan Y, Scriba GKE. Advances in‐capillary electrophoretic enzyme assays. J Pharm Biomed Anal. 2010;53:1076–1090.
Wang X, Li KF, Adams E, Van Schepdael A. Recent advances in CE‐mediated microanalysis for enzyme study. Electrophoresis. 2014;35:119–127.
Scriba GKE, Belal F. Advances in capillary electrophoresis‐based enzyme assays. Chromatographia. 2015;78:947–970.
Remínek R, Zeisbergerová M, Glatz Z. Study of enzymatic reactions by on‐line capillary electrophoresis. Chem Listy. 2013;107:914–920.
Bao JM, Regnier FE. Ultramicro enzyme assays in a capillary electrophoretic system. J Chromatogr A. 1992;608:217–224.
Glatz Z. On‐capillary derivatisation as an approach to enhancing sensitivity in capillary electrophoresis. Electrophoresis. 2015;36:744–763.
Andreev VP, Kamenev AG, Popov NS. Electroinjection analysis. The introduction of a new variant of flow‐injection analysis and comparison with electrophoretically‐mediated microanalysis. Talanta. 1996;43:909–914.
Andreev VP, Ilyina NB, Lebedeva EV, Kamenev AG, Popov NS. Electroinjection analysis—concept, mathematical model and applications. J Chromatogr A. 1997;772:115–127.
Taga A, Honda S. Derivatization at capillary inlet in high‐performance capillary electrophoresis Its reliability in quantification. J Chromatogr A. 1996;742:243–250.
Okhonin V, Liu X, Krylov SN. Transverse diffusion of laminar flow profiles to produce capillary nanoreactors. Anal Chem. 2005;77:5925–5929.
Okhonin V, Wong E, Krylov SN. Mathematical model for mixing reactants in a capillary microreactor by transverse diffusion of laminar flow profiles. Anal Chem. 2008;80:7482–7486.
Krylova SM, Okhonin V, Krylov SN. Transverse diffusion of laminar flow profiles‐a generic method for mixing reactants in capillary microreactor. J Sep Sci. 2009;32:742–756.
Reminek R, Zeisbergerova M, Langmajerova M, Glatz Z. New capillary electrophoretic method for on‐line screenings of drug metabolism mediated by cytochrome P 450 enzymes. Electrophoresis. 2013;34:2705–2711.
Ramana P, Adams E, Augustijns P, Van Schepdael A. Recent advances in CE mediated microanalysis for enzymatic and derivatization reactions. Electrophoresis. 2016;37:56–65.
Huang SY, Paul P, Ramana P, Adams E, Augustijns P, Van Schepdael A. Advances in capillary electrophoretically mediated microanalysis for on‐line enzymatic and derivatization reactions. Electrophoresis. 2018;39:97–110.
Rozenski J, Asfaw AA, Van Schepdael A. Overview of in‐capillary enzymatic reactions using capillary electrophoresis. Electrophoresis. 2022;43:57–73.
Zhou SF, Chan SY, Goh BC, Chan E, Duan W, Huang M, et al. Mechanism‐based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin Pharmacokinet. 2005;44:279–304.
Whitten DL, Myers SP, Hawrelak JA, Wohlmuth H. The effect of St John's wort extracts on CYP3A: a systematic review of prospective clinical trials. Br J Clin Pharmacol. 2006;62:512–526.
Schejbal J, Glatz Z. Immobilized‐enzyme reactors integrated with capillary electrophoresis for pharmaceutical research. J Sep Sci. 2018;41:323–335.
De Simone A, Naldi M, Bartolini M, Davani L, Andrisano V. Immobilized enzyme reactors: an overview of applications in drug discovery from 2008 to 2018. Chromatographia. 2019;82:425–441.
Manikandan P, Nagini S. Cytochrome P450 structure, function and clinical significance: a review. Curr Drug Targets. 2018;19:38–54.
Zhao MZ, Ma JS, Li M, Zhang YT, Jiang BX, Zhao XL, et al. Cytochrome P450 enzymes and drug metabolism in humans. Int. J. Mol. Sci. 2021;22:12808.
Zhang J, Hoogmartens J, Van Schepdael A. Kinetic study of cytochrome P450 by capillary electrophoretically mediated microanalysis. Electrophoresis. 2008;29:3694–3700.
Van Dyck S, Van Schepdael A, Hoogmartens J. Michaelis‐Menten analysis of bovine plasma amine oxidase by capillary electrophoresis using electrophoretically mediated microanalysis in a partially filled capillary. Electrophoresis. 2001;22:1436–1442.
Wang X, Dou ZY, Yuan YZ, Man S, Wolfs K, Adams E, et al. On‐line screening of matrix metalloproteinase inhibitors by capillary electrophoresis coupled to ESI mass spectrometry. J Chromatogr B. 2013;930:48–53.
Nicoli R, Curcio R, Rudaz S, Veuthey JL. Development of an In‐capillary approach to nanoscale automated in vitro Cytochromes P450 assays. J Med Chem. 2009;52:2192–2195.
Curcio R, Nicoli R, Rudaz S, Veuthey JL. Evaluation of an in‐capillary approach for performing quantitative cytochrome P450 activity studies. Anal Bioanal Chem. 2010;398:2163–2171.
Langmajerova M, Reminek R, Pelcova M, Foret F, Glatz Z. Combination of on‐line CE assay with MS detection for the study of drug metabolism by cytochromes P450. Electrophoresis. 2015;36:1365–1373.
Gribble FM, Reimann F. Sulphonylurea action revisited: the post‐cloning era. Diabetologia. 2003;46:875–891.
Remínek R, Glatz Z, Thormann W. Optimized on‐line enantioselective capillary electrophoretic method for kinetic and inhibition studies of drug metabolism mediated by cytochrome P450 enzymes. Electrophoresis. 2015;36:1349–1357.
Reminek R, Glatz Z, Thormann W. Online enantioselective capillary electrophoretic method for screening Cytochrome P450 3A4 inhibitors. in: Labrou NE, editors. Targeting enzymes for pharmaceutical development: methods and protocols. Totowa: Humana Press Inc; 2020. pp. 167–178.
Machado‐Vieira R, Salvadore G, DiazGranados N, Zarate CA Jr. Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacol Ther. 2009;123:143–150.
Vargesson N. Thalidomide‐induced teratogenesis: history and mechanisms. Birth Defects Res Part C Embryo Today Rev. 2015;105:140–156.
Kwan HY, Thormann W. Enantioselective capillary electrophoresis for the assessment of CYP3A4‐mediated ketamine demethylation and inhibition in vitro. Electrophoresis. 2011;32:2738–2745.
Pelcova M, Reminek R, Sandbaumhüter FA, Mosher RA, Glatz Z, Thormann W. Simulation and experimental study of enzyme and reactant mixing in capillary electrophoresis based on‐line methods. J Chromatogr A. 2016;1471:192–200.
Gajula SNR, Nathani TN, Patil RM, Talari S, Sonti R. Aldehyde oxidase mediated drug metabolism: an underpredicted obstacle in drug discovery and development. Drug Metab Rev. 2022;54:427–448.
Huang SY, Adams E, Van Schepdael A. Study of aldehyde oxidase by micellar electrokinetic chromatography separation of O6‐benzylguanine and 8‐oxo‐O6‐benzylguanine. Electrophoresis. 2019;40:330–335.
Rabik CA, Njoku MC, Dolan ME. Inactivation of O6‐alkylguanine DNA alkyltransferase as a means to enhance chemotherapy. Cancer Treat Rev. 2006;32:261–276.
Lustosa IA, de Souza Gil E, Kogawa AC. Analytical aspects for evaluation of pharmaceutical products: a mini‐review. Curr Pharm Anal. 2022;18:909–918.
Raposo F, Barceló D. Assessment of goodness‐of‐fit for the main analytical calibration models: guidelines and case studies. Trac Trends Anal Chem. 2021;143:116373.
Huang SY, Kahsay G, Adams E, Van Schepdael A. Study of aldehyde oxidase with phthalazine as substrate using both off‐line and on‐line capillary electrophoresis. J Pharm Biomed Anal. 2019;165:393–398.
Zaib S, Khan I. Synthetic and medicinal chemistry of phthalazines: recent developments, opportunities and challenges. Bioorganic Chem. 2020;105:104425.
Hai X, Konecny J, Zeisbergerová M, Adams E, Hoogmartens J, Van Schepdael A. Development of electrophoretically mediated microanalysis method for the kinetics study of flavin‐containing monooxygenase in a partially filled capillary. Electrophoresis. 2008;29:3817–3824.
Nováková S, Van Dyck S, Glatz Z, Van Schepdael A, Hoogmartens J. Study of enzyme kinetics of phenol sulfotransferase by electrophoretically mediated microanalysis. J Chromatogr A. 2004;1032:319–326.
Naldi M, Tramarin A, Bartolini M. Immobilized enzyme‐based analytical tools in the ‐omics era: recent advances. J Pharm Biomed Anal. 2018;160:222–237.
Chang HT, Yeung ES. On‐column digestion of protein for peptide mapping by capillary zone electrophoresis with laser‐induced native fluorescence detection. Anal Chem. 1993;65:2947–2951.
Zeisbergerova M, Adamkova A, Glatz Z. Integration of on‐line protein digestion by trypsin in CZE by means of electrophoretically mediated microanalysis. Electrophoresis. 2009;30:2378–2384.
Coussot G, Ladner Y, Bayart C, Faye C, Vigier V, Perrin C. On‐line capillary electrophoresis‐based enzymatic methodology for the study of polymer‐drug conjugates. J Chromatogr A. 2015;1376:159–166.
Ladner Y, Coussot G, Ebner S, Ibrahim A, Vidal L, Perrin C. Optimization of a nano‐enzymatic reactor for on‐line tryptic digestion of polypeptide conjugates by capillary electrophoresis. Electrophoresis. 2016;37:256–266.
Ladner Y, Mas S, Coussot G, Montels J, Perrin C. In‐line tryptic digestion of therapeutic molecules by capillary electrophoresis with temperature control. Talanta. 2019;193:146–151.
Alhazmi HA, Albratty M. Analytical techniques for the characterization and quantification of monoclonal antibodies. Pharmaceuticals. 2023;16:291.
Fekete S, Gassner AL, Rudaz S, Schappler J, Guillarme D. Analytical strategies for the characterization of therapeutic monoclonal antibodies. Trac Trends Anal Chem. 2013;42:74–83.
Tsumoto K, Isozaki Y, Yagami H, Tomita M. Future perspectives of therapeutic monoclonal antibodies. Immunotherapy. 2019;11:119–127.
Leavy O. Therapeutic antibodies: past, present and future. Nat Rev Immunol. 2010;10:297–297.
Ladner Y, Mas S, Coussot G, Bartley K, Montels J, Morel J, et al. Integrated microreactor for enzymatic reaction automation: an easy step toward the quality control of monoclonal antibodies. J Chromatogr A. 2017;1528:83–90.
Dadouch M, Ladner Y, Bich C, Montels J, Morel J, Perrin C. Fast in‐line bottom‐up analysis of monoclonal antibodies: toward an electrophoretic fingerprinting approach. Electrophoresis. 2021;42:1229–1237.
Dadouch M, Ladner Y, Bich C, Larroque M, Larroque C, Morel J, et al. An in‐line enzymatic microreactor for the middle‐up analysis of monoclonal antibodies by capillary electrophoresis. Analyst. 2020;145:1759–1767.
Sjögren J, Olsson F, Beck A. Rapid and improved characterization of therapeutic antibodies and antibody related products using IdeS digestion and subunit analysis. Analyst. 2016;141:3114–3125.
Dadouch M, Ladner Y, Bich C, Montels JM, Morel J, Bechara C, et al. In‐capillary (electrophoretic) digestion‐reduction‐separation: a smart tool for middle‐up analysis of mAb. J Chromatogr A. 2021;1648:462213.
Ladner Y, Liu D, Montels J, Morel J, Perrin C. Enzymatic reaction automation in nanodroplet microfluidic for the quality control of monoclonal antibodies. BioChip J. 2022;16:317–325.
Dovichi NJ, Hu S. Chemical cytometry. Curr Opin Chem Biol. 2003;7:603–608.
Lin SJ, Feng D, Han X, Li L, Lin Y, Gao HB. Microfluidic platform for omics analysis on single cells with diverse morphology and size: a review. Anal Chim Acta. 2024;1294:342217.
Wu YP, Meng YQ. Cell manipulation and single cell characterization on microfluidic devices. Trac Trends Anal Chem. 2023;168:117301.
Nehmé H, Nehmé R, Lafite P, Duverger E, Routier S, Morin P. Electrophoretically mediated microanalysis for in‐capillary electrical cell lysis and fast enzyme quantification by capillary electrophoresis. Anal Bioanal Chem. 2013;405:9159–9167.
Nehme H, Nehme R, Lafite P, Routier S, Morin P. New development in in‐capillary electrophoresis techniques for kinetic and inhibition study of enzymes. Anal Chim Acta. 2012;722:127–135.
Zhu XR, Shi ZF, Mao Y, Laechelt U, Huang RQ. Cell membrane perforation: patterns, mechanisms and functions. Small. 2024;20(24):2310605.
Berezovski MV, Mak TW, Krylov SN. Cell lysis inside the capillary facilitated by transverse diffusion of laminar flow profiles (TDLFP). Anal Bioanal Chem. 2007;387:91–96.
Johnson KR, Gao YF, Gregus M, Ivanov AR. On‐capillary cell lysis enables top‐down proteomic analysis of single mammalian cells by CE‐MS/MS. Anal Chem. 2022, 14358–14367.
Yamasaki K, Chuang VTG, Maruyama T, Otagiri M. Albumin‐drug interaction and its clinical implication. Biochim Biophys Acta Gen Subj. 2013;1830:5435–5443.
Tayyab S, Feroz SR. Serum albumin: clinical significance of drug binding and development as drug delivery vehicle. in: Donev R, editor. Advances in protein chemistry and structural biology. San Diego: Elsevier Academic Press Inc; 2021. pp. 193–218.
Summerfield SG, Yates JWT, Fairman DA. Free drug theory—no longer just a hypothesis? Pharm Res. 2022;39:213–222.
Ruiz‐Garcia A, Bermejo M, Moss A, Casabo VG. Pharmacokinetics in drug discovery. J Pharm Sci. 2008;97:654–690.
Michalcova L, Nevidalova H, Glatz Z. Toward an automated workflow for the study of plasma protein‐drug interactions based on capillary electrophoresis‐frontal analysis combined with in‐capillary mixing of interacting partners. J Chromatogr A. 2021;1635:461734.
Glatz Z. Application of short‐end injection procedure in CE. Electrophoresis. 2013;34:631–642.
Wang JH, Qiu L, You Y, Ma LP, Zhu ZL, Yang L, et al. A novel in‐capillary assay for dynamically monitoring fast binding between antibody and peptides using CE. J Sep Sci. 2018;41:4544–4550.
Wang JH, Zhu ZL, Qiu L, Wang JP, Wang X, Xiao QC, et al. A CE‐FL based method for real‐time detection of in‐capillary self‐assembly of the nanoconjugates of polycysteine ligand and quantum dots. Nanotechnology. 2018;29:274001.
Wang JH, Zhu ZL, Jia WJ, Qiu L, Chang YF, Li J, et al. Resolving quantum dots and peptide assembly and disassembly using bending capillary electrophoresis. Electrophoresis. 2019;40:1019–1026.
Wang JH, Qin YQ, Li JC, Zhou X, Yao Y, Wang CL, et al. Forster resonance energy transfer analysis of quantum dots and peptide self‐assembly inside a capillary. Sens. Actuator B‐Chem. 2016;227:619–625.
Wang JH, Zhu ZL, Wang X, Yang L, Liu L, Wang JP, et al. A novel monitoring approach of antibody‐peptide binding using “bending” capillary electrophoresis. Int J Biol Macromol. 2018;113:900–906.
Wang JH, Gu YQ, Liu L, Wang CL, Wang JP, Ding SM, et al. Novel application of fluorescence coupled capillary electrophoresis to resolve the interaction between the G‐quadruplex aptamer and thrombin. J Sep Sci. 2017;40:3161–3167.
Wang JH, Qin YQ, Jiang SW, Liu L, Lu Y, Li JP, et al. Fluorescence coupled in‐capillary DNA hybridization assay and its application to identification of DNA point mutation. Sens. Actuator B‐Chem. 2016;237:106–112.
Krylov SN. Kinetic CE: foundation for homogeneous kinetic affinity methods. Electrophoresis. 2007;28:69–88.
Okhonin V, Petrov AP, Berezovski M, Krylov SN. Plug‐plug kinetic capillary electrophoresis: method for direct determination of rate constants of complex formation and dissociation. Anal Chem. 2006;78:4803–4810.
Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–822.
Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment—RNA ligands to bacteriophage‐T4 DNA‐polymerase. Science. 1990;249:505–510.
Mendonsa SD, Bowser MT. In vitro evolution of functional DNA using capillary electrophoresis. J Am Chem Soc. 2004;126:20–21.
Zhu C, Wang XQ, Li LS, Hao CX, Hu YH, Rizvi AS, et al. Online reaction based single‐step CE for Protein‐ssDNA complex obtainment to assist aptamer selection. Biochem Biophys Res Commun. 2018;506:169–175.
Zhu C, Li LS, Yang G, Irfan M, Wang ZJ, Fang SB, et al. High‐efficiency selection of aptamers for bovine lactoferrin by capillary electrophoresis and its aptasensor application in milk powder. Talanta. 2019;205:120088.
Zhu C, Li LS, Yang G, Fang SB, Liu MJ, Ghulam M, et al. Online reaction based single‐step capillary electrophoresis‐systematic evolution of ligands by exponential enrichment for ssDNA aptamers selection. Anal Chim Acta. 2019;1070:112–122.
Berezovski M, Drabovich A, Krylova SM, Musheev M, Okhonin V, Petrov A, et al. Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J Am Chem Soc. 2005;127:3165–3171.
Drabovich A, Berezovski M, Krylov SN. Selection of smart aptamers by equilibrium capillary electrophoresis of equilibrium mixtures (ECEEM). J Am Chem Soc. 2005;127:11224–11225.
Drabovich AP, Berezovski M, Okhonin V, Krylov SN. Selection of smart aptamers by methods of kinetic capillary electrophoresis. Anal Chem. 2006;78:3171–3178.
Le ATH, Krylova SM, Krylov SN. Kinetic capillary electrophoresis in screening oligonucleotide libraries for protein binders. Trac Trends Anal Chem. 2023;162:117061.
Yunusov D, So M, Shayan S, Okhonin V, Musheev MU, Berezovski MV, et al. Kinetic capillary electrophoresis‐based affinity screening of aptamer clones. Anal Chim Acta. 2009;631:102–107.
Cela A, Madr A, Dedova T, Pelcova M, Jeseta M, Zakova J, et al. MEKC‐LIF method for analysis of amino acids after on‐capillary derivatization by transverse diffusion of laminar flow profiles mixing of reactants for assessing developmental capacity of human embryos after in vitro fertilization. Electrophoresis. 2016;37:2305–2312.
Weng LD. IVF‐on‐a‐chip: recent advances in microfluidics technology for in vitro fertilization. SLAS Technol. 2019;24:373–385.
Cela A, Glatz Z. Homocyclico‐dicarboxaldehydes: Derivatization reagents for sensitive analysis of amino acids and related compounds by capillary and microchip electrophoresis. Electrophoresis. 2020;41:1851–1869.
Cela A, Madr A, Glatz Z. Electrophoretically mediated microanalysis for simultaneous on‐capillary derivatization of standard amino acids followed by micellar electrokinetic capillary chromatography with laser‐induced fluorescence detection. J Chromatogr A. 2017;1499:203–210.
Cela A, Madr A, Jeseta M, Zakova J, Crha I, Glatz Z. Study of metabolic activity of human embryos focused on amino acids by capillary electrophoresis with light‐emitting diode‐induced fluorescence detection. Electrophoresis. 2018;39:3040–3048.
Jeseta M, Cela A, Aakova J, Madr A, Crha I, Glatz Z, et al. Metabolic activity of human embryos after thawing differs in atmosphere with different oxygen concentrations. J Clin Med. 2020;9:2609.
Motiei M, Vaculikova K, Cela A, Tvrdonova K, Khalili R, Rumpik D, et al. Non‐invasive human embryo metabolic assessment as a developmental criterion. J Clin Med. 2020;9:4094.
Yang B, Mai TD, Tran NT, Taverna M. In capillary labeling and online electrophoretic separation of N‐glycans from glycoproteins. J Sep Sci. 2022;45:3594–3603.
Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA. Emerging principles for the therapeutic exploitation of glycosylation. Science. 2014;343:1235681.
Stowell SR, Ju TZ, Cummings RD. Protein glycosylation in cancer. in: Abbas AK, Galli SJ, Howley PM, editors. Annual review of pathology: mechanisms of disease. Palo Alto, CA: Annual Reviews; 2015. pp. 473–510.