Assessing the Impact of Polyamide Nanofibrous Material Areal Weight on Lacticaseibacillus rhamnosus Biofilm Formation and Resistance to Storage Conditions and Contamination

. 2025 Oct 21 ; 10 (41) : 47867-47878. [epub] 20251007

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41141786

Probiotic biofilms are considered the fourth most advanced generation of probiotics. To maximize the benefits of probiotic biofilms, suitable carriers ensuring bacterial viability during storage are being sought. The use of nanofibrous platforms is beginning to appear as one of the most promising approaches. We investigated the influence of three polyamide (PA) nanofibrous materials with different areal weights (5, 11, 27 g/m2) and the resulting morphological properties on the biofilm formation of Lacticaseibacillus rhamnosus ATCC 9595 and its tolerance to various conditions. PA promoted biofilm formation more than the reference material, polystyrene. PA's areal weight influenced the biofilm biomass amount, phenotype, and structure; PAs with a high areal weight promoted biofilm formation. Further, we examined the tolerance of matured biofilms on the PAs to various external conditions: (i) storage temperature (-20, 4, 21 °C), environment (aqueous/dry), and time (0-35 days), (ii) pH (2, 4, 6, 7, 8 and 10), and (iii) bacterial contamination by Staphylococcus aureus and Escherichia coli. Generally, PAs increased biofilm resistance, and the areal weight of the PA played a crucial role in it. The PA with the highest areal weight (27 g/m2) provided the highest long-term stability and tolerance of the biofilm and thus was confirmed to be the most suitable tested nanomaterial. The overall results suggest that the presented PAs could be suitable carriers of probiotic biofilm, enabling large-scale production. We also highlight the need for further research on the influence of nanomaterials' morphology on microbial interactions, possibly enabling target modification for a particular use.

Zobrazit více v PubMed

Hill C., Guarner F., Reid G., Gibson G. R., Merenstein D. J., Pot B., Morelli L., Canani R. B., Flint H. J., Salminen S., Calder P. C., Sanders M. E.. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014;11(8):506–514. doi: 10.1038/nrgastro.2014.66. PubMed DOI

Suez J., Zmora N., Segal E., Elinav E.. The pros, cons, and many unknowns of probiotics. Nat. Med. 2019;25(5):716–729. doi: 10.1038/s41591-019-0439-x. PubMed DOI

Oelschlaeger T. A.. Mechanisms of probiotic actions – A review. Int. J. Med. Microbiol. 2010;300(1):57–62. doi: 10.1016/j.ijmm.2009.08.005. PubMed DOI

Bianchi L., Laghi L., Correani V., Schifano E., Landi C., Uccelletti D., Mattei B.. A Combined Proteomics, Metabolomics and In Vivo Analysis Approach for the Characterization of Probiotics in Large-Scale Production. Biomolecules. 2020;10(1):157. doi: 10.3390/biom10010157. PubMed DOI PMC

Kosin B., Rakshit S.. Microbial and Processing Criteria for Production of Probiotics: A Review. Food Technol. Biotechnol. 2006;44(3):371–379.

Lencova S., Svarcova V., Stiborova H., Demnerova K., Jencova V., Hozdova K., Zdenkova K.. Bacterial Biofilms on Polyamide Nanofibers: Factors Influencing Biofilm Formation and Evaluation. ACS Appl. Mater. Interfaces. 2021;13(2):2277–2288. doi: 10.1021/acsami.0c19016. PubMed DOI

Rieu A., Aoudia N., Jego G., Chluba J., Yousfi N., Briandet R., Deschamps J., Gasquet B., Monedero V., Garrido C., Guzzo J.. The biofilm mode of life boosts the anti-inflammatory properties of Lactobacillus. Cell. Microbiol. 2014;16(12):1836–1853. doi: 10.1111/cmi.12331. PubMed DOI

Aoudia N., Rieu A., Briandet R., Deschamps J., Chluba J., Jego G., Garrido C., Guzzo J.. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiol. 2016;53:51–59. doi: 10.1016/j.fm.2015.04.009. PubMed DOI

Shelby R. D., Janzow G. E., Mashburn-Warren L., Galley J., Tengberg N., Navarro J., Conces M., Bailey M. T., Goodman S. D., Besner G. E.. A novel probiotic therapeutic in a murine model of Clostridioides difficile colitis. Gut Microbes. 2020;12(1):1814119. doi: 10.1080/19490976.2020.1814119. PubMed DOI PMC

Heumann A., Assifaoui A., Da Silva Barreira D., Thomas C., Briandet R., Laurent J., Beney L., Lapaquette P., Guzzo J., Rieu A.. Intestinal release of biofilm-like microcolonies encased in calcium-pectinate beads increases probiotic properties of Lacticaseibacillus paracasei. npj Biofilms Microbiomes. 2020;6(1):44. doi: 10.1038/s41522-020-00159-3. PubMed DOI PMC

Hu M.-X., He F., Zhao Z.-S., Guo Y.-X., Ma X.-K., Tu C.-K., Teng H., Chen Z.-X., Yan H., Shao X.. Electrospun Nanofibrous Membranes Accelerate Biofilm Formation and Probiotic Enrichment: Enhanced Tolerances to pH and Antibiotics. ACS Appl. Mater. Interfaces. 2022;14(28):31601–31612. doi: 10.1021/acsami.2c04540. PubMed DOI

Dahlin R. L., Kasper F. K., Mikos A. G.. Polymeric Nanofibers in Tissue Engineering. Tissue Eng., Part B. 2011;17(5):349–364. doi: 10.1089/ten.teb.2011.0238. PubMed DOI PMC

Cui W., Zhou Y., Chang J.. Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci. Technol. Adv. Mater. 2010;11(1):014108. doi: 10.1088/1468-6996/11/1/014108. PubMed DOI PMC

Hu M.-X., Li J.-N., Guo Q., Zhu Y.-Q., Niu H.-M.. Probiotics Biofilm-Integrated Electrospun Nanofiber Membranes: A New Starter Culture for Fermented Milk Production. J. Agric. Food Chem. 2019;67(11):3198–3208. doi: 10.1021/acs.jafc.8b05024. PubMed DOI

Shi J., Li S. F., Feng K., Han S. Y., Hu T. G., Wu H.. Improving the Viability of Probiotics under Harsh Conditions by the Formation of Biofilm on Electrospun Nanofiber Mat. Foods. 2022;11(9):1203. doi: 10.3390/foods11091203. PubMed DOI PMC

Winnacker M.. Polyamides and their functionalization: recent concepts for their applications as biomaterials. Biomater. Sci. 2017;5(7):1230–1235. doi: 10.1039/C7BM00160F. PubMed DOI

Guibo Y., Qing Z., Yahong Z., Yin Y., Yumin Y.. The electrospun polyamide 6 nanofiber membranes used as high efficiency filter materials: Filtration potential, thermal treatment, and their continuous production. J. Appl. Polym. Sci. 2013;128(2):1061–1069. doi: 10.1002/app.38211. DOI

Matulevicius J., Kliucininkas L., Martuzevicius D., Krugly E., Tichonovas M., Baltrusaitis J.. Design and Characterization of Electrospun Polyamide Nanofiber Media for Air Filtration Applications. J. Nanomater. 2014;2014(1):859656. doi: 10.1155/2014/859656. DOI

Zagmignan A., Mendes Y. C., Mesquita G. P., Santos G., Silva L. D. S., de Souza Sales A. C., Castelo Branco S., Junior A. R. C., Bazán J. M. N., Alves E. R., Almeida B. L., Santos A. K. M., Firmo W., Silva M. R. C., Cantanhede Filho A. J., Miranda R. C. M., Silva L.. Short-Term Intake of Theobroma grandiflorum Juice Fermented with Lacticaseibacillus rhamnosus ATCC 9595 Amended the Outcome of Endotoxemia Induced by Lipopolysaccharide. Nutrients. 2023;15(4):1059. doi: 10.3390/nu15041059. PubMed DOI PMC

Lencova S., Zdenkova K., Jencova V., Demnerova K., Zemanova K., Kolackova R., Hozdova K., Stiborova H.. Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for Staphylococcus Aureus . Nanomaterials. 2021;11(2):480. doi: 10.3390/nano11020480. PubMed DOI PMC

Tamayo-Ramos J. A., Rumbo C., Caso F., Rinaldi A., Garroni S., Notargiacomo A., Romero-Santacreu L., Cuesta-López S.. Analysis of Polycaprolactone Microfibers as Biofilm Carriers for Biotechnologically Relevant Bacteria. ACS Appl. Mater. Interfaces. 2018;10(38):32773–32781. doi: 10.1021/acsami.8b07245. PubMed DOI

Kargar M., Wang J., Nain A. S., Behkam B.. Controlling bacterial adhesion to surfaces using topographical cues: a study of the interaction of Pseudomonas aeruginosa with nanofiber-textured surfaces. Soft Matter. 2012;8(40):10254–10259. doi: 10.1039/c2sm26368h. DOI

Abrigo M., Kingshott P., McArthur S. L.. Electrospun Polystyrene Fiber Diameter Influencing Bacterial Attachment, Proliferation, and Growth. ACS Appl. Mater. Interfaces. 2015;7(14):7644–7652. doi: 10.1021/acsami.5b00453. PubMed DOI

Lencova S., Stindlova M., Havlickova K., Jencova V., Peroutka V., Navratilova K., Zdenkova K., Stiborova H., Hauzerova S., Kostakova E. K., Jankovsky O., Kejzlar P., Lukas D., Demnerova K.. Influence of Fiber Diameter of Polycaprolactone Nanofibrous Materials on Biofilm Formation and Retention of Bacterial Cells. ACS Appl. Mater. Interfaces. 2024;16(20):25813–25824. doi: 10.1021/acsami.4c03642. PubMed DOI PMC

Lencova S., Zdenkova K., Jencova V., Demnerova K., Zemanova K., Kolackova R., Hozdova K., Stiborova H.. Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for Staphylococcus Aureus . Nanomaterials. 2021;11(2):480. doi: 10.3390/nano11020480. PubMed DOI PMC

Flores-Rojas G. G., Gómez-Lazaro B., López-Saucedo F., Vera-Graziano R., Bucio E., Mendizábal E.. Electrospun Scaffolds for Tissue Engineering: A Review. Macromol. 2023;3:524–553. doi: 10.3390/macromol3030031. DOI

Flemming H.-C.. Biofouling and me: My Stockholm syndrome with biofilms. Water Res. 2020;173:115576. doi: 10.1016/j.watres.2020.115576. PubMed DOI

Karygianni L., Ren Z., Koo H., Thurnheer T.. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol. 2020;28(8):668–681. doi: 10.1016/j.tim.2020.03.016. PubMed DOI

Wagley S., Morcrette H., Kovacs-Simon A., Yang Z. R., Power A., Tennant R. K., Love J., Murray N., Titball R. W., Butler C. S.. Bacterial dormancy: A subpopulation of viable but non-culturable cells demonstrates better fitness for revival. PLoS Pathog. 2021;17(1):e1009194. doi: 10.1371/journal.ppat.1009194. PubMed DOI PMC

Ampatzoglou A., Schurr B., Deepika G., Baipong S., Charalampopoulos D.. Influence of fermentation on the acid tolerance and freeze drying survival of Lactobacillus rhamnosus GG. Biochem. Eng. J. 2010;52(1):65–70. doi: 10.1016/j.bej.2010.07.005. DOI

Tannock G. W.. A Special Fondness for Lactobacilli. Appl. Environ. Microbiol. 2004;70(6):3189–3194. doi: 10.1128/AEM.70.6.3189-3194.2004. PubMed DOI PMC

Corcoran B. M., Stanton C., Fitzgerald G. F., Ross R. P.. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 2005;71(6):3060–3067. doi: 10.1128/AEM.71.6.3060-3067.2005. PubMed DOI PMC

Cotter P. D., Hill C.. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH. Microbiol. Mol. Biol. Rev. 2003;67(3):429–453. doi: 10.1128/MMBR.67.3.429-453.2003. PubMed DOI PMC

Fortier L.-C., Tourdot-Maréchal R., Diviès C., Lee B. H., Guzzo J.. Induction of Oenococcus oeni H+-ATPase activity and mRNA transcription under acidic conditions. FEMS Microbiol. Lett. 2003;222(2):165–169. doi: 10.1016/S0378-1097(03)00299-4. PubMed DOI

Śliżewska K., Chlebicz-Wójcik A.. Growth Kinetics of Probiotic Lactobacillus Strains in the Alternative, Cost-Efficient Semi-Solid Fermentation Medium. Biology. 2020;9(12):423. doi: 10.3390/biology9120423. PubMed DOI PMC

Reale A., Di Renzo T., Rossi F., Zotta T., Iacumin L., Preziuso M., Parente E., Sorrentino E., Coppola R.. Tolerance of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus strains to stress factors encountered in food processing and in the gastro-intestinal tract. LWT - Food Sci. Technol. 2015;60(2, Part 1):721–728. doi: 10.1016/j.lwt.2014.10.022. DOI

Sawatari Y., Yokota A.. Diversity and Mechanisms of Alkali Tolerance in Lactobacilli. Appl. Environ. Microbiol. 2007;73(12):3909–3915. doi: 10.1128/AEM.02834-06. PubMed DOI PMC

Kramer B., Thielmann J., Hickisch A., Muranyi P., Wunderlich J., Hauser C.. Antimicrobial activity of hop extracts against foodborne pathogens for meat applications. J. Appl. Microbiol. 2015;118(3):648–657. doi: 10.1111/jam.12717. PubMed DOI

Ruhal R., Kataria R.. Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol. Res. 2021;251:126829. doi: 10.1016/j.micres.2021.126829. PubMed DOI

Rodriguez C., Ramlaoui D., Georgeos N., Gasca B., Leal C., Subils T., Tuttobene M. R., Sieira R., Salzameda N. T., Bonomo R. A., Raya R., Ramirez M. S.. Antimicrobial activity of the Lacticaseibacillus rhamnosus CRL 2244 and its impact on the phenotypic and transcriptional responses in carbapenem resistant Acinetobacter baumannii. Sci. Rep. 2023;13(1):14323. doi: 10.1038/s41598-023-41334-8. PubMed DOI PMC

Guan C., Zhang W., Su J., Li F., Chen D., Chen X., Huang Y., Gu R., Zhang C.. Antibacterial and antibiofilm potential of Lacticaseibacillus rhamnosus YT and its cell-surface extract. BMC Microbiol. 2023;23(1):12. doi: 10.1186/s12866-022-02751-3. PubMed DOI PMC

de Alcântara A. L. D. A., Bruzaroski S. R., Luiz L. L., de Souza C. H. B., Poli-Frederico R. C., Fagnani R., de Santana E. H. W.. Antimicrobial activity of Lactobacillus rhamnosus against Pseudomonas fluorescens and Pseudomonas putida from raw milk. J. Food Process. Preserv. 2019;43(9):e14082. doi: 10.1111/jfpp.14082. DOI

Ladha G., Jeevaratnam K.. A novel antibacterial compound produced by Lactobacillus plantarum LJR13 isolated from rumen liquor of goat effectively controls multi-drug resistant human pathogens. Microbiol. Res. 2020;241:126563. doi: 10.1016/j.micres.2020.126563. PubMed DOI

Halder D., Mandal M., Chatterjee S. S., Pal N. K., Mandal S.. Indigenous Probiotic Lactobacillus Isolates Presenting Antibiotic like Activity against Human Pathogenic Bacteria. Biomedicines. 2017;5:31. doi: 10.3390/biomedicines5020031. PubMed DOI PMC

Cazorla S. I., Maldonado-Galdeano C., Weill R., De Paula J., Perdigón G. D. V.. Oral Administration of Probiotics Increases Paneth Cells and Intestinal Antimicrobial Activity. Front. Microbiol. 2018;9:736. doi: 10.3389/fmicb.2018.00736. PubMed DOI PMC

Bashur C. A., Dahlgren L. A., Goldstein A. S.. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly­(d,l-lactic-co-glycolic acid) meshes. Biomaterials. 2006;27(33):5681–5688. doi: 10.1016/j.biomaterials.2006.07.005. PubMed DOI

Milleret V., Hefti T., Hall H., Vogel V., Eberli D.. Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation. Acta Biomaterialia. 2012;8(12):4349–4356. doi: 10.1016/j.actbio.2012.07.032. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...