Assessing the Impact of Polyamide Nanofibrous Material Areal Weight on Lacticaseibacillus rhamnosus Biofilm Formation and Resistance to Storage Conditions and Contamination
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41141786
PubMed Central
PMC12547549
DOI
10.1021/acsomega.5c01042
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Probiotic biofilms are considered the fourth most advanced generation of probiotics. To maximize the benefits of probiotic biofilms, suitable carriers ensuring bacterial viability during storage are being sought. The use of nanofibrous platforms is beginning to appear as one of the most promising approaches. We investigated the influence of three polyamide (PA) nanofibrous materials with different areal weights (5, 11, 27 g/m2) and the resulting morphological properties on the biofilm formation of Lacticaseibacillus rhamnosus ATCC 9595 and its tolerance to various conditions. PA promoted biofilm formation more than the reference material, polystyrene. PA's areal weight influenced the biofilm biomass amount, phenotype, and structure; PAs with a high areal weight promoted biofilm formation. Further, we examined the tolerance of matured biofilms on the PAs to various external conditions: (i) storage temperature (-20, 4, 21 °C), environment (aqueous/dry), and time (0-35 days), (ii) pH (2, 4, 6, 7, 8 and 10), and (iii) bacterial contamination by Staphylococcus aureus and Escherichia coli. Generally, PAs increased biofilm resistance, and the areal weight of the PA played a crucial role in it. The PA with the highest areal weight (27 g/m2) provided the highest long-term stability and tolerance of the biofilm and thus was confirmed to be the most suitable tested nanomaterial. The overall results suggest that the presented PAs could be suitable carriers of probiotic biofilm, enabling large-scale production. We also highlight the need for further research on the influence of nanomaterials' morphology on microbial interactions, possibly enabling target modification for a particular use.
Zobrazit více v PubMed
Hill C., Guarner F., Reid G., Gibson G. R., Merenstein D. J., Pot B., Morelli L., Canani R. B., Flint H. J., Salminen S., Calder P. C., Sanders M. E.. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014;11(8):506–514. doi: 10.1038/nrgastro.2014.66. PubMed DOI
Suez J., Zmora N., Segal E., Elinav E.. The pros, cons, and many unknowns of probiotics. Nat. Med. 2019;25(5):716–729. doi: 10.1038/s41591-019-0439-x. PubMed DOI
Oelschlaeger T. A.. Mechanisms of probiotic actions – A review. Int. J. Med. Microbiol. 2010;300(1):57–62. doi: 10.1016/j.ijmm.2009.08.005. PubMed DOI
Bianchi L., Laghi L., Correani V., Schifano E., Landi C., Uccelletti D., Mattei B.. A Combined Proteomics, Metabolomics and In Vivo Analysis Approach for the Characterization of Probiotics in Large-Scale Production. Biomolecules. 2020;10(1):157. doi: 10.3390/biom10010157. PubMed DOI PMC
Kosin B., Rakshit S.. Microbial and Processing Criteria for Production of Probiotics: A Review. Food Technol. Biotechnol. 2006;44(3):371–379.
Lencova S., Svarcova V., Stiborova H., Demnerova K., Jencova V., Hozdova K., Zdenkova K.. Bacterial Biofilms on Polyamide Nanofibers: Factors Influencing Biofilm Formation and Evaluation. ACS Appl. Mater. Interfaces. 2021;13(2):2277–2288. doi: 10.1021/acsami.0c19016. PubMed DOI
Rieu A., Aoudia N., Jego G., Chluba J., Yousfi N., Briandet R., Deschamps J., Gasquet B., Monedero V., Garrido C., Guzzo J.. The biofilm mode of life boosts the anti-inflammatory properties of Lactobacillus. Cell. Microbiol. 2014;16(12):1836–1853. doi: 10.1111/cmi.12331. PubMed DOI
Aoudia N., Rieu A., Briandet R., Deschamps J., Chluba J., Jego G., Garrido C., Guzzo J.. Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiol. 2016;53:51–59. doi: 10.1016/j.fm.2015.04.009. PubMed DOI
Shelby R. D., Janzow G. E., Mashburn-Warren L., Galley J., Tengberg N., Navarro J., Conces M., Bailey M. T., Goodman S. D., Besner G. E.. A novel probiotic therapeutic in a murine model of Clostridioides difficile colitis. Gut Microbes. 2020;12(1):1814119. doi: 10.1080/19490976.2020.1814119. PubMed DOI PMC
Heumann A., Assifaoui A., Da Silva Barreira D., Thomas C., Briandet R., Laurent J., Beney L., Lapaquette P., Guzzo J., Rieu A.. Intestinal release of biofilm-like microcolonies encased in calcium-pectinate beads increases probiotic properties of Lacticaseibacillus paracasei. npj Biofilms Microbiomes. 2020;6(1):44. doi: 10.1038/s41522-020-00159-3. PubMed DOI PMC
Hu M.-X., He F., Zhao Z.-S., Guo Y.-X., Ma X.-K., Tu C.-K., Teng H., Chen Z.-X., Yan H., Shao X.. Electrospun Nanofibrous Membranes Accelerate Biofilm Formation and Probiotic Enrichment: Enhanced Tolerances to pH and Antibiotics. ACS Appl. Mater. Interfaces. 2022;14(28):31601–31612. doi: 10.1021/acsami.2c04540. PubMed DOI
Dahlin R. L., Kasper F. K., Mikos A. G.. Polymeric Nanofibers in Tissue Engineering. Tissue Eng., Part B. 2011;17(5):349–364. doi: 10.1089/ten.teb.2011.0238. PubMed DOI PMC
Cui W., Zhou Y., Chang J.. Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci. Technol. Adv. Mater. 2010;11(1):014108. doi: 10.1088/1468-6996/11/1/014108. PubMed DOI PMC
Hu M.-X., Li J.-N., Guo Q., Zhu Y.-Q., Niu H.-M.. Probiotics Biofilm-Integrated Electrospun Nanofiber Membranes: A New Starter Culture for Fermented Milk Production. J. Agric. Food Chem. 2019;67(11):3198–3208. doi: 10.1021/acs.jafc.8b05024. PubMed DOI
Shi J., Li S. F., Feng K., Han S. Y., Hu T. G., Wu H.. Improving the Viability of Probiotics under Harsh Conditions by the Formation of Biofilm on Electrospun Nanofiber Mat. Foods. 2022;11(9):1203. doi: 10.3390/foods11091203. PubMed DOI PMC
Winnacker M.. Polyamides and their functionalization: recent concepts for their applications as biomaterials. Biomater. Sci. 2017;5(7):1230–1235. doi: 10.1039/C7BM00160F. PubMed DOI
Guibo Y., Qing Z., Yahong Z., Yin Y., Yumin Y.. The electrospun polyamide 6 nanofiber membranes used as high efficiency filter materials: Filtration potential, thermal treatment, and their continuous production. J. Appl. Polym. Sci. 2013;128(2):1061–1069. doi: 10.1002/app.38211. DOI
Matulevicius J., Kliucininkas L., Martuzevicius D., Krugly E., Tichonovas M., Baltrusaitis J.. Design and Characterization of Electrospun Polyamide Nanofiber Media for Air Filtration Applications. J. Nanomater. 2014;2014(1):859656. doi: 10.1155/2014/859656. DOI
Zagmignan A., Mendes Y. C., Mesquita G. P., Santos G., Silva L. D. S., de Souza Sales A. C., Castelo Branco S., Junior A. R. C., Bazán J. M. N., Alves E. R., Almeida B. L., Santos A. K. M., Firmo W., Silva M. R. C., Cantanhede Filho A. J., Miranda R. C. M., Silva L.. Short-Term Intake of Theobroma grandiflorum Juice Fermented with Lacticaseibacillus rhamnosus ATCC 9595 Amended the Outcome of Endotoxemia Induced by Lipopolysaccharide. Nutrients. 2023;15(4):1059. doi: 10.3390/nu15041059. PubMed DOI PMC
Lencova S., Zdenkova K., Jencova V., Demnerova K., Zemanova K., Kolackova R., Hozdova K., Stiborova H.. Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for Staphylococcus Aureus . Nanomaterials. 2021;11(2):480. doi: 10.3390/nano11020480. PubMed DOI PMC
Tamayo-Ramos J. A., Rumbo C., Caso F., Rinaldi A., Garroni S., Notargiacomo A., Romero-Santacreu L., Cuesta-López S.. Analysis of Polycaprolactone Microfibers as Biofilm Carriers for Biotechnologically Relevant Bacteria. ACS Appl. Mater. Interfaces. 2018;10(38):32773–32781. doi: 10.1021/acsami.8b07245. PubMed DOI
Kargar M., Wang J., Nain A. S., Behkam B.. Controlling bacterial adhesion to surfaces using topographical cues: a study of the interaction of Pseudomonas aeruginosa with nanofiber-textured surfaces. Soft Matter. 2012;8(40):10254–10259. doi: 10.1039/c2sm26368h. DOI
Abrigo M., Kingshott P., McArthur S. L.. Electrospun Polystyrene Fiber Diameter Influencing Bacterial Attachment, Proliferation, and Growth. ACS Appl. Mater. Interfaces. 2015;7(14):7644–7652. doi: 10.1021/acsami.5b00453. PubMed DOI
Lencova S., Stindlova M., Havlickova K., Jencova V., Peroutka V., Navratilova K., Zdenkova K., Stiborova H., Hauzerova S., Kostakova E. K., Jankovsky O., Kejzlar P., Lukas D., Demnerova K.. Influence of Fiber Diameter of Polycaprolactone Nanofibrous Materials on Biofilm Formation and Retention of Bacterial Cells. ACS Appl. Mater. Interfaces. 2024;16(20):25813–25824. doi: 10.1021/acsami.4c03642. PubMed DOI PMC
Lencova S., Zdenkova K., Jencova V., Demnerova K., Zemanova K., Kolackova R., Hozdova K., Stiborova H.. Benefits of Polyamide Nanofibrous Materials: Antibacterial Activity and Retention Ability for Staphylococcus Aureus . Nanomaterials. 2021;11(2):480. doi: 10.3390/nano11020480. PubMed DOI PMC
Flores-Rojas G. G., Gómez-Lazaro B., López-Saucedo F., Vera-Graziano R., Bucio E., Mendizábal E.. Electrospun Scaffolds for Tissue Engineering: A Review. Macromol. 2023;3:524–553. doi: 10.3390/macromol3030031. DOI
Flemming H.-C.. Biofouling and me: My Stockholm syndrome with biofilms. Water Res. 2020;173:115576. doi: 10.1016/j.watres.2020.115576. PubMed DOI
Karygianni L., Ren Z., Koo H., Thurnheer T.. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol. 2020;28(8):668–681. doi: 10.1016/j.tim.2020.03.016. PubMed DOI
Wagley S., Morcrette H., Kovacs-Simon A., Yang Z. R., Power A., Tennant R. K., Love J., Murray N., Titball R. W., Butler C. S.. Bacterial dormancy: A subpopulation of viable but non-culturable cells demonstrates better fitness for revival. PLoS Pathog. 2021;17(1):e1009194. doi: 10.1371/journal.ppat.1009194. PubMed DOI PMC
Ampatzoglou A., Schurr B., Deepika G., Baipong S., Charalampopoulos D.. Influence of fermentation on the acid tolerance and freeze drying survival of Lactobacillus rhamnosus GG. Biochem. Eng. J. 2010;52(1):65–70. doi: 10.1016/j.bej.2010.07.005. DOI
Tannock G. W.. A Special Fondness for Lactobacilli. Appl. Environ. Microbiol. 2004;70(6):3189–3194. doi: 10.1128/AEM.70.6.3189-3194.2004. PubMed DOI PMC
Corcoran B. M., Stanton C., Fitzgerald G. F., Ross R. P.. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 2005;71(6):3060–3067. doi: 10.1128/AEM.71.6.3060-3067.2005. PubMed DOI PMC
Cotter P. D., Hill C.. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH. Microbiol. Mol. Biol. Rev. 2003;67(3):429–453. doi: 10.1128/MMBR.67.3.429-453.2003. PubMed DOI PMC
Fortier L.-C., Tourdot-Maréchal R., Diviès C., Lee B. H., Guzzo J.. Induction of Oenococcus oeni H+-ATPase activity and mRNA transcription under acidic conditions. FEMS Microbiol. Lett. 2003;222(2):165–169. doi: 10.1016/S0378-1097(03)00299-4. PubMed DOI
Śliżewska K., Chlebicz-Wójcik A.. Growth Kinetics of Probiotic Lactobacillus Strains in the Alternative, Cost-Efficient Semi-Solid Fermentation Medium. Biology. 2020;9(12):423. doi: 10.3390/biology9120423. PubMed DOI PMC
Reale A., Di Renzo T., Rossi F., Zotta T., Iacumin L., Preziuso M., Parente E., Sorrentino E., Coppola R.. Tolerance of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus strains to stress factors encountered in food processing and in the gastro-intestinal tract. LWT - Food Sci. Technol. 2015;60(2, Part 1):721–728. doi: 10.1016/j.lwt.2014.10.022. DOI
Sawatari Y., Yokota A.. Diversity and Mechanisms of Alkali Tolerance in Lactobacilli. Appl. Environ. Microbiol. 2007;73(12):3909–3915. doi: 10.1128/AEM.02834-06. PubMed DOI PMC
Kramer B., Thielmann J., Hickisch A., Muranyi P., Wunderlich J., Hauser C.. Antimicrobial activity of hop extracts against foodborne pathogens for meat applications. J. Appl. Microbiol. 2015;118(3):648–657. doi: 10.1111/jam.12717. PubMed DOI
Ruhal R., Kataria R.. Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol. Res. 2021;251:126829. doi: 10.1016/j.micres.2021.126829. PubMed DOI
Rodriguez C., Ramlaoui D., Georgeos N., Gasca B., Leal C., Subils T., Tuttobene M. R., Sieira R., Salzameda N. T., Bonomo R. A., Raya R., Ramirez M. S.. Antimicrobial activity of the Lacticaseibacillus rhamnosus CRL 2244 and its impact on the phenotypic and transcriptional responses in carbapenem resistant Acinetobacter baumannii. Sci. Rep. 2023;13(1):14323. doi: 10.1038/s41598-023-41334-8. PubMed DOI PMC
Guan C., Zhang W., Su J., Li F., Chen D., Chen X., Huang Y., Gu R., Zhang C.. Antibacterial and antibiofilm potential of Lacticaseibacillus rhamnosus YT and its cell-surface extract. BMC Microbiol. 2023;23(1):12. doi: 10.1186/s12866-022-02751-3. PubMed DOI PMC
de Alcântara A. L. D. A., Bruzaroski S. R., Luiz L. L., de Souza C. H. B., Poli-Frederico R. C., Fagnani R., de Santana E. H. W.. Antimicrobial activity of Lactobacillus rhamnosus against Pseudomonas fluorescens and Pseudomonas putida from raw milk. J. Food Process. Preserv. 2019;43(9):e14082. doi: 10.1111/jfpp.14082. DOI
Ladha G., Jeevaratnam K.. A novel antibacterial compound produced by Lactobacillus plantarum LJR13 isolated from rumen liquor of goat effectively controls multi-drug resistant human pathogens. Microbiol. Res. 2020;241:126563. doi: 10.1016/j.micres.2020.126563. PubMed DOI
Halder D., Mandal M., Chatterjee S. S., Pal N. K., Mandal S.. Indigenous Probiotic Lactobacillus Isolates Presenting Antibiotic like Activity against Human Pathogenic Bacteria. Biomedicines. 2017;5:31. doi: 10.3390/biomedicines5020031. PubMed DOI PMC
Cazorla S. I., Maldonado-Galdeano C., Weill R., De Paula J., Perdigón G. D. V.. Oral Administration of Probiotics Increases Paneth Cells and Intestinal Antimicrobial Activity. Front. Microbiol. 2018;9:736. doi: 10.3389/fmicb.2018.00736. PubMed DOI PMC
Bashur C. A., Dahlgren L. A., Goldstein A. S.. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(d,l-lactic-co-glycolic acid) meshes. Biomaterials. 2006;27(33):5681–5688. doi: 10.1016/j.biomaterials.2006.07.005. PubMed DOI
Milleret V., Hefti T., Hall H., Vogel V., Eberli D.. Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation. Acta Biomaterialia. 2012;8(12):4349–4356. doi: 10.1016/j.actbio.2012.07.032. PubMed DOI