Recent developments in capillary and microchip electroseparations of peptides (2021-mid-2023)
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
20-03899S
Czech Science Foundation
RVO 61388963
Czech Academy of Sciences
PubMed
37670208
DOI
10.1002/elps.202300152
Knihovny.cz E-zdroje
- Klíčová slova
- capillary electrochromatography, capillary electrophoresis, peptides, proteins, review,
- MeSH
- aminokyseliny MeSH
- chromatografie MeSH
- elektroforéza kapilární * metody MeSH
- peptidy * analýza MeSH
- proteiny analýza MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- aminokyseliny MeSH
- peptidy * MeSH
- proteiny MeSH
This review article brings a comprehensive survey of developments and applications of high-performance capillary and microchip electromigration methods (zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, micropreparation, and physicochemical characterization of peptides in the period from 2021 up to ca. the middle of 2023. Progress in the study of electromigration properties of peptides and various aspects of their analysis, such as sample preparation, adsorption suppression, electroosmotic flow regulation, and detection, are presented. New developments in the particular capillary electromigration methods are demonstrated, and several types of their applications are reported. They cover qualitative and quantitative analysis of synthetic or isolated peptides and determination of peptides in complex biomatrices, peptide profiling of biofluids and tissues, and monitoring of chemical and enzymatic reactions and physicochemical changes of peptides. They include also amino acid and sequence analysis of peptides, peptide mapping of proteins, separation of stereoisomers of peptides, and their chiral analyses. In addition, micropreparative separations and physicochemical characterization of peptides and their interactions with other (bio)molecules by the above CE methods are described.
Zobrazit více v PubMed
Muttenthaler M, King GE, Adams DJ, Alewood PE. Trends in peptide drug discovery. Nat Rev Drug Discov. 2021;20:309-25.
Manniello MD, Moretta A, Salvia R, Scieuzo C, Lucchetti D, Vogel H, et al. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell Mol Life Sci. 2021;78:4259-82.
d'Orlye F, Trapiella-Alfonso L, Lescot C, Pinvidic M, Doan BT, Varenne A. Synthesis, characterization and evaluation of peptide nanostructures for biomedical applications. Molecules. 2021;26:4587.
Datta S, Roy A. Antimicrobial peptides as potential therapeutic agents: a review. Int J Peptide Res Therapeut. 2021;27:555-77.
Nguyen NV, Taverna M, Smadja C, Mai TD. Recent electrokinetic and microfluidic strategies for detection of amyloid beta peptide biomarkers: towards molecular diagnosis of Alzheimer's disease. Chem Rec. 2021;21:149-61.
Tailliar M, Schanstra JP, Dierckx T, Breuil B, Hanouna G, Charles N, et al. Urinary peptides as potential non-invasive biomarkers for lupus nephritis: results of the peptidu-LUP study. J Clin Med. 2021;10:1690.
Boschetti E, Zilberstein G, Righetti PG. Combinatorial peptides: a library that continuously probes low-abundance proteins. Electrophoresis. 2022;43:355-69.
Zhang W, Ramautar R. CE-MS for metabolomics: developments and applications in the period 2018-2020. Electrophoresis. 2021;42:381-401.
Mamani-Huanca M, Villasenor A, Gonzalez-Riano C, Lopez-Lopez A, Lopez-Gonzalvez A, Barbas C. Capillary electrophoresis mass spectrometry-based untargeted metabolomics to approach disease diagnosis. TrAC Trends Anal Chem. 2023;162:117049.
Zhang YY, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013;113:2343-94.
Miller RM, Smith LM. Overview and considerations in bottom-up proteomics. Analyst. 2022;148:475.
Vitorino R, Guedes S, da Costa JP, Kasicka V. Microfluidics for peptidomics, proteomics, and cell analysis. Nanomaterials. 2021;11:1118.
Stepanova S, Kasicka V. Recent developments and applications of capillary and microchip electrophoresis in proteomics and peptidomics (mid-2018-2022). J Sep Sci. 2023;46:e2300043.
Miksik I. Coupling of CE-MS for protein and peptide analysis. J Sep Sci. 2019;42:385-97.
Lian ZR, Wang N, Tian YW, Huang LH. Characterization of synthetic peptide therapeutics using liquid chromatography-mass spectrometry: challenges, solutions, pitfalls, and future perspectives. J Am Soc Mass Spectrom. 2021;32:1852-60.
Chen DY, McCool EN, Yang ZC, Shen XJ, Lubeckyj RA, Xu T, et al. Recent advances (2019-2021) of capillary electrophoresis-mass spectrometry for multilevel proteomics. Mass Spectrom Rev. 2021;42:617-42.
Hynek R, Michalus I, Cejnar P, Santrucek J, Seidlova S, Kuckova S, et al. In-bone protein digestion followed by LC-MS/MS peptide analysis as a new way towards the routine proteomic characterization of human maxillary and mandibular bone tissue in oral surgery. Electrophoresis. 2021;42:2552-62.
Michalus I, Nguyen TV, Viktorova J, Cejnar P, Santrucek J, Kuckova S, et al. Liquid chromatography-tandem mass spectrometry analysis of peptides separated from the insoluble matrix by in-sample tryptic protein digestion for rapid discrimination of various induced pathological states of human bone models in oral surgery. J Sep Sci. 2022;45:4388-96.
Stoll DR, Sylvester M, Euerby MR, Buckenmaier SMC, Petersson P. A strategy for assessing peak purity of pharmaceutical peptides in reversed-phase chromatography methods using two-dimensional liquid chromatography coupled to mass spectrometry. Part II: Development of second-dimension gradient conditions. J Chromatogr A. 2023;1693:463873.
Schrader M. Origins, technological development, and applications of peptidomics. Methods Mol Biol. 2018;1719:3-39.
Vitorino R, Choudhury M, Guedes S, Ferreira R, Thongboonkerd V, Sharma L, et al. Peptidomics and proteogenomics: background, challenges and future needs. Exp Rev Proteomics. 2021;18:643-59.
Stepanova S, Kasicka V. Peptidomics and capillary electrophoresis. In: Colnaghi Simionato AV, editor. Separation techniques applied to omics sciences: from principles to relevant applications. Cham: Springer; 2021. p. 87-104.
Foreman RE, George AL, Reimann F, Gribble FM, Kay RG. Peptidomics: a review of clinical applications and methodologies. J Proteome Res. 2021;20:3782-97.
Kasicka V. Capillary electrophoresis of peptides. Electrophoresis. 1999;20:3084-105.
Kasicka V. Recent advances in capillary electrophoresis of peptides. Electrophoresis. 2001;22:4139-62.
Kasicka V. Recent advances in capillary electrophoresis and capillary electrochromatography of peptides. Electrophoresis. 2003;24:4013-46.
Kasicka V. Recent developments in capillary electrophoresis and capillary electrochromatography of peptides. Electrophoresis. 2006;27:142-75.
Kasicka V. Recent developments in CE and CEC of peptides. Electrophoresis. 2008;29:179-206.
Kasicka V. Recent advances in CE and CEC of peptides (2007-2009). Electrophoresis. 2010;31:122-46.
Kasicka V. Recent developments in CE and CEC of peptides (2009-2011). Electrophoresis. 2012;33:48-73.
Kasicka V. Recent developments in capillary and microchip electroseparations of peptides (2011-2013). Electrophoresis. 2014;35:69-95.
Kasicka V. Recent developments in capillary and microchip electroseparations of peptides (2013-middle 2015). Electrophoresis. 2016;37:162-88.
Kasicka V. Recent developments in capillary and microchip electroseparations of peptides (2015-mid 2017). Electrophoresis. 2018;39:209-34.
Kasicka V. Recent developments in capillary and microchip electroseparations of peptides (2017-mid 2019). Electrophoresis. 2020;41:10-35.
Kasicka V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis. 2022;43:82-108.
Chen DY, Yang ZC, Shen XJ, Sun LL. Capillary zone electrophoresis-tandem mass spectrometry as an alternative to liquid chromatography-tandem mass spectrometry for top-down proteomics of histones. Anal Chem. 2021;93:4417-24.
Lenco J, Jadeja S, Naplekov DK, Krokhin OV, Khalikova MA, Chocholous P, et al. Reversed-phase liquid chromatography of peptides for bottom-up proteomics: a tutorial. J Proteome Res. 2022;21:2846-92.
Liu ZL, Xu MM, Zhang WQ, Miao XY, Wang PG, Li SW, et al. Recent development in hydrophilic interaction liquid chromatography stationary materials for glycopeptide analysis. Anal Methods. 2022;14:4437-48.
Gao ZT, Zhong WW. Recent (2018-2020) development in capillary electrophoresis. Anal Bioanal Chem. 2022;414:115-30.
Battat S, Weitz DA, Whitesides GM. An outlook on microfluidics: the promise and the challenge. Lab Chip. 2022;22:530-6.
Stepanova S, Kasicka V. Applications of capillary electromigration methods for separation and analysis of proteins (2017-mid 2021): a review. Anal Chim Acta. 2022;1209:339447.
Kasicka V. Peptide mapping of proteins by capillary electromigration methods. J Sep Sci. 2022;45:4245-79.
Colnaghi Simionato AV. (editor). Separation techniques applied to omics sciences: from principles to relevant applications. Cham: Springer; 2021.
Ramautar R, Chen DDY. Capillary electrophoresis-mass spectrometry (CE-MS) for proteomics and metabolomics: principles and applications. Weinheim: Wiley-VCH; 2022.
Stepanova S, Kasicka V. Analysis of peptides by capillary electromigration methods. In: Castro-Puyana M, Herrero M, Marina ML, editors. Capillary electrophoresis in food analysis. Singapore: Bentham Science Publishers; 2022. p. 109-46.
Stepanova S, Kasicka, V. CE-MS approaches for peptidomics. In: Ramautar R, Chen DDY, editors. Capillary electrophoresis-mass spectrometry (CE-MS) for proteomics and metabolomics: principles and applications. Weinheim: Wiley-VCH; 2022. p. 235-59.
Chen WR, McCool EN, Sun LL, Zang Y, Ning X, Liu XW. Evaluation of machine learning models for proteoform retention and migration time prediction in top-down mass spectrometry. J Proteome Res. 2022;21:1736-47.
Chen DY, Lubeckyj RA, Yang ZC, McCool EN, Shen XJ, Wang QJ, et al. Predicting electrophoretic mobility of proteoforms for large-scale top-down proteomics. Anal Chem. 2020;92:3503-7.
Cifuentes A, Poppe H. Behvior of peptides in capillary electrophoresis: effect of peptide charge, mass and structure. Electrophoresis. 1997;18:2362-76.
Solinova V, Kasicka V, Koval D, Hlavacek J. Separation and investigation of structure-mobility relationships of insect oostatic peptides by capillary zone electrophoresis. Electrophoresis. 2004;25:2299-308.
Petrov AP, Sherman LM, Camden JP, Dovichi NJ. Database of free solution mobilities for 276 metabolites. Talanta. 2020;209:120545.
Mamani-Huanca M, de la Fuente AG, Otero A, Gradillas A, Godzien J, Barbas C, et al. Enhancing confidence of metabolite annotation in capillary electrophoresis-mass spectrometry untargeted metabolomics with relative migration time and in-source fragmentation. J Chromatogr A. 2021;1635:461758.
Persat A, Chambers RD, Santiago JG. Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: Acid-base equilibria and pH buffers. Lab Chip. 2009;9:2437-53.
Persat A, Suss ME, Santiago JG. Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part II: Coupling between ion mobility, electrolysis, and acid-base equilibria. Lab Chip. 2009;9:2454-69.
Corradini D. Buffering agents and additives for the background electrolyte solutions used for peptide and protein capillary zone electrophoresis. TrAC Trends Anal Chem. 2023;164:117080.
Kasicka V, Prusik Z. Application of capillary isotachophoresis in peptide analysis. J Chromatogr. 1991;569:123-74.
Janini GM, Issaq HJ. Selection of buffers in capillary zone electrophoresis: application to peptide and protein analysis. Chromatographia. 2001;53:S18-26.
Scriba GKE, Psurek A. Separation of peptides by capillary electrophoresis. In: Schmitt-Kopplin P. (editor). Capillary Electrophoresis. Totowa, NJ: Humana Press; 2008. p. 483-506.
Righetti PG, Sebastiano R, Citterio A. Capillary electrophoresis and isoelectric focusing in peptide and protein analysis. Proteomics. 2013;13:325-40.
Kozlowski LP. Proteome-pI 20: proteome isoelectric point database update. Nucleic Acids Res. 2022;50:D1535-40.
Kozlowski LP. IPC 20: prediction of isoelectric point and pK(a) dissociation constants. Nucleic Acids Res. 2021;49:W285-92.
Pergande MR, Cologna SM. Isoelectric point separations of peptides and proteins. Proteomes. 2017;5:4-14.
Solinova V, Poitevin M, Koval D, Busnel JM, Peltre G, Kasicka V. Capillary electrophoresis in classical and carrier ampholytes-based background electrolytes applied to separation and characterization of gonadotropin-releasing hormones. J Chromatogr A. 2012;1267:231-8.
Solinova V, Kasicka V. Determination of acidity constants and ionic mobilities of polyprotic peptide hormones by CZE. Electrophoresis. 2013;34:2655-65.
Gas B. PeakMaster and Simul-Software tools for mastering electrophoresis. TrAC Trends Anal Chem. 2023;165:117134.
Avaro AS, Sun YX, Jiang KY, Bahga SS, Santiago JG. Web-based open-source tool for isotachophoresis. Anal Chem. 2021;93:15768-74.
Francois YN, Biacchi M, Gahoual R, Vezin A, Pansanel J. CEToolbox: specialized calculator for capillary electrophoresis users as an android application. Electrophoresis. 2021;42:1431-5.
John AS, Sidek MM, Thang LY, Sami S, Tey HY, See HH. Online sample preconcentration techniques in nonaqueous capillary and microchip electrophoresis. J Chromatogr A. 2021;1638:461868.
Thomas SL, Thacker JB, Schug KA, Marakova K. Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. J Sep Sci. 2021;44:211-46.
Varnavides G, Madern M, Anrather D, Hartl N, Reiter W, Hartl M. In Search of a universal method: a comparative survey of bottom-up proteomics sample preparation methods. J Proteome Res. 2022;21:2397-411.
Badawy MEI, El-Nouby MAM, Kimani PK, Lim LW, Rabea EI. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Anal Sci. 2022;38:1457-87.
Poole CF. Selectivity evaluation of extraction systems. J Chromatogr A. 2023;1695:463939.
Yu RB, Quirino JP. Pseudophase-aided in-line sample concentration for capillary electrophoresis. TrAC Trends Anal Chem. 2023;161:116914.
Jeong S, Hajba L, Guttman A, Seol J, Chung DS. In-line microextraction techniques to improve the sensitivity and selectivity of capillary electrophoresis using commercial instruments. TrAC Trends Anal Chem. 2023;163:117058.
Tuma P. Progress in on-line, at-line, and in-line coupling of sample treatment with capillary and microchip electrophoresis over the past 10 years: a review. Anal Chim Acta. 2023;1261:341249.
Zheng WM, Yang PY, Sun CY, Zhang Y. Comprehensive comparison of sample preparation workflows for proteomics. Mol Omics. 2022;18:555-67.
Wang MM, Chen ZY, Jing XF, Zhou H, Wang Y, Ye JN, et al. Tween 20-capped gold nanoparticles for selective extraction of free low-molecular-weight thiols in saliva followed by capillary electrophoresis with contactless conductivity detection. J Chromatogr B: Anal Technol Biomed Life Sci. 2021;1176:122756.
Irfan A, Feng WX, Liu KX, Habib K, Qu Q, Yang L. TiO2-modified fibrous core-shell mesoporous material to selectively enrich endogenous phosphopeptides with proteins exclusion prior to CE-MS analysis. Talanta. 2021;235:122737.
El Ouahabi O, Mancera-Arteu M, Pont L, Gimenez E, Sanz-Nebot V, Benavente F. On-line solid-phase extraction to enhance sensitivity in peptide biomarker analysis by microseparation techniques coupled to mass spectrometry: capillary liquid chromatography versus capillary electrophoresis. Microchem J. 2022;183:108089.
Morgenstern D, Wolf-Levy H, Tickotsky-Moskovitz N, Cooper I, Buchman AS, Bennett DA, et al. Optimized glycopeptide enrichment method-it is all about the sauce. Anal Chem. 2022;94:10308-13.
Mancera-Arteu M, Benavente F, Sanz-Nebot V, Gimenez E. Sensitive analysis of recombinant human erythropoietin glycopeptides by on-line phenylboronic acid solid-phase extraction capillary electrophoresis mass spectrometry. J Proteome Res. 2023;22:826-36.
Thevendran R, Citartan M. Assays to estimate the binding affinity of aptamers. Talanta. 2022;238:122971.
Guzman NA, Guzman DE, Blanc T. Advancements in portable instruments based on affinity-capture-migration and affinity-capture-separation for use in clinical testing and life science applications. J Chromatogr A. 2023;1704:464109.
Guzman NA, Guzman DE. Immunoaffinity capillary electrophoresis in the era of proteoforms, liquid biopsy and preventive medicine: a potential impact in the diagnosis and monitoring of disease progression. Biomolecules. 2021;11:1443.
Halvorsen TG, McKitterick N, Kish M, Reubsaet L. Affinity capture in bottom-up protein analysis-overview of current status of proteolytic peptide capture using antibodies and molecularly imprinted polymers. Anal Chim Acta. 2021;1182:338714.
Salim H, Pero-Gascon R, Gimenez E, Benavente F. On-line coupling of aptamer affinity solid-phase extraction and immobilized enzyme microreactor capillary electrophoresis-mass spectrometry for the sensitive targeted bottom-up analysis of protein biomarkers. Anal Chem. 2022;94:6948-56.
Slampova A, Mala Z, Gebauer P. Recent progress of sample stacking in capillary electrophoresis (2016-2018). Electrophoresis. 2019;40:40-54.
Kitagawa F, Soma Y. Recent applications of dynamic on-line sample preconcentration techniques in capillary electrophoresis. Chromatography. 2022;43:93-99.
Malak M, Ebrahim H, Sonbol H, Ali A, Aboulella Y, Hadad G, et al. Highly sensitive in-capillary derivatization and field amplified sample stacking to analyze narcotic drugs in human serum by capillary zone electrophoresis. Separations. 2023;10:58.
Purgat K, Koska I, Kubalczyk P. The use of single drop microextraction and field amplified sample injection for CZE determination of homocysteine thiolactone in urine. Molecules. 2021;26:5687.
Piestansky J, Cizmarova I, Stefanik O, Matuskova M, Horniakova A, Majerova P, et al. Capillary electrophoresis-mass spectrometry with multisegment injection and in-capillary preconcentration for high-throughput and sensitive determination of therapeutic decapeptide triptorelin in pharmaceutical and biological matrices. Biomedicines. 2021;9:1488.
Kitagawa F, Hayashi A, Nukatsuka I. LVSEP analysis of phosphopeptides in dynamically PVP-coated capillaries and microchannels. Chromatography. 2022;43:37-41.
DeLaney K, Jia DS, Iyer L, Yu Z, Choi SB, Marvar PJ, et al. Microanalysis of brain angiotensin peptides using ultrasensitive capillary electrophoresis trapped ion mobility mass spectrometry. Anal Chem. 2022;94:9018-25.
Otin J, Tran NT, Benoit A, Buisson C, Taverna M. Online large volume sample staking preconcentration and separation of enantiomeric GHRH analogs by capillary electrophoresis. Electrophoresis. 2023;44:807-17.
Tang J, Wu HM, Hu JJ, Yu JC, Zhang JL, Wang CL, et al. On a separation voltage polarity switching transient capillary isotachophoresis method for higher sample loading capacity and better separation performance. Analyst. 2021;146:124-31.
Mala Z, Gebauer P. Analytical isotachophoresis 1967-2022: from standard analytical technique to universal on-line concentration tool. TrAC Trends Anal Chem. 2023;158:116837.
Lian LM, Zang YP, Yang F, Liu EH, Yan JZ, Tong SQ, et al. Online preconcentration methodology that realizes over 2000-fold enhancement by integrating the free liquid membrane into electrokinetic supercharging in capillary electrophoresis for the determination of trace anionic analytes in complex samples. Microchem J. 2022;174:107033.
Chu C, Lian LM, Gao W, Zang YP, Zou YF, Lv YB, et al. An efficient matrix solid-phase dispersion extraction combined with online preconcentration by electrokinetic supercharging in capillary electrophoresis for the sensitive determination of two alkaloids in complicated samples matrix. Microchem J. 2022;178:107314.
Ivanov AV, Popov MA, Aleksandrin VV, Kozhevnikova LM, Moskovtsev AA, Kruglova MP, et al. Determination of glutathione in blood via capillary electrophoresis with pH-mediated stacking. Electrophoresis. 2022;43:1859-70.
Rye TK, Martinovic G, Eie LV, Hansen FA, Halvorsen TG, Pedersen-Bjergaard S. Electromembrane extraction of peptides using deep eutectic solvents as liquid membrane. Anal Chim Acta. 2021;1175:338717.
Li YL, Sun NR, Hu XF, Li Y, Deng CH. Recent advances in nanoporous materials as sample preparation techniques for peptidome research. TrAC Trends Anal Chem. 2019;120:115658.
Zhong HF, Li YM, Huang YY, Zhao R. Metal-organic frameworks as advanced materials for sample preparation of bioactive peptides. Anal Methods. 2021;13:862-73.
Martinez-Perez-Cejuela H, Benavente F, Simo-Alfonso EF, Herrero-Martinez JM. A hybrid nano-MOF/polymer material for trace analysis of fluoroquinolones in complex matrices at microscale by on-line solid-phase extraction capillary electrophoresis. Talanta. 2021;233:122529.
Itterheimova P, Dosedelova V, Kuban P. Use of metal nanoparticles for preconcentration and analysis of biological thiols. Electrophoresis. 2023;44:135-57.
Glatz Z. On-capillary derivatisation as an approach to enhancing sensitivity in capillary electrophoresis. Electrophoresis. 2015;36:744-63.
Kartsova LA., Moskvichev DO. In-capillary chiral derivatization of amino acids. J Anal Chem. 2022;77:618-24.
Gotti R, Pasquini B, Orlandini S, Furlanetto S. Recent applications of the derivatization techniques in capillary electrophoresis. J Pharm Biomed Anal Open. 2023;1:100003.
Du JL, Wu G, Chen QY, Yu CF, Xu GL, Liu AH, et al. Fingerprinting trimeric SARS-CoV-2 RBD by capillary isoelectric focusing with whole-column imaging detection. Anal Biochem. 2023;663:115034.
Esene JE, Boaks M, Bickham AV, Nordin GP, Woolley AT. 3D printed microfluidic device for automated, pressure-driven, valve-injected microchip electrophoresis of preterm birth biomarkers. Microchim Acta. 2022;189:204.
Hamidli N, Pajaziti B, Andrasi M, Nagy C, Gaspar A. Determination of human insulin and its six therapeutic analogues by capillary electrophoresis - mass spectrometry. J Chromatogr A. 2022;1678:463351.
Villemet L, Cuchet A, Desvignes C, Sanger-van de Griend C. Protein mapping of peanut extract with capillary electrophoresis. Electrophoresis. 2022;43:1027-34.
Logerot E, Perrin C, Ladner Y, Aubriet F, Carre V, Enjalbal C. Quantitating alfa-amidated peptide degradation by separative technologies and ultra-high resolution mass spectrometry. Talanta. 2023;253:124036.
Roca S, Leclercq L, Gonzalez P, Dhellemmes L, Boiteau L, Rydzek G, et al. Modifying last layer in polyelectrolyte multilayer coatings for capillary electrophoresis of proteins. J Chromatogr A. 2023;1692:463837.
Kwok T, Chan SL, Shi J, Zhou M, Schaefer A, Bo T, et al. Imaged capillary isoelectric focusing employing fluorocarbon and methylcellulose coated fused silica capillary for characterization of charge heterogeneity of protein biopharmaceuticals. Sep Sci Plus. 2023;6:2200160.
Wang LY, Li YY, Chen DZ, Chen DDY. Electrospray ionization stability and concentration sensitivity in capillary electrophoresis-mass spectrometry using a flow-through microvial interface. Electrophoresis. 2021;42:360-8.
Stutz H. Advances and applications of capillary electromigration methods in the analysis of therapeutic and diagnostic recombinant proteins - a review. J Pharm Biomed Anal. 2023;222:115089.
Roca S, Dhellemmes L, Leclercq L, Cottet H. Polyelectrolyte multilayers in capillary electrophoresis. ChemPlusChem. 2022;87:e202200028.
Konasova R, Butnariu M, Solinova V, Kasicka V, Koval D. Covalent cationic copolymer coatings allowing tunable electroosmotic flow for optimization of capillary electrophoretic separations. Anal Chim Acta. 2021;1178:338789.
Solinova V, Tuma P, Butnariu M, Kasicka V, Koval D. Covalent anionic copolymer coatings with tunable electroosmotic flow for optimization of capillary electrophoretic separations. Electrophoresis. 2022;43:1953-62.
Martinkova E, Krizek T, Kubickova A, Coufal P. Mobilization of electroosmotic flow markers in capillary zone electrophoresis. Electrophoresis. 2021;42:932-8.
Chen YL, Xia L, Xiao XH, Li GK. Enhanced capillary zone electrophoresis in cyclic olefin copolymer microchannels using the combination of dynamic and static coatings for rapid analysis of carnosine and niacinamide in cosmetics. J Sep Sci. 2022;45:2045-54.
Maryutina TA, Savonina EY, Fedotov PS, Smith RM, Siren H, Hibbert DB. Terminology of separation methods (IUPAC Recommendations 2017). Pure Appl Chem. 2018;90:181-231.
Bhimwal R, Rustandi RR, Payne A, Dawod M. Recent advances in capillary gel electrophoresis for the analysis of proteins. J Chromatogr A. 2022;1682:463453.
Hajba L, Jeong S, Chung DS, Guttman A. Capillary gel electrophoresis of proteins: historical overview and recent advances. TrAC Trends Anal Chem. 2023;162:117024.
Holland LA, Casto-Boggess LD. Gels in microscale electrophoresis. Annu Rev Anal Chem. 2023;16:161-79.
Guttman A, Hajba L. Capillary gel electrophoresis. Amsterdam: Elsevier; 2022.
Sarkozy D, Guttman A. Analysis of peptides and proteins by native and SDS capillary gel electrophoresis coupled to electrospray ionization mass spectrometry via a closed-circuit coaxial sheath flow reactor interface. Anal Chem. 2023;95:7082-6.
Delgado-Povedano MD, Lara FJ, Gamiz-Gracia L, Garcia-Campana AM. Non-aqueous capillary electrophoresis-time of flight mass spectrometry method to determine emerging mycotoxins. Talanta. 2023;253:123946.
de la Nieta LNL, Bernardo FJG, Penalvo GC, Flores JR. Solid phase extraction prior to non-aqueous capillary electrophoresis with ultraviolet detection as a valuable strategy for therapeutic drug monitoring of cabozantinib. Microchem J. 2022;181:107830.
Nyssen L, Fillet M, Cavalier E, Servais AC. Highly sensitive and selective separation of intact parathyroid hormone and variants by sheathless CE-ESI-MS/MS. Electrophoresis. 2019;40:1550-7.
Li HL, Guo C, Zhang QC, Bao LC, Zheng QF, Guo ZP, et al. A substantial increase of analytical throughput in capillary electrophoresis throughput by separation-interrupted sequential injections. Anal Methods. 2021;13:1995-2004.
Kumar R, Sarin D, Rathore AS. High-throughput capillary electrophoresis analysis of biopharmaceuticals utilizing sequential injections. Electrophoresis. 2023;44:767-74.
Mala Z, Gebauer P. Recent progress in analytical capillary isotachophoresis (2018-March 2022). J Chromatogr A. 2022;1677:463337.
Ramachandran A, Santiago JG. Isotachophoresis: theory and microfluidic applications. Chem Rev. 2022;122:12904-76.
Stepanova S, Kasicka V. Determination of impurities and counterions of pharmaceuticals by capillary electromigration methods. J Sep Sci. 2014;37:2039-55.
Zhu QF, Scriba GKE. Analysis of small molecule drugs, excipients and counter ions in pharmaceuticals by capillary electromigration methods - recent developments. J Pharm Biomed Anal. 2018;147:425-38.
Farmerie L, Rustandi RR, Loughney JW, Dawod M. Recent advances in isoelectric focusing of proteins and peptides. J Chromatogr A. 2021;1651:462274.
Wu JQ, McElroy W, Pawliszyn J, Heger CD. Imaged capillary isoelectric focusing: applications in the pharmaceutical industry and recent innovations of the technology. TrAC Trends Anal Chem. 2022;150:116567.
Zhang XX, Kwok T, Zhou MK, Du M, Li VC, Bo T, et al. Imaged capillary isoelectric focusing (icIEF) tandem high resolution mass spectrometry for charged heterogeneity of protein drugs in biopharmaceutical discovery. J Pharm Biomed Anal. 2023;224:115178.
Schlecht J, Moritz B, Kiessig S, Neususs C. Characterization of therapeutic mAb charge heterogeneity by iCIEF coupled to mass spectrometry (iCIEF-MS). Electrophoresis. 2023;44:540-8.
Kwok T, Zhou MK, Schaefer A, Bo T, Li V, Huang TM, et al. Fractionation and online mass spectrometry based on imaged capillary isoelectric focusing (icIEF) for characterizing charge heterogeneity of therapeutic antibody. Anal Methods. 2023;15:411-8.
Dusa F, Kubesova A, Salplachta J, Moravcova D. Capillary isoelectric focusing: the role of markers of isoelectric point and recent applications in the field. TrAC Trends Anal Chem. 2023;162:117018.
Xu T, Sun LL. A mini review on capillary isoelectric focusing-mass spectrometry for top-down proteomics. Front Chem. 2021;9:651757.
Wang Y, Adeoye DI, Ogunkunle EO, Wei IA, Filla RT, Roper MG. Affinity capillary electrophoresis: a critical review of the literature from 2018 to 2020. Anal Chem. 2021;93:295-310.
Sharmeen S, Kyei I, Hatch A, Hage DS. Analysis of drug interactions with serum proteins and related binding agents by affinity capillary electrophoresis: a review. Electrophoresis. 2022;43:2302-23.
Suh K, Kyei I, Hage DS. Approaches for the detection and analysis of antidrug antibodies to biopharmaceuticals: a review. J Sep Sci. 2022;45:2077-92.
Asmari M, Michalcova L, Ibrahim AE, Glatz Z, Wätzig H, El Deeb S. Studying molecular interactions via capillary electrophoresis and microscale thermophoresis: a review. Electrophoresis. 2023;44:1114-42.
Dubsky P, Ordogova M, Maly M, Riesova M. CEval: all-in-one software for data processing and statistical evaluations in affinity capillary electrophoresis. J Chromatogr A. 2016;1445:158-65.
Rudnev AV, Aleksenko SS, Semenova O, Hartinger CG, Timerbaev AR, Keppler BK. Determination of binding constants and stoichiometries for platinum anticancer drugs and serum transport proteins by capillary electrophoresis using the Hummel-Dreyer method. J Sep Sci. 2005;28:121-7.
Dvorak M, Svobodova J, Benes M, Gas B. Applicability and limitations of affinity capillary electrophoresis and vacancy affinity capillary electrophoresis methods for determination of complexation constants. Electrophoresis. 2013;34:761-7.
Mlcochova H, Ratih R, Michalcova L, Wätzig H, Glatz Z, Stein M. Comparison of mobility shift affinity capillary electrophoresis and capillary electrophoresis frontal analysis for binding constant determination between human serum albumin and small drugs. Electrophoresis. 2022;43:1724-34.
Mine M, Mizuguchi H, Takayanagi T. Kinetic analysis of the transphosphorylation with creatine kinase by pressure-assisted capillary electrophoresis/dynamic frontal analysis. Anal Bioanal Chem. 2021;413:1453-60.
Lounis FM, Chamieh J, Leclercq L, Gonzalez P, Rossi JC, Cottet H. Effect of dendrigraft generation on the interaction between anionic polyelectrolytes and dendrigraft poly(l-lysine). Polymers. 2018;10:45.
Nevidalova H, Michalcova L, Glatz Z. Capillary electrophoresis-based approaches for the study of affinity interactions combined with various sensitive and nontraditional detection techniques. Electrophoresis. 2019;40:625-42.
Miyabe K. Moment theory of affinity capillary electrophoresis for analysis of reaction kinetics of intermolecular interactions. J Chromatogr A. 2022;1684:463557.
Le ATH, Krylova SM, Krylov SN. Kinetic capillary electrophoresis in screening oligonucleotide libraries for protein binders. TrAC Trends Anal Chem. 2023;162:117061.
Gstottner C, Hook M, Christopeit T, Knaupp A, Schlothauer T, Reusch D, et al. Affinity capillary electrophoresis-mass spectrometry as a tool to unravel proteoform-specific antibody-receptor interactions. Anal Chem. 2021;93:15133-41.
Ansorge M, Dubsky P, Uselova K. Into the theory of the partial-filling affinity capillary electrophoresis and the determination of apparent stability constants of analyte-ligand complexes. Electrophoresis. 2018;39:742-51.
Solinova V, Zakova L, Jiracek J, Kasicka V. Pressure assisted partial filling affinity capillary electrophoresis employed for determination of binding constants of human insulin hexamer complexes with serotonin, dopamine, arginine, and phenol. Anal Chim Acta. 2019;1052:170-8.
Mitsuno E, Endo T, Hisamoto H, Sueyoshi K. Evaluation of the interactions between oligonucleotides and small molecules by partial filling-nonequilibrium affinity capillary electrophoresis. Anal Sci. 2022;38:851-9.
Miyabe K. Moment equations for partial filling capillary electrophoresis. Electrophoresis. 2022;43:559-70.
Davoine C, Pardo A, Pochet L, Fillet M. Fragment hit discovery and binding site characterization by indirect affinity capillary electrophoresis: application to factor XIIa. Anal Chem. 2021;93:14802-9.
El Deeb S, Silva CF, Nascimento CS, Hanafi RS, Borges KB. Chiral capillary electrokinetic chromatography: principle and applications, detection and identification, design of experiment, and exploration of chiral recognition using molecular modeling. Molecules. 2021;26:2841.
Zhang Y, Nsanzamahoro S, Wang CB, Wang WF, Yang JL. Screening of prolyl hydroxylase 2 inhibitors based on quantitative strategy of peptides. J Chromatogr A. 2022;1679:463411.
Miksik I. Capillary electrochromatography of proteins and peptides (2006-2015). J Sep Sci. 2017;40:251-71.
Wang M, Liu Y, Liu Y, Xia ZN. MOFs and PDA-supported immobilization of BSA in open tubular affinity capillary electrochromatography: prediction and study on drug-protein interactions. Talanta. 2022;237:122959.
Gao LD, Hu XF, Qin SL, Chu HT, Tang YM, Li X, et al. One-pot synthesis of a novel chiral Zr-based metal-organic framework for capillary electrochromatographic enantioseparation. Electrophoresis. 2022;43:1161-73.
Wang FL, Zhang YL, Wang GX, Qi SD, Lv WJ, Liu JJ, et al. Synthesis of a covalent organic framework with hydrazine linkages and its application in open-tubular capillary electrochromatography. J Chromatogr A. 2022;1661:462681.
Fanali S, Chankvetadze B. History, advancement, bottlenecks, and future of chiral capillary electrochromatography. J Chromatogr A. 2021;1637:461832.
Hu CJ, Li ZT, Hu Z, Li QY, Fu YY, Chen ZL. Synthesis of multifunctional crown ether covalent organic nanospheres as stationary phase for capillary electrochromatography. J Chromatogr A. 2022;1677:463323.
Ali F, Alothman ZA, Al-Shaalan NH. Mixed-mode open tubular column for peptide separations by capillary electrochromatography. J Sep Sci. 2021;44:2602-11.
Naithani V, Cheddah S, Yang KG, Xia ZH, Wang WW, Wang Y, et al. Preparation of open tubular capillary column covalently coated with polystyrene sulfonate with 4,4′-azobis(4-cyanopentanoyl chloride) as polymerization initiator for electrochromatographic separation of alkaloids, sulfonamides, and peptides. J Sep Sci. 2023;46:2200711.
Qi L, Qiao J. Advances in stimuli-responsive polymeric coatings for open-tubular capillary electrochromatography. J Chromatogr A. 2022;1670:462957.
Sun GL, Tang WY, Lu Y, Row KH. Growth of two-layer copolymer as the stationary phase with very high separation efficiency for separating peptides in capillary electrochromatography. Electrophoresis. 2021;42:2087-93.
Qin SL, Cui HS, Chu HT, Gao LD, Li X, Tang YM, et al. Preparation of a zeolite imidazole skeleton-silica hybrid monolithic column for amino acid analysis via capillary electrochromatography. Electrophoresis. 2022;43:1710-23.
Rajendiran V, El Rassi Z. Reversed-phase capillary electrochromatography of pre-column derivatized mono- and oligosaccharides with three different ultraviolet absorbing tags. J Chromatogr A. 2022;1671:463025.
Neequaye T, El Rassi Z. Poly(carboxyethyl acrylate-co-ethylene glycol dimethacrylate) precursor monolith with bonded (S)-(−)-1-(2-naphthyl) ethylamine ligands for use in chiral and achiral separations by capillary electrochromatography. J Chromatogr A. 2023;1688:463713.
Westermeier R. Looking at proteins from two dimensions: a review on five decades of 2D electrophoresis. Arch Physiol Biochem. 2014;120:168-72.
Pomastowski P, Buszewski B. Two-dimensional gel electrophoresis in the light of new developments. TrAC Trends Anal Chem. 2014;53:167-77.
König S. Differential vs comparative gel electrophoresis: new technology drives standardisation and quantification in protein two-dimensional gel electrophoresis. TrAC Trends Anal Chem. 2020;122:115731.
Kumar R, Shah RL, Ahmad S, Rathore AS. Harnessing the power of electrophoresis and chromatography: offline coupling of reverse phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry for analysis of host cell proteins in monoclonal antibody producing CHO cell line. Electrophoresis. 2021;42:735-41.
Kitagawa S. Development of novel analytical methods based on liquid chromatography and electrophoresis. Chromatography. 2023;44:1-9.
Giddings JC. Concepts and comparisons in multidimensional separation. J High Res Chromatogr Chromatogr Commun. 1987;10:319-23.
Ranjbar L, Foley JP, Breadmore MC. Multidimensional liquid-phase separations combining both chromatography and electrophoresis-a review. Anal Chim Acta. 2017;950:7-31.
Schlecht J, Jooss K, Moritz B, Kiessig S, Neususs C. Two-dimensional capillary zone electrophoresis-mass spectrometry: intact mAb charge variant separation followed by peptide level analysis using in-capillary digestion. Anal Chem. 2023;95:4059-66.
Quan ZL, Chen Y, Zhao XC, Yu SY, Li YR, Xu YQ, et al. Development of high-resolution multidimensional native protein microfluidic chip electrophoresis fingerprinting and its application in the quick analysis of unknown microorganisms. J Chromatogr A. 2022;1665:462797.
Pena-Pereira F, Costas-Mora I, Romero V, Lavilla I, Bendicho C. Advances in miniaturized UV-Vis spectrometric systems. TrAC Trends Anal Chem. 2011;30:1637-48.
Hartung S, Minkner R, Olabi M, Wätzig H. Performance of capillary electrophoresis instruments-state of the art and outlook. TrAC Trends Anal Chem. 2023;163:117056.
Solinova V, Sazelova P, Masova A, Jiracek J, Kasicka V. Application of capillary and free-flow zone electrophoresis for analysis and purification of antimicrobial beta-alanyl-tyrosine from hemolymph of fleshfly Neobellieria bullata. Molecules. 2021;26:5636.
Wu SO, Dovichi NJ. Capillary zone electrophoresis separation and laser-induced fluorescence detection of zeptomole quantities of fluorescein thiohydantoin derivatives of amino acids. Talanta. 1992;39:173-8.
Galievsky VA, Stasheuski AS, Krylov SN. Getting the best sensitivity from on-capillary fluorescence detection in capillary electrophoresis-a tutorial. Anal Chim Acta. 2016;935:58-81.
Thompson S, Pappas D. A fluorescence toolbox: a review of investigation of electrophoretic separations, process, and interfaces. Electrophoresis. 2019;40:606-15.
Zhu ZF, Lies M, Silzel J. Sodium dodecyl sulfate-capillary gel electrophoresis with native fluorescence detection for analysis of therapeutic proteins. J Pharm Biomed Anal. 2022;213:114689.
Couderc F, Ong-Meang V, Poinsot V. Capillary electrophoresis hyphenated with UV-native-laser induced fluorescence detection (CE/UV-native-LIF). Electrophoresis. 2017;38:135-49.
Ceribeli C, de Arruda HF, Costa LD. How coupled are capillary electrophoresis and mass spectrometry? Scientometrics. 2021;126:3841-51.
Della Posta S, Fanali C, Gallo V, Fanali S. Recent advances in the hyphenation of electromigration techniques with mass spectrometry. TrAC Trends Anal Chem. 2022;157:116800.
Lapizco-Encinas BH, Zhang YV, Gqamana PP, Lavicka J, Foret F. Capillary electrophoresis as a sample separation step to mass spectrometry analysis: a primer. TrAC Trends Anal Chem. 2023;164:117093.
Gosset-Erard C, Aubriet F, Leize-Wagner E, Francois YN, Chaimbault P. Hyphenation of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with separation methods: the art of compromises and the possible-a review. Talanta. 2023;257:124324.
Shah U, Patel A, Patel R, Patel M, Patel A, Kavad M, et al. Overview on capillary electrophoresis with mass spectrometry: application in peptide analysis and proteomics. Int J Pharm Chem Anal. 2021;8:6-15.
Seyfinejad B, Jouyban A. Capillary electrophoresis-mass spectrometry in pharmaceutical and biomedical analyses. J Pharm Biomed Anal. 2022;221:115059.
Schwenzer AK, Kruse L, Jooss K, Neususs C. Capillary electrophoresis-mass spectrometry for protein analyses under native conditions: current progress and perspectives. Proteomics. 2023;2023:e2300135.
Wu YY, Zhang WM, Zhao YY, Wang XY, Guo GS. Technology development trend of electrospray ionization mass spectrometry for single-cell proteomics. TrAC Trends Anal Chem. 2023;159:116913.
Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass-spectrometry of large biomolecules. Science. 1989;246:64-71.
Karas M, Bachmann D, Bahr U, Hillenkamp F. Matrix-assisted ultraviolet-laser desorption of nonvolatile compounds. Int J Mass Spectrom Ion Process. 1987;78:53-68.
Olivares JA, Nguyen NT, Yonker CR, Smith RD. On-line mass spectrometric detection for capillary zone electrophoresis. Anal Chem. 1987;59:1230-2.
Smith RD, Olivares JA, Nguyen NT, Udseth HR. Capillary zone electrophoresis-mass spectrometry using an electrospray ionization interface. Anal Chem. 1988;60:436-41.
Ng CCA, Zhou Y, Yao ZP. Algorithms for de-novo sequencing of peptides by tandem mass spectrometry: a review. Anal Chim Acta. 2023;1268:341330.
Schlecht J, Stolz A, Hofmann A, Gerstung L, Neususs C. nanoCEasy: an easy, flexible, and robust nanoflow sheath liquid capillary electrophoresis-mass spectrometry interface based on 3D printed parts. Anal Chem. 2021;93:14593-8.
Hocker O, Montealegre C, Neususs C. Characterization of a nanoflow sheath liquid interface and comparison to a sheath liquid and a sheathless porous-tip interface for CE-ESI-MS in positive and negative ionization. Anal Bioanal Chem. 2018;410:5265-75.
Glazyrin YE, Mironov GG, Kichkailo AS, Berezovski MV. Separation abilities of capillary electrophoresis coupled with ion mobility mass spectrometry for the discrete detection of sequence isomeric peptides. Separations. 2022;9:106.
Kuban P, Kuban P. Novel developments in capillary electrophoresis miniaturization, sampling, detection and portability: an overview of the last decade. TrAC Trends Anal Chem. 2023;159:116941.
Tuma P. Determination of amino acids by capillary and microchip electrophoresis with contactless conductivity detection-theory, instrumentation and applications. Talanta. 2021;224:121922.
Tuma P, Hlozek T, Kamisova J, Gojda J. Monitoring of circulating amino acids in patients with pancreatic cancer and cancer cachexia using capillary electrophoresis and contactless conductivity detection. Electrophoresis. 2021;42:1885-91.
Tuma P, Opekar F, Dlouhy P. Capillary and microchip electrophoresis with contactless conductivity detection for analysis of foodstuffs and beverages. Food Chem. 2022;375:131858.
Tuma P. Monitoring of biologically active substances in clinical samples by capillary and microchip electrophoresis with contactless conductivity detection: a review. Anal Chim Acta. 2022;1225:340161.
Costa BMD, Griveau S, d'Orlye F, Bedioui F, da Silva JAF, Varenne A. Microchip electrophoresis and electrochemical detection: a review on a growing synergistic implementation. Electrochim Acta. 2021;391:138928.
Nan P. Detection of diuretic doping by capillary electrophoresis and electro-chemical technology: a mini-review. Curr Pharm Anal. 2022;18:34-42.
Bohm D, Koall M, Matysik FM. Combining amperometry and mass spectrometry as a dual detection approach for capillary electrophoresis. Electrophoresis. 2023;44:492-500.
Zhao TJ, Lin HP, Li N, Shi HM, Kang WJ, Xu XD. Determination of folic acid by capillary zone electrophoresis with indirect chemiluminescence detection. RSC Adv. 2021;11:20063-9.
Sun SJ, Wei YF, Wang H, Tang LF, Deng BY. Determination of verapamil hydrochloride and norverapamil hydrochloride in rat plasma by capillary electrophoresis with end-column electrochemiluminescence detection and their pharmacokinetics study. J Chromatogr Sci. 2021;59:289-96.
Krait S, Salgado A, Peluso P, Malanga M, Sohajda T, Benkovics G, et al. Complexation of daclatasvir by single isomer methylated beta-cyclodextrins studied by capillary electrophoresis, NMR spectroscopy and mass spectrometry. Carbohydr Polym. 2021;273:118486.
Krait S, Salgado A, Malanga M, Sohajda T, Benkovics G, Szakaly PS, et al. Structural characterization of methyl-beta-cyclodextrins by high-performance liquid chromatography and nuclear magnetic resonance spectroscopy and effect of their isomeric composition on the capillary electrophoresis enantioseparation of daclatasvir. J Chromatogr A. 2022;1661:462675.
Hruzikova A, Cechova LM, Stepanova S, Tuckova L, Tichotova M, Ruzicka A, et al. A study of azopyrimidine photoswitches and their interactions with cyclodextrins: when the guest governs the type of accommodation at the host. Dyes Pigments. 2023;212:111099.
Reminek R, Foret F. Capillary electrophoretic methods for quality control analyses of pharmaceuticals: a review. Electrophoresis. 2021;42:19-37.
Krait S, Konjaria ML, Scriba GKE. Advances of capillary electrophoresis enantioseparations in pharmaceutical analysis (2017-2020). Electrophoresis. 2021;42:1709-25.
van der Burg D, Josefsson L, Emmer A, Sänger-van de Griend CE. Recent capillary electrophoresis applications for upstream and downstream biopharmaceutical process monitoring. TrAC Trends Anal Chem. 2023;160:116975.
Hjerten S. High-performance electrophoresis elimination of electroendosmosis and solute adsorption. J Chromatogr. 1985;347:191-8.
Liu B, Wang WT, Gao T, Huang L, Fan HH, Chen HX. Separation, identification and quantification of associated impurities in cobratide using sheathless CE-MS and CE-UV. Anal Methods. 2021;13:3845-51.
Zimina T, Sitkov N, Karasev V, Skorik Y, Kolobov A, Kolobov A. Design of peptide ligand for lactoferrin and study of its binding specificity. Chemosensors. 2023;11:162.
Kawai T. Recent advances in trace bioanalysis by capillary electrophoresis. Anal Sci. 2021;37:27-36.
Hruskova H, Voracova I, Reminek R, Foret F. Current applications of capillary electrophoresis-mass spectrometry for the analysis of biologically important analytes in urine (2017 to mid-2021): a review. J Sep Sci. 2022;45:305-24.
Mast DH, Liao HW, Romanova EV, Sweedler JV. Analysis of peptide stereochemistry in single cells by capillary electrophoresis-trapped ion mobility spectrometry mass spectrometry. Anal Chem. 2021;93:6205-13.
Johnson KR, Gao YF, Gregus M, Ivanov AR. On-capillary cell lysis enables top-down proteomic analysis of single mammalian cells by CE-MS/MS. Anal Chem. 2022;94:14358-67.
Cupp-Sutton KA, Fang ML, Wu S. Separation methods in single-cell proteomics: RPLC or CE? Int J Mass Spectrom. 2022;481:116920.
Saito R, Hirayama A, Akiba A, Kamei Y, Kato Y, Ikeda S, et al. Urinary metabolome analyses of patients with acute kidney injury using capillary electrophoresis-mass spectrometry. Metabolites. 2021;11:671.
Latosinska A, Siwy J, Faguer S, Beige J, Mischak H, Schanstra JP. Value of urine peptides in assessing kidney and cardiovascular disease. Proteomics Clin Appl. 2021;15:2000027.
Wendt R, Siwy J, He TL, Latosinska A, Wiech T, Zipfel PF, et al. Molecular mapping of urinary complement peptides in kidney diseases. Proteomes. 2021;9:49.
Frantzi M, Heidegger I, Roesch MC, Gomez-Gomez E, Steiner E, Vlahou A, et al. Validation of diagnostic nomograms based on CE-MS urinary biomarkers to detect clinically significant prostate cancer. World J Urol. 2022;40:2195-203.
Wendt R, Thijs L, Kalbitz S, Mischak H, Siwy J, Raad J, et al. Aurinary peptidomic profile predicts outcome in SARS-CoV-2-infected patients. eClinicalMedicine. 2021;36:100883.
Delvaux C, Dauvin M, Boulanger M, Quinton L, Mengin-Lecreulx D, Joris B, et al. Use of capillary zone electrophoresis coupled to electrospray mass spectrometry for the detection and absolute quantitation of peptidoglycan-derived peptides in bacterial cytoplasmic extracts. Anal Chem. 2021;93:2342-50.
Larder CE, Iskandar MM, Sabally K, Kubow S. Complementary and efficient methods for di- and tri-peptide analysis and amino acid quantification from simulated gastrointestinal digestion of collagen hydrolysate. LWT Food Sci Technol. 2022;155:112880.
Men X, Wu CX, Chen ML, Wang JH. Determination of glutathione in cells by capillary electrophoresis laser induced fluorescence. Chin J Chromatogr. 2023;41:87-93.
Omar M, Windhagen H, Krettek C, Ettinger M. Noninvasive diagnostic of periprosthetic joint infection by urinary peptide markers: a preliminary study. J Orthopaed Res. 2021;39:339-47.
Abril AG, Pazos M, Villa TG, Calo-Mata P, Barros-Velazquez J, Carrera M. Proteomics characterization of food-derived bioactive peptides with anti-allergic and anti-inflammatory properties. Nutrients. 2022;14:4400.
Valdes A, Alvarez-Rivera G, Socas-Rodriguez B, Herrero M, Cifuentes A. Capillary electromigration methods for food analysis and foodomics: advances and applications in the period February 2019-February 2021. Electrophoresis. 2022;43:37-56.
Rozenski J, Asfaw AA, Van Schepdael A. Overview of in-capillary enzymatic reactions using capillary electrophoresis. Electrophoresis. 2022;43:57-73.
Ryan KA, Bruening ML. Online protein digestion in membranes between capillary electrophoresis and mass spectrometry. Analyst. 2023;148:1611-9.
Virag D, Dalmadi-Kiss B, Vekey K, Drahos L, Klebovich I, Antal I, et al. Current trends in the analysis of post-translational modifications. Chromatographia. 2020;83:1-10.
Saade J, Biacchi M, Giorgetti J, Lechner A, Beck A, Leize-Wagner E, et al. Analysis of monoclonal antibody glycopeptides by capillary electrophoresis-mass spectrometry coupling (CE-MS). Methods Mol Biol. 2021;2271:97-106.
Shrivastava A, Joshi S, Guttman A, Rathore AS. N-Glycosylation of monoclonal antibody therapeutics: a comprehensive review on significance and characterization. Anal Chim Acta. 2022;1209:339828.
Moran AB, Dominguez-Vega E, Nouta J, Pongracz T, de Reijke TM, Wuhrer M, et al. Profiling the proteoforms of urinary prostate-specific antigen by capillary electrophoresis-mass spectrometry. J Proteomics. 2021;238:104148.
Zhang Y, Zhao M, Wang CB, Wang Y, Nsanzamahoro S, Zhu LL. Screening prolyl hydroxylase domain 2 inhibitory activity of traditional Chinese medicine by CZE-UV. Electrophoresis. 2022;43:1601-10.
Liu ZT, Wang CL, Wang X, Van Schepdael A. On-line screening of indoleamine 2,3-dioxygenase 1 inhibitors by partial filling capillary electrophoresis combined with rapid polarity switching. J Chromatogr A. 2021;1651:462305.
Li W, Cui XY, Chen ZL. Screening of lactate dehydrogenase inhibitor from bioactive compounds in natural products by electrophoretically mediated microanalysis. J Chromatogr A. 2021;1656:462554.
Li W, Zhang BF, Chen ZL. Screening carbonic anhydrase IX inhibitors in traditional Chinese medicine based on electrophoretically mediated microanalysis. Talanta. 2021;232:122444.
Dadouch M, Ladner Y, Bich C, Montels JM, Morel J, Bechara C. In-capillary (electrophoretic) digestion-reduction-separation: a smart tool for middle-up analysis of mAb. J Chromatogr A. 2021;1648:462213.
Dadouch M, Ladner Y, Bich C, Montels J, Morel J, Perrin C. Fast in-line bottom-up analysis of monoclonal antibodies: toward an electrophoretic fingerprinting approach. Electrophoresis. 2021;42:1229-37.
Nagy C, Szabo R, Gaspar A. Microfluidic immobilized enzymatic reactors for proteomic analyses-recent developments and trends (2017-2021). Micromachines. 2022;13:311.
Hong TT, Qiu L, Rui W, Li Y, Zheng RH, Guo QQ, et al. Capillary electrophoretic method for Staphylococcus aureus detection by using a novel antimicrobial peptide. Electrophoresis. 2021;42:1217-20.
Zhou SW, Cui PF, Sheng JY, Zhang XL, Jiang PJ, Ni XY, et al. A novel assay for the determination of PreScission protease by capillary electrophoresis. Biophys Chem. 2022;281:106696.
Stepanova S, Kasicka V. Capillary electrophoretic methods applied to the investigation of peptide complexes. J Sep Sci. 2015;38:2708-21.
Piestansky J, Barath P, Majerova P, Galba J, Mikus P, Kovacech B, et al. A simple and rapid LC-MS/MS and CE-MS/MS analytical strategy for the determination of therapeutic peptides in modern immunotherapeutics and biopharmaceutics. J Pharm Biomed Anal. 2020;189:113449.
Duroux C, Hagege A. CE-ICP-MS to probe A beta(1-42)/copper(II) interactions: a complementary tool to study amyloid aggregation in Alzheimer's disease. Metallomics. 2022;14:mfab075.
Ta HY, Collin F, Perquis L, Poinsot V, Ong-Meang V, Couderc F. Twenty years of amino acid determination using capillary electrophoresis: a review. Anal Chim Acta. 2021;1174:338233.
Yin XW, Adams E, Van Schepdael A. Overview of chromatographic and electrophoretic methods for the determination of branched-chain amino acids. J Sep Sci. 2023;46:2300213.
Shen XJ, Xu T, Hakkila B, Hare M, Wang QJ, Wang QY, et al. Capillary zone electrophoresis-electron-capture collision-induced dissociation on a quadrupole time-of-flight mass spectrometer for top-down characterization of intact proteins. J Am Soc Mass Spectrom. 2021;32:1361-9.
Armstrong DW. Analysis of d-amino acids: relevance in human disease. LCGC North America. 2022;40:356-60.
Toole EN, Dufresne C, Ray S, Schwann A, Cook K, Ivanov AR. Rapid highly-efficient digestion and peptide mapping of adeno-associated viruses. Anal Chem. 2021;93:10403-10.
Mavrogeorgis E, Mischak H, Latosinska A, Siwy J, Jankowski V, Jankowski J. Reproducibility evaluation of urinary peptide detection using CE-MS. Molecules. 2021;26:7260.
de Koster N, Clark CP, Kohler I. Past, present, and future developments in enantioselective analysis using capillary electromigration techniques. Electrophoresis. 2021;42:38-57.
Chankvetadze B. Application of enantioselective separation techniques to bioanalysis of chiral drugs and their metabolites. TrAC Trends Anal Chem. 2021;143:116332.
Shamsi SA, Akter F. Capillary electrophoresis mass spectrometry: developments and applications for enantioselective analysis from 2011-2020. Molecules. 2022;27:4126.
Qian HL, Xu ST, Yan XP. Recent advances in separation and analysis of chiral compounds. Anal Chem. 2023;95:304-18.
Zhang L, Tan QG, Fan JQ, Sun C, Luo YT, Liang RP, et al. Microfluidics for chiral separation of biomolecules. TrAC Trends Anal Chem. 2023;158:116842.
Morvan M, Miksik I. Recent advances in chiral analysis of proteins and peptides. Separations. 2021;8:112.
Peluso P, Chankvetadze B. Native and substituted cyclodextrins as chiral selectors for capillary electrophoresis enantioseparations: structures, features, application, and molecular modeling. Electrophoresis. 2021;42:1676-708.
Chankvetadze B, Scriba GKE. Cyclodextrins as chiral selectors in capillary electrophoresis: recent trends in mechanistic studies. TrAC Trends Anal Chem. 2023;160:116987.
Fejos I, Kalydi E, Kukk EL, Seggio M, Malanga M, Beni S. Single isomer N-heterocyclic cyclodextrin derivatives as chiral selectors in capillary electrophoresis. Molecules. 2021;26:5271.
Sazelova P, Solinova V, Schimperkova T, Jiracek J, Kasicka V. Chiral analysis of beta-alanyl-d,l-tyrosine and its derivatives and estimation of binding constants of their complexes with 2-hydroxypropyl-beta-cyclodextrin by capillary electrophoresis. J Sep Sci. 2022;45:3328-38.
Konjaria ML, Scriba GKE. Effects of amino acid-derived chiral ionic liquids on cyclodextrin-mediated capillary electrophoresis enantioseparations of dipeptides. J Chromatogr A. 2021;1652:462342.
Reyes CDG, Jiang PL, Donohoo K, Atashi M, Mechref YS. Glycomics and glycoproteomics: approaches to address isomeric separation of glycans and glycopeptides. J Sep Sci. 2021;44:403-25.
Scriba GKE. Chiral recognition in separation sciences Part II: Macrocyclic glycopeptide, donor-acceptor, ion-exchange, ligand-exchange and micellar selectors. TrAC Trends Anal Chem. 2019;119:115628.
Xing J, Wang F, Cong HL, Wang S, Shen YQ, Yu B. Analysis of proteins and chiral drugs based on vancomycin covalent capillary electrophoretic coating. Analyst. 2021;146:1320-5.
Kasicka V. From micro to macro: conversion of capillary electrophoretic separations of biomolecules and bioparticles to preparative free-flow electrophoresis scale. Electrophoresis. 2009;30:S40-52.
Pes O, Preisler J. Off-line coupling of microcolumn separations to desorption mass spectrometry. J Chromatogr A. 2010;1217:3966-77.
Weaver SD, Schuster-Little N, Whelan RJ. Preparative capillary electrophoresis (CE) fractionation of protein digests improves protein and peptide identification in bottom-up proteomics. Anal Methods. 2022;14:1103-10.
DeLaney K, Li LJ. Capillary electrophoresis coupled to MALDI mass spectrometry imaging with large volume sample stacking injection for improved coverage of C borealis neuropeptidome. Analyst. 2020;145:61-69.
Zhou XM, Song WR, Novotny MV, Jacobson SC. Fractionation and characterization of sialyl linkage isomers of serum N-glycans by CE-MS. J Sep Sci. 2022;45:3348-61.
Kasicka V, Prusik Z, Sazelova P, Jiracek J, Barth T. Theory of the correlation between capillary and free-flow zone electrophoresis and its use for the conversion of analytical capillary separations to continuous free-flow preparative processes-application to analysis and preparation of fragments of insulin. J Chromatogr A. 1998;796:211-20.
Kasicka V, Prusik Z, Pospisek J. Conversion of capillary zone electrophoresis to free-flow zone electrophoresis using a simple model of their correlation-application to synthetic enkephalin-type peptide analysis and preparation. J Chromatogr. 1992;608:13-22.
Stastna M. Continuous flow electrophoretic separation-recent developments and applications to biological sample analysis. Electrophoresis. 2020;41:36-55.
Doria S, Yost J, Gagnon Z. Free-flow biomolecular concentration and separation of proteins and nucleic acids using teichophoresis. Talanta. 2023;255:124198.
Lee Y, Kwon JS. Microfluidic free-flow electrophoresis: a promising tool for protein purification and analysis in proteomics. J Ind Eng Chem. 2022;109:79-99.
Stepanova S, Kasicka V. Application of capillary electromigration methods for physicochemical measurements. In: CF Poole. editor. Capillary electromigration separation methods. Amsterdam: Elsevier; 2018; p. 547-91.
Dubsky P, Dvorak M, Ansorge M. Affinity capillary electrophoresis: the theory of electromigration. Anal Bioanal Chem. 2016;408:8623-41.
Duroux C, Hagege A. Interactions between copper(II) and beta-amyloid peptide using capillary electrophoresis-ICP-MS: Kd measurements at the nanogram scale. Anal Bioanal Chem. 2022;414:5347-55.
Miyabe K, Inaba S, Umeda M. A study on attempt for determination of permeation kinetics of coumarin at lipid bilayer of liposomes by using capillary electrophoresis with moment analysis theory. J Chromatogr A. 2023;1687:463691.
Mine M, Mizuguchi H, Takayanagi T. Kinetic analyses of two-steps oxidation from l-tyrosine to l-dopaquinone with tyrosinase by capillary electrophoresis/dynamic frontal analysis. Anal Biochem. 2022;655:114856.