Use of metal nanoparticles for preconcentration and analysis of biological thiols
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
35892259
DOI
10.1002/elps.202200142
Knihovny.cz E-zdroje
- Klíčová slova
- biological thiols, electrochemical methods, nanoparticles, optical methods, separation methods,
- MeSH
- kovové nanočástice * chemie MeSH
- lidé MeSH
- povrchová plasmonová rezonance MeSH
- sulfhydrylové sloučeniny * chemie MeSH
- zlato chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- sulfhydrylové sloučeniny * MeSH
- zlato MeSH
Metal nanoparticles (NPs) exhibit several unique physicochemical properties, including redox activity, surface plasmon resonance, ability to quench fluorescence, biocompatibility, or a high surface-to-volume ratio. They are being increasingly used in analysis and preconcentration of thiol containing compounds, because they are able to spontaneously form a stable Au/Ag/Cu-S dative bond. They thus find wide application in environmental and particularly in medical science, especially in the analysis of biological thiols, the endogenous compounds that play a significant role in many biological systems. In this review article, we provide an overview of various types of NPs that have been applied in analysis and preconcentration of biological thiols, mainly in human biological fluids. We first discuss shortly the types of NPs and their synthesis, properties, and their ability to interact with thiol compounds. Then we outline the sample preconcentration and analysis methods that were used for this purpose with special emphasis on optical, electrochemical, and separation techniques.
Zobrazit více v PubMed
Quaresma P, Soares L, Contar L, Miranda A, Osório IA, Carvalho P, et al. Green photocatalytic synthesis of stable Au and Ag nanoparticles. Green Chem. 2009;11:1889-93.
Cao H, Chen Z, Zheng H, Huang Y. Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging. Biosens Bioelectron. 2014;62:189-95.
Deng H, Li X, Peng Q, Wang X, Chen J, Li Y. Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem. 2005;117:2842-5.
Toyo'oka T. Recent advances in separation and detection methods for thiol compounds in biological samples. J Chromatogr B: Anal Technol Biomed Life Sci. 2009;877:3318-30.
Lačná J, Foret F, Kubáň P. Capillary electrophoresis in the analysis of biologically important thiols. Electrophoresis. 2017;38:203-22.
Kaur N, Chopra S, Singh G, Raj P, Bhasin A, Sahoo SK, et al. Chemosensors for biogenic amines and biothiols. J Mater Chem B. 2018;6:4872-902.
Isokawa M, Kanamori T, Funatsu T, Tsunoda M. Analytical methods involving separation techniques for determination of low-molecular-weight biothiols in human plasma and blood. J Chromatogr B: Anal Technol Biomed Life Sci. 2014;964:103-15.
Monostori P, Wittmann G, Karg E, Túri S. Determination of glutathione and glutathione disulfide in biological samples: an in-depth review. J Chromatogr B: Anal Technol Biomed Life Sci. 2009;877:3331-46.
Boles MA, Ling D, Hyeon T, Talapin DV. The surface science of nanocrystals. Nat Mater. 2016;15:141-53.
Hong R, Fernández JM, Nakade H, Arvizo R, Emrick T, Rotello VM. In situ observation of place exchange reactions of gold nanoparticles. Correlation of monolayer structure and stability. Chem Commun. 2006;22:2347-9.
Wei L, Song Y, Liu P, Kang X. Polystyrene nanofibers capped with copper nanoparticles for selective extraction of glutathione prior to its determination by HPLC. Microchim Acta. 2018;185:321.
Link S, El-Sayed MA. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem. 2000;19:409-53.
Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev. 2012;112:2739-79.
Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9:385-406.
Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG. Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol. 2019;53:101174.
Xu L, Wang Y-Y, Huang J, Chen C-Y, Wang Z-X, Xie H. Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics. 2020;10:8996-9031.
Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech. 2014;4:121-6.
Zhang Y, Shen H-Y, Hai X, Chen X-W, Wang J-H. Polyhedral oligomeric silsesquioxane polymer-caged silver nanoparticle as a smart colorimetric probe for the detection of hydrogen sulfide. Anal Chem. 2017;89:1346-52.
Jin J, Ouyang X, Li J, Jiang J, Wang H, Wang Y, et al. DNA template-synthesized silver nanoparticles: a new platform for high-performance fluorescent biosensing of biothiols. Sci China Chem. 2011;54:1266.
Gui R, Wang Y, Sun J. Protein-stabilized fluorescent nanocrystals consisting of a gold core and a silver shell for detecting the total amount of cysteine and homocysteine. Microchim Acta. 2014;181:1231-8.
Li C, Li D, Wan G, Xu J, Hou W. Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: temperature and pH controls. Nanoscale Res Lett. 2011;6:440.
Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B. 2006;110:15700-7.
Bernardo-Boongaling VRR, Serrano N, García-Guzmán JJ, Palacios-Santander JM, Díaz-Cruz JM. Screen-printed electrodes modified with green-synthesized gold nanoparticles for the electrochemical determination of aminothiols. J Electroanal Chem. 2019;847:113184.
Wang Z, Tan B, Hussain I, Schaeffer N, Wyatt MF, Brust M, et al. Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water. Langmuir. 2007;23:885-95.
Thota R, Ganesh V. Simple and facile preparation of silver-polydopamine (Ag-PDA) core-shell nanoparticles for selective electrochemical detection of cysteine. RSC Adv. 2016;6:49578-87.
Oszwałdowski S, Zawistowska-Gibuła K, Roberts KP. Capillary electrophoretic separation of nanoparticles. Anal Bioanal Chem. 2011;399:2831-42.
Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55-75.
Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241:20-2.
Ojea-Jiménez I, Bastús NG, Puntes V. Influence of the sequence of the reagents addition in the citrate-mediated synthesis of gold nanoparticles. J Phys Chem C. 2011;115:15752-7.
Ji X, Song X, Li J, Bai Y, Yang W, Peng X. Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc. 2007;129:13939-48.
Majzik A, Patakfalvi R, Hornok V, Dékány I. Growing and stability of gold nanoparticles and their functionalization by cysteine. Gold Bull. 2009;42:113-23.
Volkert AA, Subramaniam V, Haes AJ. Implications of citrate concentration during the seeded growth synthesis of gold nanoparticles. Chem Commun. 2011;47:478-80.
Martin MN, Basham JI, Chando P, Eah S-K. Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly. Langmuir. 2010;26:7410-7.
Sau TK, Murphy CJ. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc. 2004;126:8648-9.
Zhang Y, Xu F, Sun Y, Guo C, Cui K, Shi Y, et al. Seed-mediated synthesis of au nanocages and their electrocatalytic activity towards glucose oxidation. Chem Eur J. 2010;16:9248-56.
Zhao P, Li N, Astruc D. State of the art in gold nanoparticle synthesis. Coord Chem Rev. 2013;257:638-65.
Zhang JZ, Noguez C. Plasmonic optical properties and applications of metal nanostructures. Plasmonics. 2008;3:127-50.
Kim Y, Johnson RC, Hupp JT. Gold nanoparticle-based sensing of “Spectroscopically Silent” heavy metal ions. Nano Lett. 2001;1:165-7.
Shi R, Liu X-J, Ying Y. Glutathione-capped gold nanoparticles-based photoacoustic sensor for label-free detection of lead ions. J Appl Spectrosc. 2017;84:401-6.
Schofield CL, Haines AH, Field RA, Russell DA. Silver and gold glyconanoparticles for colorimetric bioassays. Langmuir. 2006;22:6707-11.
Shen C-C, Tseng W-L, Hsieh M-M. Selective extraction of thiol-containing peptides in seawater using Tween 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence. J Chromatogr A. 2012;1220:162-8.
Yu C-J, Lin C-Y, Liu C-H, Cheng T-L, Tseng W-L. Synthesis of poly(diallyldimethylammonium chloride)-coated Fe3O4 nanoparticles for colorimetric sensing of glucose and selective extraction of thiol. Biosens Bioelectron. 2010;26:913-7.
Neiman B, Grushka E, Lev O. Use of gold nanoparticles to enhance capillary electrophoresis. Anal Chem. 2001;73:5220-7.
Ivanov MR, Bednar HR, Haes AJ. Investigations of the mechanism of gold nanoparticle stability and surface functionalization in capillary electrophoresis. ACS Nano. 2009;3:386-94.
Liang R-P, Meng X-Y, Liu C-M, Qiu J-D. PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids. Electrophoresis. 2011;32:3331-40.
Grela DA, Zannoni V, Vizioli NM. Studying the interaction between peptides and polymeric nanoparticles used as pseudostationary phase in capillary electrochromatography. Microchem J. 2017;130:153-6.
Visaria RK, Griffin RJ, Williams BW, Ebbini ES, Paciotti GF, Song CW, et al. Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-α delivery. Mol Cancer Ther. 2006;5:1014-20.
Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4:3974-83.
Zielińska A, Skwarek E, Zaleska A, Gazda M, Hupka J. Preparation of silver nanoparticles with controlled particle size. Procedia Chem. 2009;1:1560-6.
Steinigeweg D, Schlücker S. Monodispersity and size control in the synthesis of 20-100 nm quasi-spherical silver nanoparticles by citrate and ascorbic acid reduction in glycerol-water mixtures. Chem Commun. 2012;48:8682-4.
Yin Y, Li Z-Y, Zhong Z, Gates B, Xia Y, Venkateswaran S. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J Mater Chem. 2002;12:522-7.
Li X, Odoom-Wubah T, Chen H, Jing X, Zheng B, Huang J. Biosynthesis of silver nanoparticles through tandem hydrolysis of silver sulfate and cellulose under hydrothermal conditions. J Chem Technol Biotechnol. 2013;89:1817-24.
Zhou Y, Yu SH, Wang CY, Li XG, Zhu YR, Chen ZY. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Adv Mater. 1999;11:850-2.
Ma H, Yin B, Wang S, Jiao Y, Pan W, Huang S, et al. Synthesis of silver and gold nanoparticles by a novel electrochemical method. ChemPhysChem. 2004;5:68-75.
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275:177-82.
Xiang D, Chen Q, Pang L, Zheng C. Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. J Virol Methods. 2011;178:137-42.
Lin J, Huang Z, Wu H, Zhou W, Jin P, Wei P, et al. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy. 2014;10:2006-20.
Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, et al. Silver nanoparticles: influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Lett Appl Microbiol. 2012;54:383-91.
Sun Z, Li S, Jiang Y, Qiao Y, Zhang L, Xu L, et al. Silver nanoclusters with specific ion recognition modulated by ligand passivation toward fluorimetric and colorimetric copper analysis and biological imaging. Sci Rep. 2016;6:20553.
Ma Y, Li W, Cho EC, Li Z, Yu T, Zeng J, et al. Au@Ag core−shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano. 2010;4:6725-34.
Sasikumar T, Ilanchelian M. A simple assay for direct visual and colorimetric sensing application of cysteamine using Au@Ag core-shell nanoparticles. Opt Mater. 2020;109:110237.
García I, Gallo J, Genicio N, Padro D, Penadés S. Magnetic glyconanoparticles as a versatile platform for selective immunolabeling and imaging of cells. Bioconjugate Chem. 2011;22:264-73.
Heli H, Majdi S, Sattarahmady N. Ultrasensitive sensing of N-acetyl-l-cysteine using an electrocatalytic transducer of nanoparticles of iron(III) oxide core-cobalt hexacyanoferrate shell. Sens Actuators B. 2010;145:185-93.
Chen L, Li J, Wang S, Lu W, Wu A, Choo J, et al. FITC functionalized magnetic core-shell Fe3O4/Ag hybrid nanoparticle for selective determination of molecular biothiols. Sens Actuators B. 2014;193:857-63.
Borkow G, Zatcoff RC, Gabbay J. Reducing the risk of skin pathologies in diabetics by using copper impregnated socks. Med Hypotheses. 2009;73:883-6.
Borkow G, Gabbay J, Dardik R, Eidelman AI, Lavie Y, Grunfeld Y, et al. Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings. Wound Repair Regen. 2010;18:266-75.
Wang H-B, Zhang H-D, Chen Y, Ou L-J, Liu Y-M. Poly(thymine)-templated fluorescent copper nanoparticles for label-free detection of N-acetylcysteine in pharmaceutical samples. Anal Methods. 2015;7:6372-7.
Ahmed KBA, Sengan M, Kumar PS, Veerappan A. Highly selective colorimetric cysteine sensor based on the formation of cysteine layer on copper nanoparticles. Sens Actuators B. 2016;233:431-7.
Cao X-N, Li J-H, Xu H-H, Lin L, Xian Y-Z, Yamamoto K, et al. Platinum particles-modified electrode for HPLC with pulsed amperometric detection of thiols in rat striatum. Biomed Chromatogr. 2004;18:564-9.
Arabali V, Karimi-Maleh H. Electrochemical determination of cysteamine in the presence of guanine and adenine using a carbon paste electrode modified with N-(4-hydroxyphenyl)-3,5-dinitrobenzamide and magnesium oxide nanoparticles. Anal Methods. 2016;8:5604-10.
Jang G, Lee TS. Conjugated polymer-hybridized silica nanoparticle as a fluorescent sensor for cysteine. Polym Bull. 2016;73:2447-56.
Yao C, Wang J, Zheng A, Wu L, Zhang X, Liu X. A fluorescence sensing platform with the MnO2 nanosheets as an effective oxidant for glutathione detection. Sens Actuators B. 2017;252:30-6.
Bai Y-H, Xu J-J, Chen H-Y. Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes. Biosens Bioelectron. 2009;24:2985-90.
Sen C, Packer L, Hänninen O. Handbook of oxidants and antioxidants in exercise. Amsterdam: Elsevier; 2000.
Mishanina TV, Libiad M, Banerjee R. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol. 2015;11:457-64.
Rubino FM. Toxicity of Glutathione-binding metals: a review of targets and mechanisms. Toxics. 2015;3:20-62.
Packer L, editor. Biothiols: thiols in signal transduction and gene regulation. Part B: Glutathione and thioredoxin. San Diego: Academic Press, 1995.
Parkhitko AA, Jouandin P, Mohr SE, Perrimon N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell. 2019;18:e13034.
Sbodio JI, Snyder SH, Paul BD. Regulators of the transsulfuration pathway. Br J Pharmacol. 2019;176:583-93.
Rasmussen K, Møller J. Total homocysteine measurement in clinical practice. Ann Clin Biochem. 2000;37:627-48.
Nilsson K, Gustafson L, Hultberg B. Elevated plasma homocysteine level is not primarily related to Alzheimer's disease. Dement Geriatr Cogn Disord. 2012;34:121-7.
Rodriguez-Oroz MC, Lage PM, Sanchez-Mut J, Lamet I, Pagonabarraga J, Toledo JB, et al. Homocysteine and cognitive impairment in Parkinson's disease: a biochemical, neuroimaging, and genetic study. Mov Disord. 2009;24:1437-44.
Go Y-M, Jones DP. Cysteine/cystine redox signaling in cardiovascular disease. Free Radic Biol Med. 2011;50:495-509.
Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med. 2009;30:1-12.
Polonikov A. Endogenous deficiency of glutathione as the most likely cause of serious manifestations and death in COVID-19 patients. ACS Infect Dis. 2020;6:1558-62.
Uhlig S, Wendel A. The physiological consequences of glutathione variations. Life Sci. 1992;51:1083-94.
Pincemail J, Cavalier E, Charlier C, Cheramy-Bien J-P, Brevers E, Courtois A, et al. Oxidative stress status in COVID-19 patients hospitalized in intensive care unit for severe pneumonia. A pilot study. Antioxidants 2021;10:257.
Hammons AL, Summers CM, Woodside JV, McNulty H, Strain JJ, Young IS, et al. Folate/homocysteine phenotypes and MTHFR 677C>T genotypes are associated with serum levels of monocyte chemoattractant protein-1. Clin Immunol. 2009;133:132-7.
Shi Z, Puyo CA. N-Acetylcysteine to combat COVID-19: an evidence review. Ther Clin Risk Manag. 2020;16:1047-55.
McCaughan B, Kay G, Knott RM, Cairns D. A potential new prodrug for the treatment of cystinosis: design, synthesis and in-vitro evaluation. Bioorg Med Chem Lett. 2008;18:1716-9.
Jung YL, Park JH, Kim MI, Park HG. Label-free colorimetric detection of biological thiols based on target-triggered inhibition of photoinduced formation of AuNPs. Nanotechnology. 2015;27:055501.
Kostara A, Tsogas GZ, Vlessidis AG, Giokas DL. Generic assay of sulfur-containing compounds based on kinetics inhibition of gold nanoparticle photochemical growth. ACS Omega. 2018;3:16831-8.
Akrivi E, Kappi F, Gouma V, Vlessidis AG, Giokas DL, Kourkoumelis N. Biothiol modulated growth and aggregation of gold nanoparticles and their determination in biological fluids using digital photometry. Spectrochim Acta A Mol Biomol Spectrosc. 2021;249:119337.
Rastegarzadeh S, Hashemi F. Gold nanoparticles as a colorimetric probe for the determination of N-acetyl-l-cysteine in biological samples and pharmaceutical formulations. Anal Methods. 2015;7:1478-83.
Apyari VV, Dmitrienko SG, Arkhipova VV, Atnagulov AG, Zolotov YA. Determination of cysteamine using label-free gold nanoparticles. Anal Methods. 2012;4:3193-9.
Karmacharya M, Kumar S, Lee C, Cho Y-K. Lab-on-a-disc for ultrafast plasmonic assay of cysteamine. Biosens Bioelectron. 2021;194:113584.
Ghasemi F, Hormozi-Nezhad MR, Mahmoudi M. A colorimetric sensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles. Anal Chim Acta. 2015;882:58-67.
Li J-F, Huang P-C, Wu F-Y. Specific pH effect for selective colorimetric assay of glutathione using anti-aggregation of label-free gold nanoparticles. RSC Adv. 2017;7:13426-32.
Li J-F, Huang P-C, Wu F-Y. Highly selective and sensitive detection of glutathione based on anti-aggregation of gold nanoparticles via pH regulation. Sens Actuators B. 2017;240:553-9.
Lu C, Zu Y. Specific detection of cysteine and homocysteine : recognizing one- methylene difference using fluorosurfactant-capped gold nanoparticles. Chem Commun. 2007;0:3871-3.
Wu H-P, Huang C-C, Cheng T-L, Tseng W-L. Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine. Talanta. 2008;76:347-52.
Güçlü K, Ozyürek M, Güngör N, Baki S, Apak R. Selective optical sensing of biothiols with Ellman's reagent: 5,5’-dithio-bis(2-nitrobenzoic acid)-modified gold nanoparticles. Anal Chim Acta. 2013;794:90-8.
Deng J, Lu Q, Hou Y, Liu M, Li H, Zhang Y, et al. Nanosensor composed of nitrogen-doped carbon dots and gold nanoparticles for highly selective detection of cysteine with multiple signals. Anal Chem. 2015;87:2195-203.
Li X, Li S, Liu Q, Cui Z, Chen Z. A triple-channel colorimetric sensor array for identification of biothiols based on color RGB (red/green/blue) as signal readout. ACS Sustain Chem Eng. 2019;7:17482-90.
Leesutthiphonchai W, Dungchai W, Siangproh W, Ngamrojnavanich N, Chailapakul O. Selective determination of homocysteine levels in human plasma using a silver nanoparticle-based colorimetric assay. Talanta. 2011;85:870-6.
Vaishnav SK, Patel K, Chandraker K, Korram J, Nagwanshi R, Ghosh KK, et al. Surface plasmon resonance based spectrophotometric determination of medicinally important thiol compounds using unmodified silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2017;179:155-62.
Hobbs K, Cathcart N, Kitaev V. Gold-plated silver nanoparticles engineered for sensitive plasmonic detection amplified by morphological changes. Chem Commun. 2016;52:9785-8.
Thomas A, Sivasankaran U, Kumar KG. Biothiols induced colour change of silver nanoparticles: a colorimetric sensing strategy. Spectrochim Acta A Mol Biomol Spectrosc. 2018;188:113-9.
Diamai S, Negi DPS. Cysteine-stabilized silver nanoparticles as a colorimetric probe for the selective detection of cysteamine. Spectrochim Acta A Mol Biomol Spectrosc. 2019;215:203-8.
Mohammadi S, Khayatian G. Silver nanoparticles modified with thiomalic acid as a colorimetric probe for determination of cystamine. Microchim Acta. 2017;184:253-9.
Shanmugaraj K, Sasikumar T, Campos CH, Ilanchelian M, Mangalaraja RV, Torres CC. Colorimetric determination of cysteamine based on the aggregation of polyvinylpyrrolidone-stabilized silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2020;236:118281.
Chen Z, He Y, Luo S, Lin H, Chen Y, Sheng P, et al. Label-free colorimetric assay for biological thiols based on ssDNA/silver nanoparticle system by salt amplification. Analyst. 2010;135:1066-9.
Xu Y, Sun Y, Zhang Y, Lu C, Miao J. Detection of biological thiols based on a colorimetric method. J Zhejiang Univ Sci B. 2016;17:807-12.
Shen L-M, Chen Q, Sun Z-Y, Chen X-W, Wang J-H. Assay of biothiols by regulating the growth of silver nanoparticles with C-dots as reducing agent. Anal Chem. 2014;86:5002-8.
Shang L, Yin J, Li J, Jin L, Dong S. Gold nanoparticle-based near-infrared fluorescent detection of biological thiols in human plasma. Biosens Bioelectron. 2009;25:269-74.
Park KS, Kim MI, Woo M-A, Park HG. A label-free method for detecting biological thiols based on blocking of Hg2+-quenching of fluorescent gold nanoclusters. Biosens Bioelectron. 2013;45:65-9.
Xu X, Qiao J, Li N, Qi L, Zhang S. Fluorescent probe for turn-on sensing of l-cysteine by ensemble of AuNCs and polymer protected AuNPs. Anal Chim Acta. 2015;879:97-103.
Ge J, Qi Z, Zhang L. A simple and sensitive fluorescence assay for biothiol and acetylcholinesterase activity detection based on a HSA-AuNCs@Cu2+ complex. Anal Methods. 2019;11:5031-7.
Li J, Rao X, Xiang F, Wei J, Yuan M, Liu Z. A photoluminescence “switch-on” nanosensor composed of nitrogen and sulphur co-doped carbon dots and gold nanoparticles for discriminative detection of glutathione. Analyst. 2018;143:2083-9.
Mohamed A, Li X, Li J, Lin C, Asiri AM, Marwani HM, et al. Single microbead-based fluorescence “turn on” detection of biothiols by flow cytometry. Talanta. 2019;195:197-203.
Ma Q, Fang X, Zhang J, Zhu L, Rao X, Lu Q, et al. Discrimination of cysteamine from mercapto amino acids through isoelectric point-mediated surface ligand exchange of β-cyclodextrin-modified gold nanoparticles. J Mater Chem B. 2020;8:4039-45.
Shahrajabian M, Hormozi-Nezhad MR. Design a new strategy based on nanoparticle-enhanced chemiluminescence sensor array for biothiols discrimination. Sci Rep. 2016;6:32160.
Wang Z-X, Ding S-N, Jomma Narjh EY. Determination of thiols by fluorescence using Au@Ag nanoclusters as probes. Anal Lett. 2015;48:647-58.
Xu L, Li B, Jin Y. Inner filter effect of gold nanoparticles on the fluorescence of quantum dots and its application to biological aminothiols detection. Talanta. 2011;84:558-64.
Mu X, Wu M, Zhang B, Liu X, Xu S, Huang Y, et al. A sensitive “off-on” carbon dots-Ag nanoparticles fluorescent probe for cysteamine detection via the inner filter effect. Talanta. 2021;221:121463.
Liu M, Tang Q, Deng T, Yan H, Li J, Li Y, et al. Two-photon AgNP/DNA-TP dye nanosensing conjugate for biothiol probing in live cells. Analyst. 2014;139:6185-91.
Lin Y, Tao Y, Ren J, Pu F, Qu X. Highly sensitive and selective detection of thiol-containing biomolecules using DNA-templated silver deposition. Biosens Bioelectron. 2011;28:339-43.
Zhou D-L, Huang H, Zheng J-N, Chen J-R, Feng J-J, Wang A-J. Polyinosinic acid-stabilized fluorescent silver nanoclusters for sensitive detection of biological thiols. Anal Methods. 2013;5:6076-80.
Samadi-Maybodi A, Akhoondi R. Trace analysis of N-acetyl-L-cysteine using luminol-H2O2 chemiluminescence system catalyzed by silver nanoparticles. Luminescence. 2015;30:775-9.
Zhang L, Cai Q-Y, Li J, Ge J, Wang J-Y, Dong Z-Z, et al. A label-free method for detecting biothiols based on poly(thymine)-templated copper nanoparticles. Biosens Bioelectron. 2015;69:77-82.
Yu C, Zeng F, Luo M, Wu S. A silica nanoparticle-based sensor for selective fluorescent detection of homocysteine via interaction differences between thiols and particle-surface-bound polymers. Nanotechnology. 2012;23:305503.
Meng H-M, Jin Z, Lv Y, Yang C, Zhang X-B, Tan W, et al. Activatable Two-photon fluorescence nanoprobe for bioimaging of glutathione in living cells and tissues. Anal Chem. 2014;86:12321-6.
Yazdanparast MS, Jeffries WR, Gray ER, McLaurin EJ. Mn2+-ZnSe/ZnS@SiO2 nanoparticles for turn-on luminescence thiol detection. J Funct Biomater. 2017;8:36.
Mu Q, Li Y, Ma Y, Zhong X. Visual detection of biological thiols based on lightening quantum dot-TiO2 composites. Analyst. 2014;139:996-9.
Sierra-Rodero M, Fernández-Romero JM, Gómez-Hens A. Determination of N-acetylcysteine via its effect on the aggregation of gold nanoparticles. Microchim Acta. 2011;173:11-7.
Xiao Q, Zhang L, Lu C. Resonance light scattering technique for simultaneous determination of cysteine and homocysteine using fluorosurfactant-capped gold nanoparticles. Sens Actuators B. 2012;166-7:650-7.
Sun S-K, Wang H-F, Yan X-P. A sensitive and selective resonance light scattering bioassay for homocysteine in biological fluids based on target-involved assembly of polyethyleneimine-capped Ag-nanoclusters. Chem Commun. 2011;47:3817-9.
Fu C, Ma H, Huang C, Jia N. A simple and dual functional dynamic light scattering (DLS) probe for rapid detection of mercury ions and biothiols. Anal Methods. 2015;7:7455-60.
Zhao J, Zhang K, Ji J, Liu B. Sensitive and label-free quantification of cellular biothiols by competitive surface-enhanced Raman spectroscopy. Talanta. 2016;152:196-202.
Yang P, Xu Q-Z, Jin S-Y, Zhao Y, Lu Y, Xu X-W, et al. Synthesis of Fe3O4@Phenol formaldehyde resin core-shell nanospheres loaded with Au nanoparticles as magnetic FRET nanoprobes for detection of thiols in living cells. Chem Eur J. 2012;18:1154-60.
Jiménez-López J, Rodrigues SSM, Ribeiro DSM, Ortega-Barrales P, Ruiz-Medina A, Santos JLM. Exploiting the fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols. Spectrochim Acta A Mol Biomol Spectrosc. 2019;212:246-54.
Zhang P, Wang J, Huang H, Chen H, Guan R, Chen Y, et al. RuNH2@AuNPs as two-photon luminescent probes for thiols in living cells and tissues. Biomaterials. 2014;35:9003-11.
Narang J, Chauhan N, Jain P, Pundir CS. Silver nanoparticles/multiwalled carbon nanotube/polyaniline film for amperometric glutathione biosensor. Int J Biol Macromol. 2012;50:672-8.
Pang X, Bai H, Xu D, Ding J, Fan W, Shi W. Dual-functional electrochemical bio-sensor built from Cu2O for sensitively detecting the thiols and Hg2+. Appl Surf Sci. 2021;564:150397.
dos Santos VS. Voltammetric behavior of zinc hexacyanoferrate (III) nanoparticles and their application in the detection of N-acetylcysteine. Int J Electrochem Sci. 2017;12:7142-53.
Zhou H, Ran G, Masson J-F, Wang C, Zhao Y, Song Q. Rational design of magnetic micronanoelectrodes for recognition and ultrasensitive quantification of cysteine enantiomers. Anal Chem. 2018;90:3374-81.
Karimi-Maleh H, Karimi F, Orooji Y, Mansouri G, Razmjou A, Aygun A, et al. A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Sci Rep. 2020;10:11699.
Chekin F, Boukherroub R, Szunerits S. MoS2/reduced graphene oxide nanocomposite for sensitive sensing of cysteamine in presence of uric acid in human plasma. Mater Sci Eng C. 2017;73:627-32.
Jia D, Ren Q, Sheng L, Li F, Xie G, Miao Y. Preparation and characterization of multifunctional polypyrrole-Au coated NiO nanocomposites and study of their electrocatalysis toward several important bio-thiols. Sens Actuators B. 2011;160:168-73.
Jerome R, Keerthivasan PV, Murugan N, Devi NR, Sundramoorthy AK. Preparation of stable CuO/boron nitride nanocomposite modified electrode for selective electrochemical detection of L-cysteine. ChemistrySelect. 2020;5:9111-8.
Sharifi E, Salimi A, Shams E. DNA/nickel oxide nanoparticles/osmium(III)-complex modified electrode toward selective oxidation of l-cysteine and simultaneous detection of l-cysteine and homocysteine. Bioelectrochemistry. 2012;86:9-21.
Madasamy T, Santschi C, Martin OJF. A miniaturized electrochemical assay for homocysteine using screen-printed electrodes with cytochrome c anchored gold nanoparticles. Analyst. 2015;140:6071-8.
Razmi H, Heidari H. Nafion/lead nitroprusside nanoparticles modified carbon ceramic electrode as a novel amperometric sensor for l-cysteine. Anal Biochem. 2009;388:15-22.
Zhang F, Wen M, Cheng M, Liu D, Zhu A, Tian Y. Pt-NiCo nanostructures with facilitated electrocatalytic activities for sensitive determination of intracellular thiols with Long-term stability. Chem Eur J. 2010;16:11115-20.
Karimi A, Husain SW, Hosseini M, Azar PA, Ganjali MR. A sensitive signal-on electrochemiluminescence sensor based on a nanocomposite of polypyrrole-Gd2O3 for the determination of L-cysteine in biological fluids. Microchim Acta. 2020;187:398.
Kuśmierek K, Chwatko G, Głowacki R, Bald E. Determination of endogenous thiols and thiol drugs in urine by HPLC with ultraviolet detection. J Chromatogr B: Anal Technol Biomed Life Sci. 2009;877:3300-8.
Bayle C, Caussé E, Couderc F. Determination of aminothiols in body fluids, cells, and tissues by capillary electrophoresis. Electrophoresis. 2004;25:1457-72.
McMenamin ME, Himmelfarb J, Nolin TD. Simultaneous analysis of multiple aminothiols in human plasma by high performance liquid chromatography with fluorescence detection. J Chromatogr B: Anal Technol Biomed Life Sci. 2009;877:3274-81.
Rafii M, Elango R, House JD, Courtney-Martin G, Darling P, Fisher L, et al. Measurement of homocysteine and related metabolites in human plasma and urine by liquid chromatography electrospray tandem mass spectrometry. J Chromatogr B: Anal Technol Biomed Life Sci. 2009;877:3282-91.
Carlucci F, Tabucchi A. Capillary electrophoresis in the evaluation of aminothiols in body fluids. J Chromatogr B: Anal Technol Biomed Life Sci. 2009;877:3347-57.
Lu C, Zu Y, Yam VW-W. Specific postcolumn detection method for HPLC assay of homocysteine based on aggregation of fluorosurfactant-capped gold nanoparticles. Anal Chem. 2007;79:666-72.
Lu C, Zu Y, Yam VW-W. Nonionic surfactant-capped gold nanoparticles as postcolumn reagents for high-performance liquid chromatography assay of low-molecular-mass biothiols. J Chromatogr A. 2007;1163:328-32.
Zhang L, Lu B, Lu C, Lin J-M. Determination of cysteine, homocysteine, cystine, and homocystine in biological fluids by HPLC using fluorosurfactant-capped gold nanoparticles as postcolumn colorimetric reagents. J Sep Sci. 2014;37:30-6.
Li Q, Shang F, Lu C, Zheng Z, Lin J-M. Fluorosurfactant-prepared triangular gold nanoparticles as postcolumn chemiluminescence reagents for high-performance liquid chromatography assay of low molecular weight aminothiols in biological fluids. J Chromatogr A. 2011;1218:9064-70.
Bai S, Chen Q, Lu C, Lin J-M. Automated high performance liquid chromatography with on-line reduction of disulfides and chemiluminescence detection for determination of thiols and disulfides in biological fluids. Anal Chim Acta. 2013;768:96-101.
Mompó-Roselló O, Vergara-Barberán M, Simó-Alfonso EF, Herrero-Martínez JM. In syringe hybrid monoliths modified with gold nanoparticles for selective extraction of glutathione in biological fluids prior to its determination by HPLC. Talanta. 2020;209:120566.
Liu F-K, Wei G-T. Adding sodium dodecylsulfate to the running electrolyte enhances the separation of gold nanoparticles by capillary electrophoresis. Anal Chim Acta. 2004;510:77-83.
Liu F-K, Lin Y-Y, Wu C-H. Highly efficient approach for characterizing nanometer-sized gold particles by capillary electrophoresis. Anal Chim Acta. 2005;528:249-54.
Li M-D, Cheng T-L, Tseng W-L. Nonionic surfactant-capped gold nanoparticles for selective enrichment of aminothiols prior to CE with UV absorption detection. Electrophoresis. 2009;30:388-95.
Shen C-C, Tseng W-L, Hsieh M-M. Selective enrichment of aminothiols using polysorbate 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence. J Chromatogr A. 2009;1216:288-93.
Chang C-W, Tseng W-L. Gold nanoparticle extraction followed by capillary electrophoresis to determine the total, free, and protein-bound aminothiols in plasma. Anal Chem. 2010;82:2696-702.
Subramaniam V, Griffith L, Haes AJ. Varying nanoparticle pseudostationary phase plug length during capillary electrophoresis. Analyst. 2011;136:3469-77.
Claude B, Cutolo G, Farhat A, Zarafu I, Ionita P, Schuler M, et al. Capillary electrophoresis with dual detection UV/C4D for monitoring myrosinase-mediated hydrolysis of thiol glucosinolate designed for gold nanoparticle conjugation. Anal Chim Acta. 2019;1085:117-25.
Huang Y-F, Chang H-T. Nile red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2006;78:1485-93.
Wan D, Gao M, Wang Y, Zhang P, Zhang X. A rapid and simple separation and direct detection of glutathione by gold nanoparticles and graphene-based MALDI-TOF-MS. J Sep Sci. 2013;36:629-35.
Abdelhamid HN, Wu H-F. Facile synthesis of nano silver ferrite (AgFeO2) modified with chitosan applied for biothiol separation. Mater Sci Eng C. 2014;45:438-45.
Dou S, Du J, Zhu Q, Wang Z, Wang Y, Chen Q, et al. Au nanoparticles/ZnO nanorods as SALDI-MS substrate for on-plate enrichment and detection of glutathione in real samples. Sens Actuators B. 2021;335:129709.