Contactless Conductivity Detection for Capillary Electrophoresis-Developments From 2020 to 2024
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39607304
PubMed Central
PMC12449756
DOI
10.1002/elps.202400217
Knihovny.cz E-zdroje
- Klíčová slova
- capacitively coupled contactless conductivity detection, capillary electrophoresis, microchip electrophoresis, review,
- MeSH
- design vybavení MeSH
- elektrická vodivost MeSH
- elektroforéza kapilární * přístrojové vybavení metody MeSH
- laboratoř na čipu MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The review covering the development of capillary electrophoresis with capacitively coupled contactless conductivity detection from 2020 to 2024 is the latest in a series going back to 2004. The article considers applications employing conventional capillaries and planar lab-on-chip devices as well as fundamental and technical developments of the detector and complete electrophoresis instrumentation.
Department of Chemistry University of Basel Basel Switzerland
Institute of Analytical Chemistry of the Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Zemann A. J., “Conductivity Detection in Capillary Electrophoresis,” TrAC—Trends in Analytical Chemistry 20, no. 6–7 (2001): 346–354.
Tanyanyiwa J., Leuthardt S., and Hauser P. C., “Conductimetric and Potentiometric Detection in Conventional and Microchip Capillary Electrophoresis,” Electrophoresis 23, no. 21 (2002): 3659–3666. PubMed
Zemann A. J., “Capacitively Coupled Contactless Conductivity Detection in Capillary Electrophoresis,” Electrophoresis 24, no. 12–13 (2003): 2125–2137. PubMed
Kubáň P. and Hauser P. C., “Contactless Conductivity Detection in Capillary Electrophoresis: A Review,” Electroanalysis 16, no. 24 (2004): 2009–2021.
Guijt R. M., Evenhuis C. J., Macka M., and Haddad P. R., “Conductivity Detection for Conventional and Miniaturised Capillary Electrophoresis Systems,” Electrophoresis 25, no. 23–24 (2004): 4032–4057. PubMed
Tan F. and Guan Y. F., “Capacitively Coupled Contactless Conductivity Detection in Capillary Electrophoresis,” Chinese Journal of Chromatography 23, no. 2 (2005): 152–157. PubMed
Šolínová V. and Kašička V., “Recent Applications of Conductivity Detection in Capillary and Chip Electrophoresis,” Journal of Separation Science 29, no. 12 (2006): 1743–1762. PubMed
Pumera M., “Contactless Conductivity Detection for Microfluidics: Designs and Applications,” Talanta 74, no. 3 (2007): 358–364. PubMed
Kubáň P. and Hauser P. C., “A Review of the Recent Achievements in Capacitively Coupled Contactless Conductivity Detection,” Analytica Chimica Acta 607, no. 1 (2008): 15–29. PubMed
Matysik F. M., “Advances in Amperometric and Conductometric Detection in Capillary and Chip‐Based Electrophoresis,” Microchimica Acta 160, no. 1–2 (2008): 1–14.
Kubáň P. and Hauser P. C., “Ten Years of Axial Capacitively Coupled Contactless Conductivity Detection for CZE—A Review,” Electrophoresis 30, no. 1 (2009): 176–188. PubMed
Elbashir A. A. and Aboul‐Enein H. Y., “Applications of Capillary Electrophoresis With Capacitively Coupled Contactless Conductivity Detection (CE‐C4D) in Pharmaceutical and Biological Analysis,” Biomedical Chromatography 24, no. 10 (2010): 1038–1044. PubMed
Connolly D., Floris P., Nesterenko P. N., and Paull B., “Non‐Invasive Characterization of Stationary Phases in Capillary Flow Systems Using Scanning Capacitively Coupled Contactless Conductivity Detection (sC4D),” TrAC—Trends in Analytical Chemistry 29, no. 8 (2010): 870–884.
Kubáň P. and Hauser P. C., “Capacitively Coupled Contactless Conductivity Detection for Microseparation Techniques—Recent Developments,” Electrophoresis 32, no. 1 (2011): 30–42. PubMed
Elbashir A. A. and Aboul‐Enein H. Y., “Recent Advances in Applications of Capillary Electrophoresis With Capacitively Coupled Contactless Conductivity Detection (CE‐C4D): An Update,” Biomedical Chromatography 26, no. 8 (2012): 990–1000. PubMed
Coltro W. K. T., Lima R. S., Segato T. P., et al., “Capacitively Coupled Contactless Conductivity Detection on Microfluidic Systems‐Ten Years of Development,” Analytical Methods 4, no. 1 (2012): 25–33.
Mark J. J. P., Scholz R., and Matysik F. M., “Electrochemical Methods in Conjunction With Capillary and Microchip Electrophoresis,” Journal of Chromatography A 1267 (2012): 45–64. PubMed
Kubáň P. and Hauser P. C., “Contactless Conductivity Detection for Analytical Techniques: Developments From 2010 to 2012,” Electrophoresis 34, no. 1 (2013): 55–69. PubMed
Elbashir A. A. and Aboul‐Enein H. Y., “Recent Applications and Developments of Capacitively Coupled Contactless Conductivity Detection (CE‐C4D) in Capillary Electrophoresis,” Biomedical Chromatography 28, no. 11 (2014): 1502–1506. PubMed
Kubáň P. and Hauser P. C., “Contactless Conductivity Detection for Analytical Techniques‐Developments From 2012 to 2014,” Electrophoresis 36, no. 1 (2015): 195–211. PubMed
Duong H. A., Nguyen T. D., Mai T. D., Sáiz J., and Pham H. V., “Inexpensive and Versatile Measurement Tools Using Purpose‐Made Capillary Electrophoresis Devices Coupled With Contactless Conductivity Detection: A View From the Case Study in Vietnam,” Journal of Science: Advanced Materials and Devices 1, no. 3 (2016): 273–281.
Elbashir A. A., Schmitz O. J., and Aboul‐Enein H. Y., “Application of Capillary Electrophoresis With Capacitively Coupled Contactless Conductivity Detection (CE‐C4D): An Update,” Biomedical Chromatography 31, no. 9 (2017): e3945. PubMed
Kubáň P. and Hauser P. C., “Contactless Conductivity Detection for Analytical Techniques Developments From 2014 to 2016,” Electrophoresis 38, no. 1 (2017): 95–114. PubMed
Kubáň P. and Hauser P. C., “20th Anniversary of Axial Capacitively Coupled Contactless Conductivity Detection in Capillary Electrophoresis,” TrAC—Trends in Analytical Chemistry 102 (2018): 311–321.
Paul P., Sänger‐van de Griend C., Adams E., and Van Schepdael A., “Recent Advances in the Capillary Electrophoresis Analysis of Antibiotics With Capacitively Coupled Contactless Conductivity Detection,” Journal of Pharmaceutical and Biomedical Analysis 158 (2018): 405–415. PubMed
Kubáň P. and Hauser P. C., “Contactless Conductivity Detection for Analytical Techniques: Developments From 2016 to 2018,” Electrophoresis 40, no. 1 (2019): 124–139. PubMed
Hauser P. C. and Kubáň P., “Capacitively Coupled Contactless Conductivity Detection for Analytical Techniques—Developments From 2018 to 2020,” Journal of Chromatography A 1632 (2020): 461616. PubMed
Tůma P., “Determination of Amino Acids by Capillary and Microchip Electrophoresis With Contactless Conductivity Detection—Theory, Instrumentation and Applications,” Talanta 224 (2021): 121922. PubMed
Tůma P., “Monitoring of Biologically Active Substances in Clinical Samples by Capillary and Microchip Electrophoresis With Contactless Conductivity Detection: A Review,” Analytica Chimica Acta 1225 (2022): 340161. PubMed
Tůma P., Opekar F., and Dlouhý P., “Capillary and Microchip Electrophoresis With Contactless Conductivity Detection for Analysis of Foodstuffs and Beverages,” Food Chemistry 375 (2022): 131858. PubMed
Elbashir A. A., Elgorashe R. E. E., Alnajjar A. O., and Aboul‐Enein H. Y., “Application of Capillary Electrophoresis With Capacitively Coupled Contactless Conductivity Detection (CE‐C4D): 2017–2020,” Critical Reviews in Analytical Chemistry 52, no. 3 (2022): 535–543. PubMed
Elbashir A. A., Osman A., Elawad M., Ziyada A. K., and Aboul‐Enein H. Y., “Application of Capillary Electrophoresis With Capacitively Contactless Conductivity Detection for Biomedical Analysis,” Electrophoresis 45, no. 5–6 (2024): 400–410. PubMed
Warren C. G. and Dasgupta P. K., “Liquid Phase Detection in the Miniature Scale. Microfluidic and Capillary Scale Measurement and Separation Systems. A Tutorial Review,” Analytica Chimica Acta 1305 (2024): 342507. PubMed
Kartsova L. and Maliushevska A., “Determination of Amino Acids and Peptides Without Their Pre‐Column Derivatization by Capillary Electrophoresis With Ultraviolet and Contactless Conductivity Detection. An Overview,” Journal of Separation Science 47, no. 16 (2024): 2400352. PubMed
Yuskina E. A., Panchuk V. V., and Kirsanov D. O., “Evolution of Contactless Conductometry Methods,” Journal of Analytical Chemistry 79, no. 6 (2024): 654–662.
Kubáň P. and Hauser P. C., “Fundamental Aspects of Contactless Conductivity Detection for Capillary Electrophoresis. Part I: Frequency Behavior and Cell Geometry,” Electrophoresis 25, no. 20 (2004): 3387–3397. PubMed
Kubáň P. and Hauser P. C., “Fundamental Aspects of Contactless Conductivity Detection for Capillary Electrophoresis. Part II: Signal‐to‐Noise Ratio and Stray Capacitance,” Electrophoresis 25, no. 20 (2004): 3398–3405. PubMed
Brito‐Neto J. G. A., da Silva J. A. F., Blanes L., and do Lago C. L., “Understanding Capacitively Coupled Contactless Conductivity Detection in Capillary and Microchip Electrophoresis. Part 1. Fundamentals,” Electroanalysis 17, no. 13 (2005): 1198–1206.
Brito‐Neto J. G. A., da Silva J. A. F., Blanes L., and do Lago C. L., “Understanding Capacitively Coupled Contactless Conductivity Detection in Capillary and Microchip Electrophoresis. Part 2. Peak Shape, Stray Capacitance, Noise, and Actual Electronics,” Electroanalysis 17, no. 13 (2005): 1207–1214.
Tůma P., Samcová E., and Štulík K., “Contactless Conductivity Detection in Capillary Electrophoresis Employing Capillaries With Very Low Inner Diameters,” Electroanalysis 23, no. 8 (2011): 1870–1874.
Opekar F., Tůma P., and Štulík K., “Contactless Impedance Sensors and Their Application to Flow Measurements,” Sensors 13, no. 3 (2013): 2786–2801. PubMed PMC
Tůma P., “Frequency‐Tuned Contactless Conductivity Detector for the Electrophoretic Separation of Clinical Samples in Capillaries With Very Small Internal Dimensions,” Journal of Separation Science 40, no. 4 (2017): 940–947. PubMed
Zhang M., Stamos B. N., Amornthammarong N., and Dasgupta P. K., “Capillary Scale Admittance Detection,” Analytical Chemistry 86, no. 23 (2014): 11538–11546. PubMed
Zhang M., Stamos B. N., and Dasgupta P. K., “Admittance Detector for High Impedance Systems: Design and Applications,” Analytical Chemistry 86, no. 23 (2014): 11547–11553. PubMed
Huang W. X., Chouhan B., and Dasgupta P. K., “Capillary Scale Admittance and Conductance Detection,” Analytical Chemistry 90, no. 24 (2018): 14561–14568. PubMed
Graf H. G., Rudisch B. M., Manegold J., and Huhn C., “Advancements in Capacitance‐to‐Digital Converter‐Based C4D Technology for Detection in Capillary Electrophoresis Using Amplified Excitation Voltages and Comparison to Classical and Open‐Source C4Ds,” Electrophoresis 42, no. 12–13 (2021): 1306–1316. PubMed
Takeuchi M., Li Q. Y., Yang B. C., Dasgupta P. K., and Wilde V. E., “Use of a Capacitance Measurement Device for Surrogate Noncontact Conductance Measurement,” Talanta 76, no. 3 (2008): 617–620. PubMed
Drevinskas T., Kaljurand M., and Maruška A., “Capacitance‐to‐Digital: A Single Chip Detector for Capillary Electrophoresis,” Electrophoresis 35, no. 16 (2014): 2401–2407. PubMed
Drevinskas T., Maruška A., and Briedis V., “Capacitance‐to‐Digital: The Upgrades of Single Chip Detector,” Electrophoresis 36, no. 2 (2015): 292–297. PubMed
Francisço K. J. M. and do Lago C. L., “A Compact and High‐Resolution Version of a Capacitively Coupled Contactless Conductivity Detector,” Electrophoresis 30, no. 19 (2009): 3458–3464. PubMed
Li L., Ren D. D., Zhang P. Y., et al., “Pushing the Limits of Capacitively Coupled Contactless Conductivity Detection for Capillary Electrophoresis,” Analytical Chemistry 96, no. 25 (2024): 10356–10364. PubMed
Fercher G., Haller A., Smetana W., and Vellekoopt M. J., “End‐to‐End Differential Contact Less Conductivity Sensor for Microchip Capillary Electrophoresis,” Analytical Chemistry 82, no. 8 (2010): 3270–3275. PubMed
Stojkovic M., Schlensky B., and Hauser P. C., “Referenced Capacitively Coupled Conductivity Detector for Capillary Electrophoresis,” Electroanalysis 25, no. 12 (2013): 2645–2650.
Jaanus M., Udal A., Kukk V., Umbleja K., Gorbatsova J., and Molder L., “Improved C5D Electronic Realization of Conductivity Detector for Capillary Electrophoresis,” Elektronika Ir Elektrotechnika 22, no. 3 (2016): 29–32.
Li L., Song Y. P., Ren D. D., et al., “A Compact and High‐Performance Setup of Capillary Electrophoresis With Capacitively Coupled Contactless Conductivity Detection (CE‐C4D),” Analyst 149, no. 10 (2024): 3034–3040. PubMed
Itterheimová P., Foret F., and Kubáň P., “High‐Resolution Arduino‐Based Data Acquisition Devices for Microscale Separation Systems,” Analytica Chimica Acta 1153 (2021): 338294. PubMed
Santos M. S. F., Metz B. C., da Costa E. T., et al., “Towards a Radiation‐Tolerant Contactless Conductivity Detector for Use With Capillary Electrophoresis Systems in Spaceflight Applications,” Acta Astronautica 190 (2022): 299–307.
Yang L. Y., Pan G. C., Zhang P. W., et al., “3D Printed Two‐in‐One on‐Capillary Detector: Combining Contactless Conductometric and Photometric Detection for Capillary Electrophoresis,” Analytica Chimica Acta 1159 (2021): 338427. PubMed
Yin B. J., Zhang Z., Wang Y. C., et al., “Compact Contactless Conductometric, Ultraviolet Photometric and Dual‐Detection Cells for Capillary Electrophoresis via Additive Manufacturing,” Journal of Chromatography A 1712 (2023): 464469. PubMed
Zhang P. W., Yang L. Y., Liu Q., Lu S. G., Liang Y., and Zhang M., “Multimaterial 3D‐Printed Contactless Conductivity/Laser‐Induced Fluorescence Dual‐Detection Cell for Capillary Electrophoresis,” Chinese Journal of Chromatography 39, no. 8 (2021): 921–926. PubMed PMC
Wang Y. C., Zeng Z. H., Yang L. Y., et al., “Three‐in‐One Detector by 3D Printing: Simultaneous Contactless Conductivity, Ultraviolet Absorbance, and Laser‐Induced Fluorescence Measurements for Capillary Electrophoresis,” Analytical Chemistry 95 (2023): 2146–2151. PubMed
Santana M. A. and do Lago C. L., “Indirect Calibration for Capillary Electrophoresis With Conductivity Detection,” Analytica Chimica Acta 1158 (2021): 338397. PubMed
Tong Y. N., Li J. G., Xu Y. H., and Cao L. C., “Signal Denoising Method Based on Improved Wavelet Threshold Function for Microchip Electrophoresis C4D Equipment,” Complexity 2020 (2020): 6481317.
Furter J. S., Boillat M. A., and Hauser P. C., “Low‐Cost Automated Capillary Electrophoresis Instrument Assembled From Commercially Available Parts,” Electrophoresis 41, no. 24 (2020): 2075–2082. PubMed
Kaljurand M., Růžička M., Gorbatsova J., and Mazina‐Šinkar J., “Evaluation of Different Operating Modes of an Autosampler for Portable Capillary Electrophoresis,” Journal of Chromatography A 1705 (2023): 464201. PubMed
Itterheimová P. and Kubáň P., “An Open Source 3D Printed Autosampler for Capillary Electrophoresis,” Analytica Chimica Acta 1279 (2023): 341832. PubMed
Zhang J. Q., Wang R. J., Jin Z., et al., “Development of on‐Site Rapid Detection Device for Soil Macronutrients Based on Capillary Electrophoresis and Capacitively Coupled Contactless Conductivity Detection (C4D) Method,” Chemosensors 10, no. 2 (2022): 84.
Rusin M., Pluta J., Wozniakiewicz A., et al., “Development of the CE‐C4D Method for Determination of Organic Acids in Infants Faeces Using an In‐House Built Instrument,” Microchemical Journal 199 (2024): 110203.
Wang N. Y., Zhang R. H., Zhang Q., Cao C. X., Fan L. Y., and Liu W. W., “Determination of Two Quaternary Ammonium Salts in Disinfector by Portable Capillary Electrophoresis Device Based on Smartphone,” Chinese Journal of Chromatography 39, no. 11 (2021): 1151–1156. PubMed PMC
Liu S., Pan Z., Liang Y., Li F., Breadmore M. C., and Zhang M., “An Electrophoretic Ion Analyzer for On‐Site Autonomous Water Monitoring,” Journal of Chromatography A 1637 (2021): 461791. PubMed
Liu X., Liang W. S., Zeng H., Jiang Y. Y., Li Y., and Zhang M., “3D Printed Cartridge for High‐Speed Capillary Electrophoresis With Sheath Liquid Thermostatting and Contactless Conductivity Detection,” Analytica Chimica Acta 1264 (2023): 341235. PubMed
Drevinskas T., Maruška A., Girdauskas V., Duda G., Gorbatsova J., and Kaljurand M., “Complete Capillary Electrophoresis Process on a Drone: Towards a Flying Micro‐Lab,” Analytical Methods 12, no. 41 (2020): 4977–4986. PubMed
Zamuruyev K., Santos M. S. F., Mora M. F., Kurfman E. A., Noell A. C., and Willis P. A., “Automated Capillary Electrophoresis System Compatible With Multiple Detectors for Potential In Situ Spaceflight Missions,” Analytical Chemistry 93, no. 27 (2021): 9647–9655. PubMed
Drevinskas T., Mora M. F., Santos M. S. F., Noell A. C., and Willis P. A., “Submersible Capillary Electrophoresis Analyzer: A Proof‐of‐Concept Demonstration of an In Situ Instrument for Future Missions to Ocean Worlds,” Analytical Chemistry 95, no. 27 (2023): 10249–10256. PubMed
Santos M. S. F., Kurfman E., Zamuruyev K., Noell A. C., Mora M. F., and Willis P. A., “A Voltage Trade Study for the Design of Capillary Electrophoresis Instruments for Spaceflight,” Electrophoresis 44, no. 1–2 (2023): 10–14. PubMed
Berg A. B., Santos M. S. F., Bautista A., Mora M. F., Pauken M. T., and Noell A. C., “Development of a Capillary Temperature Control System for Capillary Electrophoresis Instruments Designed for Spaceflight Applications,” Electrophoresis 45 (2024): 1495–1504. PubMed
Quero R. F., Costa B. M. D., Silva J., and Jesus D. P. D., “Using Multi‐Material Fused Deposition Modeling (FDM) for One‐Step 3D Printing of Microfluidic Capillary Electrophoresis With Integrated Electrodes for Capacitively Coupled Contactless Conductivity Detection,” Sensors & Actuators, B: Chemical 365 (2022): 131959.
Gong H., Bickham B. P., Woolley A. T., and Nordin G. P., “Custom 3D Printer and Resin for 18 µm X 20 µm Microfluidic Flow Channels,” Lab on a Chip 17, no. 17 (2017): 2899–2909. PubMed PMC
Costa B. M. C., Coelho A. G., Beauchamp M. J., et al., “3D‐Printed Microchip Electrophoresis Device Containing Spiral Electrodes for Integrated Capacitively Coupled Contactless Conductivity Detection,” Analytical and Bioanalytical Chemistry 414, no. 1 (2022): 545–550. PubMed PMC
Hong Y., Wang L., Su J. M., et al., “A Novel Capacitively Coupled Contactless Conductivity Detection (C4D) Microfluidic Chip Integrated 3D Microelectrodes for on‐Site Determination of Soil Nutrients,” Computers and Electronics in Agriculture 219 (2024): 108829.
Wang J. J., Liu Y. P., He W. H., Chen Y. F., and You H., “A Novel Planar Grounded Capacitively Coupled Contactless Conductivity Detector for Microchip Electrophoresis,” Micromachines 13, no. 3 (2022): 394. PubMed PMC
Lobo‐Júnior E. O., Chagas C. L. S., Duarte L. C., et al., “Inexpensive and Nonconventional Fabrication of Microfluidic Devices in PMMA Based on a Soft‐Embossing Protocol,” Electrophoresis 41, no. 18–19 (2020): 1641–1650. PubMed
Wang Y. N., Cao X., Messina W., et al., “Development of a Mobile Analytical Chemistry Workstation Using a Silicon Electrochromatography Microchip and Capacitively Coupled Contactless Conductivity Detector,” Micromachines 12, no. 3 (2021): 239. PubMed PMC
Chau M. K., Arega N. G., Tran N. A. N., et al., “Capacitively Coupled Contactless Conductivity Detection for Microfluidic Capillary Isoelectric Focusing,” Analytica Chimica Acta 1124 (2020): 60–70. PubMed
Liang Z. Q., Zhang Q., Jiang X. T., et al., “Multi‐Channel Contactless Conductivity Detection Device for Online Detection of Free‐Flow Electrophoresis Separation,” Chinese Journal of Chromatography 40, no. 4 (2022): 384–390. PubMed PMC
Hu C. Q., Xie B., Li H. M., and Xiao D., “A Five‐Electrode Capacitively Coupled Contactless Conductivity Detector With a Low Limit of Detection,” Analytical Methods 15, no. 18 (2023): 2253–2261. PubMed
Nie H. Y., Li Z. H., Wang X. K., et al., “An Improved Dual‐Channel Capacitively Coupled Contactless Conductivity Detector With High Detection Performance,” Analyst 147, no. 10 (2022): 2106–2114. PubMed
Hantschke M. and Triantis I. F., “Modeling the Impact of Sensitivity Distribution Variations of Tetrapolar Impedance Configurations in Microfluidic Analytical Devices,” IEEE Sensors Journal 21, no. 2 (2021): 1655–1664.
Hantschke M. and Triantis I. F., “Optimisation of an Electrical Impedance Sensor for Use in Microfluidic Chip Electrophoresis,” IEEE Sensors Journal 22, no. 1 (2022): 16–24.
Takekawa V. S., Marques L. A., Strubinger E., et al., “Development of Low‐Cost Planar Electrodes and Microfluidic Channels for Applications in Capacitively Coupled Contactless Conductivity Detection (C4D),” Electrophoresis 42, no. 16 (2021): 1560–1569. PubMed
He Y. C., Huang Q., He Y., et al., “A Low Excitation Working Frequency Capacitively Coupled Contactless Conductivity Detection (C4D) Sensor for Microfluidic Devices,” Sensors 21, no. 19 (2021): 6381. PubMed PMC
Cao Y. R., Tao Z. M., Tian Y. L., et al., “A Handheld Contactless Conductivity Detector for Monitoring the Desalting of Low‐Volume Virus and Cell Samples,” Biosensors & Bioelectronics 237 (2023): 115482. PubMed
Nguyen M. H., Nguyen T. D., Vu M. T., Duong H. A., and Pham H. V., “Determination of Glyphosate, Glufosinate, and Their Major Metabolites in Tea Infusions by Dual‐Channel Capillary Electrophoresis Following Solid‐Phase Extraction,” Journal of Analytical Methods in Chemistry 2022 (2022): 5687025. PubMed PMC
Mai T. D., Le M. D., Sáiz J., et al., “Triple‐Channel Portable Capillary Electrophoresis Instrument With Individual Background Electrolytes for the Concurrent Separations of Anionic and Cationic Species,” Analytica Chimica Acta 911 (2016): 121–128. PubMed
Zhao J. and Xu Z. Q., “Capillary Electrophoresis With Dual C4D/UV Detection for Simultaneously Determining Major Metal Cations and Whey Proteins in Milk,” Analytical Methods 13, no. 6 (2021): 801–808. PubMed
Liu Q. Q., Wang M. M., Chen J. Y., et al., “Quantum Dots and Double Surfactant‐Co‐Modified Electromembrane Extraction of Polar Aliphatic Bioamines in Water Samples Followed by Capillary Electrophoresis With Contactless Conductivity Detection,” Food Analytical Methods 15, no. 9 (2022): 2566–2574.
Chen H. S., Jiang J. K., Yi J., and Xie T. Y., “Separation and Determination of Acesulfame‐K in Soy Sauce by Capillary Electrophoresis With Contactless Conductivity Detection Using Liquid‐Liquid Extraction and Field‐Amplified Sample Injection,” Chinese Journal of Chromatography 38, no. 6 (2020): 708–714. PubMed
Atia M. A., Amuno R. M., Kalsoom U., et al., “Portable Capillary Electrophoresis Coupled With Swab‐Based Extraction Device for Cleaning Validation in Pharmaceutical Facilities,” Journal of Chromatography A 1688 (2023): 463666. PubMed
Le T. B., Hauser P. C., Pham T. N. M., et al., “Low‐Cost and Versatile Analytical Tool With Purpose‐Made Capillary Electrophoresis Coupled to Contactless Conductivity Detection: Application to Antibiotics Quality Control in Vietnam,” Electrophoresis 41, no. 23 (2020): 1980–1990. PubMed
Zhou J. J. and Xu Z. Q., “Simultaneous Separation of 12 Different Classes of Antibiotics Under the Condition of Complete Protonation by Capillary Electrophoresis‐Coupled Contactless Conductivity Detection,” Analytical Methods 14, no. 2 (2022): 174–179. PubMed
Ribeiro M., Barreto D. N., Petruci J. F. D., and Richter E. M., “Simultaneous Determination of Scopolamine and Butylscopolamine in Pharmaceutical and Beverage Samples by Capillary Zone Electrophoresis,” Microchemical Journal 172 (2022): 106985.
Marra M. C., Ribeiro M., Muñoz R. A. A., and Richter E. M., “Fast and Environmentally Friendly Method for Simultaneous Determination of Hydrochlorothiazide, Losartan and Potassium by Capillary Electrophoresis With Capacitively Coupled Contactless Conductivity Detection,” Journal of the Brazilian Chemical Society 34, no. 8 (2023): 1208–1213.
do Prado A. A., Ribeiro M., and Richter E. M., “Ultra‐Rapid Capillary Zone Electrophoresis Method for Simultaneous Determination of Arginine and Ibuprofen,” Journal of Separation Science 44, no. 13 (2021): 2596–2601. PubMed
Mikkonen S. and Emmer Å., “Analysis of Amino Acids in Cell Culture Supernatant Using Capillary Electrophoresis With Contactless Conductivity Detection,” Electrophoresis 42, no. 19 (2021): 1924–1927. PubMed
Alhusban A. A., Hamadneh L. A., Albustanji S., and Shallan A. I., “Lactate and Pyruvate Levels Correlation With Lactate Dehydrogenase Gene Expression and Glucose Consumption in Tamoxifen‐Resistant MCF‐7 Cells Using Capillary Electrophoresis With Contactless Conductivity Detection (CE‐C4D),” Electrophoresis 43, no. 3 (2022): 446–455. PubMed
Alhusban A. A., Hamadneh L. A., Shallan A. I., and Tarawneh O. A., “Automated Online Monitoring of Lactate and Pyruvate in Tamoxifen Resistant MCF‐7 Cells Using Sequential‐Injection Capillary Electrophoresis With Contactless Conductivity Detection (SI‐CE‐C4D) and Correlation With MCT1 and MCT4 Genes Expression,” Journal of Liquid Chromatography & Related Technologies 45, no. 1–4 (2022): 18–27.
Golab M., Przybylowska M., Kubáň P., Itterheimová P., and Wozniakiewicz M., “Development of CE‐C4D Method for Determination Tropane Alkaloids,” Molecules (Basel, Switzerland) 26, no. 19 (2021): 5749. PubMed PMC
Dushkov A., Vosáhlová Z., Tzintzarov A., Kalíková K., Křížek T., and Ugrinova I., “Analysis of the Ibotenic Acid, Muscimol, and Ergosterol Content of an Amanita Muscaria Hydroalcoholic Extract With an Evaluation of Its Cytotoxic Effect Against a Panel of Lung Cell Lines In Vitro,” Molecules (Basel, Switzerland) 28, no. 19 (2023): 6824. PubMed PMC
Nguyen T. D., Vu M. T., Nguyen M. H., Duong H. A., Mai T. D., and Pham H. V., “A Rapid and Simple Dual‐Channeled Capillary Electrophoresis With Contactless Conductivity Detection Method for the Determination of Adenosine, Cordycepin, and Inosine in
Ta H. Y., Perquis L., Sarazin C., et al., “3‐(4‐Carboxybenzoyl)quinoline‐2‐Carboxaldehyde Labeling for Direct Analysis of Amino Acids in Plasma Is Not Suitable for Simultaneous Quantification of Tryptophan, Tyrosine, Valine, and Isoleucine by CE/Fluorescence,” Electrophoresis 42, no. 9–10 (2021): 1108–1114. PubMed
Tůma P., Hložek T., Kamišová J., and Gojda J., “Monitoring of Circulating Amino Acids in Patients With Pancreatic Cancer and Cancer Cachexia Using Capillary Electrophoresis and Contactless Conductivity Detection,” Electrophoresis 42, no. 19 (2021): 1885–1891. PubMed
Tůma P., “Steady State Microdialysis of Microliter Volumes of Body Fluids for Monitoring of Amino Acids by Capillary Electrophoresis With Contactless Conductivity Detection,” Analytica Chimica Acta 1287 (2024): 342113. PubMed
Tůma P., Sommerová B., Koval D., and Couderc F., “Electrophoretic Determination of Symmetric and Asymmetric Dimethylarginine in Human Blood Plasma With Whole Capillary Sample Injection,” International Journal of Molecular Sciences 22, no. 6 (2021): 2970. PubMed PMC
Kubáň P., Dosedělová V., Martma K., Rannama I., Reinpold K., and Shimmo R., “Sub‐Minute Analysis of Lactate From a Single Blood Drop Using Capillary Electrophoresis With Contactless Conductivity Detection in Monitoring of Athlete Performance,” Molecules (Basel, Switzerland) 26, no. 19 (2021): 5817. PubMed PMC
Tůma P., Sommerová B., Koval D., Šiklová M., and Koc M., “Sensitive Monitoring of 3‐Hydroxybutyrate as an Indicator of Human Fasting by Capillary Electrophoresis in a PAMAMPS Coated Capillary,” Talanta 247 (2022): 123582. PubMed
Tůma P., Hložek T., Sommerová B., and Koval D., “Large Volume Sample Stacking of Antiepileptic Drugs in Counter Current Electrophoresis Performed in PAMAPTAC Coated Capillary,” Talanta 221 (2021): 121626. PubMed
Tůma P., Jaček M., Sommerová B., et al., “Monitoring of Amoxicilline and Ceftazidime in the Microdialysate of Diabetic Foot and Serum by Capillary Electrophoresis With Contactless Conductivity Detection,” Electrophoresis 43, no. 11 (2022): 1129–1139. PubMed
Tuma P., Sommerová B., Koval D., Siklová M., and Koc M., “Plasma Levels of Creatine, 2‐Aminobutyric Acid, Acetyl‐Carnitine and Amino Acids During Fasting Measured by Counter‐Current Electrophoresis in PAMAPTAC Capillary,” Microchemical Journal 187 (2023): 108426.
Kubáň P., Dvořák M., and Kubáň P., “Capillary Electrophoresis of Small Ions and Molecules in Less Conventional Human Body Fluid Samples: A Review,” Analytica Chimica Acta 1075 (2019): 1–26. PubMed
Ryšavá L., Dvořák M., and Kubáň P., “Dried Blood Spot Self‐Sampling With Automated Capillary Electrophoresis Processing for Clinical Analysis,” Angewandte Chemie International Edition 60, no. 11 (2021): 6068–6075. PubMed
Dvořák M., Moravčík O., and Kubáň P., “Capillary Electrophoresis With Interchangeable Cartridges for Versatile and Automated Analyses of Dried Blood Spot Samples,” Analytical Chemistry 95, no. 31 (2023): 11823–11830. PubMed PMC
Dvořák M. and Kubáň P., “Automated Analyses of Dried Blood Spots Collected by Volumetric Microsampling Devices,” Analytica Chimica Acta 1310 (2024): 342718. PubMed
Moravčík O., Dvořák M., and Kubáň P., “Autonomous Capillary Electrophoresis Processing and Analysis of Dried Blood Spots for High‐Throughput Determination of Uric Acid,” Analytica Chimica Acta 1267 (2023): 341390. PubMed
Dvořák M., Miró M., and Kubáň P., “Automated Sequential Injection‐Capillary Electrophoresis for Dried Blood Spot Analysis: A Proof‐of‐Concept Study,” Analytical Chemistry 94, no. 13 (2022): 5301–5309. PubMed
Dvořák M., Maršala R., and Kubáň P., “In‐Vial Dried Urine Spot Collection and Processing for Quantitative Analyses,” Analytica Chimica Acta 1254 (2023): 341071. PubMed
Dosedělová V., Foret F., Doubková M., Brat K., and Kubáň P., “A Novel Temperature‐Controlled Open Source Microcontroller Based Sampler for Collection of Exhaled Breath Condensate in Point‐of‐Care Diagnostics,” Talanta 237 (2022): 122984. PubMed
Myochin H., Ohshima N., Izumi T., Hisajima T., Chaleckis R., and Mori M., “Capillary Electrophoresis Using Triple Layer Modified Capillary Facilitating Salivary Ion Analyses: Application to Search for Potential Stress Markers Induced by Cold Pressure Test,” Journal of Chromatography A 1720 (2024): 464769. PubMed
Wang M. M., Chen Z. Y., Jing X. F., et al., “Tween 20‐Capped Gold Nanoparticles for Selective Extraction of Free Low‐Molecular‐Weight Thiols in Saliva Followed by Capillary Electrophoresis With Contactless Conductivity Detection,” Journal of Chromatography B 1176 (2021): 122756. PubMed
Ďurč P., Foret F., Homola L., et al., “Skin Wipe Test: A Simple, Inexpensive, and Fast Approach in the Diagnosis of Cystic Fibrosis,” Pediatric Pulmonology 55, no. 7 (2020): 1653–1660. PubMed
Malá M., Itterheimová P., Homola L., Vinohradská J., and Kubáň P., “3D Printed Skin‐Wash Sampler for Sweat Sampling in Cystic Fibrosis Diagnosis Using Capillary Electrophoretic Ion Ratio Analysis,” Separations 8, no. 12 (2021): 234.
Obma A., Nookaew K., Songsaeng R., et al., “Measurement of Sweat Lactate Levels in Exercise and Non‐Exercise Activities Using Capillary Electrophoresis System With Contactless Conductivity Detection and Cyclodextrin‐Modified Buffer,” Arabian Journal of Chemistry 16, no. 11 (2023): 105255.
Rocha K. N., da Silva J. A. F., and de Jesus D. P., “Capillary Electrophoresis With Capacitively Coupled Contactless Conductivity Detection (C4D) for Rapid and Simple Determination of Lactate in Sweat,” Electrophoresis 45, no. 5–6 (2024): 392–399. PubMed
Adimcilar V., Saygili M. T., Cansever M. S., and Öztekin N., “Highly Sensitive Rapid Determination of Orotic Acid in Urine Samples Using a Field‐Amplified Sample Stacking Approach in Capillary Electrophoresis Coupled With Contactless Conductivity Detection,” Journal of Pharmaceutical and Biomedical Analysis 238 (2024): 115826. PubMed
Cansever M. S., Öztekin N., Kiykim E., Zübarioğlu T., and Zeybek A. C. A., “Separation and Quantification of the Urinary Enantiomers of 2‐Hydroxyglutaric Acid by Capillary Electrophoresis With Capacitively Coupled Contactless Conductivity Detection: Application to the Diagnosis of D‐ and L‐2‐Hydroxyglutaric Aciduria,” Journal of Separation Science 46, no. 16 (2023): 2300145. PubMed
Li Y. T., Wang L. H., Qian M. H., Qi S. D., Zhou L., and Pu Q. S., “Concise Analysis of γ‐Hydroxybutyric Acid in Beverages and Urine by Capillary Electrophoresis With Capacitively Coupled Contactless Conductivity Detection Using 4‐(2‐Hydroxyethyl)‐1‐Piperazineethanesulfonic Acid as Background Electrolyte,” Journal of Chromatography A 1675 (2022): 463191. PubMed
Opekar F. and Tůma P., “A New Coaxial Flow‐Through Probe for Electromembrane Extraction of Methadone From Clinical Samples on‐Line Coupled to Capillary Electrophoresis,” Analytica Chimica Acta 1300 (2024): 342461. PubMed
Wang Z. R., Hsieh M. M., and Sung Y. Y., “Ultrasensitive Determination of Underivatized Adamantane Analogs in Biological Fluids by Capillary Electrophoresis With Contactless Conductivity Detection,” Microchemical Journal 169 (2021): 106602.
Sung Y. Y., Chou Y. M., and Hsieh M. M., “Ultrasensitive Determination of 10 Phenothiazine Derivatives and Their Enantiomers in Biological Fluids by Capillary Electrophoresis With Contactless Conductivity Detection,” Journal of Chromatography A 1705 (2023): 464212. PubMed
Piestansky J., Galba J., Kovacech B., Parrak V., Kovac A., and Mikuš P., “Capillary Electrophoresis and Ultra‐High‐Performance Liquid Chromatography Methods in Clinical Monitoring of Creatinine in Human Urine: A Comparative Study,” Biomedical Chromatography 34, no. 10 (2020): e4907. PubMed
Kubáň P., Nguyen H. T. A., Macka M., Haddad P. R., and Hauser P. C., “New Fully Portable Instrument for the Versatile Determination of Cations and Anions by Capillary Electrophoresis With Contactless Conductivity Detection,” Electroanalysis 19, no. 19–20 (2007): 2059–2065.
Willis P. A., Creamer J. S., and Mora M. F., “Implementation of Microchip Electrophoresis Instrumentation for Future Spaceflight Missions,” Analytical and Bioanalytical Chemistry 407, no. 23 (2015): 6939–6963. PubMed
Lewis A. P., Cranny A., Harris N. R., et al., “Review on the Development of Truly Portable and In‐Situ Capillary Electrophoresis Systems,” Measurement Science & Technology 24, no. 4 (2013): 42001.
Van Schepdael A., “Recent Advances in Portable Analytical Electromigration Devices,” Separations 3, no. 1 (2016): 2.
Zhang M., Phung S. C., Smejkal P., Guijt R. M., and Breadmore M. C., “Recent Trends in Capillary and Micro‐Chip Electrophoretic Instrumentation for Field‐Analysis,” Trends in Environmental Analytical Chemistry 18 (2018): 1–10.
Kubáň P. and Kubáň P., “Novel Developments in Capillary Electrophoresis Miniaturization, Sampling, Detection and Portability: An Overview of the Last Decade,” TrAC—Trends in Analytical Chemistry 159 (2023): 116941.
Jaramillo E. A., Santos M. S. F., Noell A. C., and Mora M. F., “Capillary Electrophoresis Method for Analysis of Inorganic and Organic Anions Related to Habitability and the Search for Life,” Electrophoresis 42, no. 19 (2021): 1956–1964. PubMed
Krauss S. T., Forbes T. P., Lawrence J. A., Gillen G., and Verkouteren J. R., “Detection of Fuel‐Oxidizer Explosives Utilizing Portable Capillary Electrophoresis With Wipe‐Based Sampling,” Electrophoresis 41, no. 16–17 (2020): 1482–1490. PubMed
Krauss S. T., Forbes T. P., and Jobes D., “Inorganic Oxidizer Detection From Propellants, Pyrotechnics, and Homemade Explosive Powders Using Gradient Elution Moving Boundary Electrophoresis,” Electrophoresis 42, no. 3 (2021): 279–288. PubMed
Pham H. D., Dang T. H. M., Nguyen T. T. N., Nguyen T. A. H., Pham T. N. M., and Pham T. D., “Separation and Determination of Alkyl Sulfate Surfactants in Wastewater by Capillary Electrophoresis Coupled With Contactless Conductivity Detection After Preconcentration by Simultaneous Adsorption Using Alumina Beads,” Electrophoresis 42, no. 3 (2021): 191–199. PubMed
Lees H., Joul P., Siilak K., and Vaher M., “Separation of Perfluoroalkyl Substances by Using Nonaqueous Capillary Electrophoresis With Conductivity Detection,” Separation Science Plus 3, no. 7 (2020): 313–320.
Liu D. M., Xiong Y., Zeng H., et al., “Deep UV‐LED Induced Nitrate‐to‐Nitrite Conversion for Total Dissolved Nitrogen Determination in Water Samples Through Persulfate Digestion and Capillary Electrophoresis,” Analytica Chimica Acta 1278 (2023): 341743. PubMed
Wei Y. Y., Wang R. J., Zhang J. Q., Guo H. Y., and Chen X. Y., “Partition Management of Soil Nutrients Based on Capacitive Coupled Contactless Conductivity Detection,” Agriculture 13, no. 2 (2023): 313.
Bimbiraite‐Surviliene K., Drevinskas T., Maruska A., et al., “Portable Automated Handheld Sample Collection‐Preparation Instrument for Airborne Volatile Substances,” Microchemical Journal 159 (2020): 105576.
Ngamakarn K., Pungwiwat N., Wangkarn S., Grudpan K., and Kanyanee T., “Liquid Handling Employing a Moving Drop for Electrokinetic Sample Introduction System for Capillary Zone Electrophoresis,” Talanta 218 (2020): 121118. PubMed
Böhm D., Koall M., and Matysik F. M., “Dead Volume‐Free Flow Splitting in Capillary Electrophoresis,” Electrophoresis 43, no. 13–14 (2022): 1438–1445. PubMed
Brooijmans T., Breuer P., Schreuders A., van Tilburg M., Schoenmakers P. J., and Peters R. A. H., “Charge‐Based Separation of Acid‐Functional Polymers by Non‐Aqueous Capillary Electrophoresis Employing Deprotonation and Heteroconjugation Approaches,” Analytical Chemistry 93, no. 14 (2021): 5924–5930. PubMed
Bržezická T., Mlčochová H., Glatz Z., and Kohútová L., “Contactless Conductivity Detector as a Tool for Improving Universality and Sensitivity of Capillary Electrophoresis‐Frontal Analysis: Proof of Concept,” Journal of Separation Science 47, no. 1 (2024): 2300667. PubMed
da Costa E. T., Oliveira D. R., and do Lago C. L., “Qualitative and Quantitative Aspects of Time‐, Charge‐, and Mobility‐Based Electropherograms,” Electrophoresis 43, no. 23–24 (2022): 2363–2376. PubMed
da Costa E. T. and do Lago C. L., “Improving Hydrodynamic Injection in Capillary Electrophoresis by Using the Integral of Pressure,” Electrophoresis 45, no. 7–8 (2024): 609–617. PubMed
Drevinskas T., Maruška A., Naujokaityte G., et al., “Towards Adaptive Method for Peak Migration Time Correction: Discretization Period in Electropherograms,” Chemija 31, no. 3 (2020): 146–155.
Opekar F. and Tůma P., “Characterization of Various Geometric Arrangements of “Air‐Assisted” Flow Gating Interfaces for Capillary Electrophoresis,” Electrophoresis 42, no. 6 (2021): 749–755. PubMed
Santos M. S. F., Noell A. C., and Mora M. F., “Methods for Onboard Monitoring of Silver Biocide During Future Human Space Exploration Missions,” Analytical Methods 12, no. 25 (2020): 3205–3209. PubMed
Graf H. G., Biebl S. M., Müller L., Breitenstein C., and Huhn C., “Capillary Electrophoresis Applied for the Determination of Acidity Constants and Limiting Electrophoretic Mobilities of Ionizable Herbicides Including Glyphosate and Its Metabolites and for Their Simultaneous Separation,” Journal of Separation Science 45, no. 5 (2022): 1128–1139. PubMed
Oszwaldowski S., “Capillary Electrophoresis Study on Evolution of Phase of Mixed Micelles,” Colloid and Polymer Science 299, no. 4 (2021): 729–740.
Somnin C., Chamieh J., Saetear P., and Cottet H., “Taylor Dispersion Analysis Using Capacitively Coupled Contactless Conductivity Detector,” Talanta 272 (2024): 125815. PubMed
Vlčková N., Šimonová A., Ďuriš M., Čokrtová K., Almquist S., and Křížek T., “Detection Techniques for Carbohydrates in Capillary Electrophoresis—A Comparative Study,” Monatshefte für Chemie 154, no. 9 (2023): 967–975.
Do Y. N., Kieu T. L. P., Dang T. H. M., et al., “Green Analytical Method for Simultaneous Determination of Glucosamine and Calcium in Dietary Supplements by Capillary Electrophoresis With Capacitively Coupled Contactless Conductivity Detection,” Journal of Analytical Methods in Chemistry 2023 (2023): 2765508. PubMed PMC
Nguyen Q. H., Dang T. H. M., Quynh T. P., et al., “Inexpensive and Simple Tool for Quality Control of Nutraceutical and Tonic Products With Capillary Electrophoresis and Contactless Conductivity Detection: Some Developments in Vietnam,” Journal of Food Composition and Analysis 115 (2023): 104882.
Obma A., Bumrungpuech R., Hemwech P., et al., “Efficient Separation of Organic Anions in Beverages Using Aminosilane‐Functionalized Capillary Electrophoresis With Contactless Conductivity Detection,” Analytica Chimica Acta 1316 (2024): 342815. PubMed
Barboza L. J., Rocha K. N., and de Jesus D. P., “Simple, Fast, and Simultaneous Determination of Orthophosphate, Pyrophosphate, and Tripolyphosphate by Capillary Electrophoresis With Capacitively Coupled Contactless Conductivity Detection,” Electrophoresis 45, no. 17–18 (2024): 1487–1494. PubMed
Dang T. H. M., Hoang A. Q., Nguyen Q. H., et al., “Simultaneous Determination of Vitamin B6 and Magnesium Using Capillary Electrophoresis Coupled With Contactless Conductivity Detection: Method Development, Validation, and Application to Pharmaceutical and Nutraceutical Samples,” Journal of Chromatography B 1210 (2022): 123471. PubMed
Kurfman E. A., Mora M. F., Willis P. A., and Lunte S. M., “Development of Capillary Electrophoresis Methods for the Detection of Microbial Metabolites on Potential Future Spaceflight Missions,” Electrophoresis 45, no. 19–20 (2024): 1684–1691. PubMed PMC
Banni G. A. D., Nasreddine R., Fayad S., et al., “Screening for Pancreatic Lipase Natural Modulators by Capillary Electrophoresis Hyphenated to Spectrophotometric and Conductometric Dual Detection,” Analyst 146, no. 4 (2021): 1386–1401. PubMed
Alatawi H., Hogan A., Albalawi I., et al., “Rapid Determination of NSAIDs by Capillary and Microchip Electrophoresis With Capacitively Coupled Contactless Conductivity Detection in Wastewater,” Electrophoresis 43, no. 20 (2022): 1944–1952. PubMed PMC
Alatawi H., Hogan A., Albalawi I., O'Sullivan‐Carroll E., Wang Y. N., and Moore E., “Fast Determination of Paracetamol and Its Hydrolytic Degradation Product p‐Aminophenol by Capillary and Microchip Electrophoresis With Contactless Conductivity Detection,” Electrophoresis 43, no. 7–8 (2022): 857–864. PubMed
Tomnikova A., Kozlík P., and Křížek T., “Monosaccharide Profiling of Glycoproteins by Capillary Electrophoresis With Contactless Conductivity Detection,” Electrophoresis 43, no. 20 (2022): 1963–1970. PubMed
Doan T. H. Y., Le T. T., Nguyen T. M. T., et al., “Simultaneous Adsorption of Anionic Alkyl Sulfate Surfactants Onto Alpha Alumina Particles: Experimental Consideration and Modeling,” Environmental Technology & Innovation 24 (2021): 101920.
Kitagishi K., Kawai T., Tonouchi M., and Serita K., “An Innovative Detection Technique for Capillary Electrophoresis: Localized Terahertz Emission‐Time Domain Spectroscopy,” Journal of Chromatography A 1710 (2023): 464384. PubMed
Santos H. I., Pinheiro K. M. P., Richter E. M., and Coltro W. K. T., “Determination of Scopolamine and Butylscopolamine in Beverages, Urine and Buscopan® Tablets Samples Using Electrophoresis Microchip With Integrated Contactless Conductivity Detection,” Talanta 266 (2024): 124960. PubMed
Pinheiro K. M. P., Duarte L. M., Duarte G. F., and Coltro W. K. T., “Chip‐Based Separation of Organic and Inorganic Anions and Multivariate Analysis of Wines According to Grape Varieties,” Talanta 231 (2021): 122381. PubMed
Pinheiro K. M. P., Duarte L. M., Rodrigues M. F., et al., “Determination of Naphthenic Acids in Produced Water by Using Microchip Electrophoresis With Integrated Contactless Conductivity Detection,” Journal of Chromatography A 1677 (2022): 463307. PubMed
Pukleš I., Páger C., Sakač N., et al., “A New Green Approach to L‐Histidine and β‐Alanine Analysis in Dietary Supplements Using Rapid and Simple Contactless Conductivity Detection Integrated With High‐Resolution Glass‐Microchip Electrophoresis,” Analytical and Bioanalytical Chemistry 416, no. 15 (2024): 3605–3617. PubMed
Rezende K. C. A., Duarte L. M., Pinheiro K. M. P., Cardoso T. M. G., Nogueira S. A., and Coltro W. K. T., “Portable Analytical Platforms Associated With Chemometrics for Rapid Screening of Whisky Adulteration,” Food Analytical Methods 15, no. 9 (2022): 2451–2461.
Rezende K. C. A., Martins N. M., Talhavini M., and Coltro W. K. T., “Determination of the Alcoholic Content in Whiskeys Using Micellar Electrokinetic Chromatography on Microchips,” Food Chemistry 329 (2020): 127175. PubMed
Pukleš I., Páger C., Sakač N., et al., “Electrophoretic Determination of L‐Carnosine in Health Supplements Using an Integrated Lab‐on‐a‐Chip Platform With Contactless Conductivity Detection,” International Journal of Molecular Sciences 24, no. 19 (2023): 14705. PubMed PMC
Liu Y. P., He W. H., Lu Z. H., et al., “A pH‐Mediated Field Amplification Sample Stacking Technique Based on Portable Microchip Electrophoresis Heavy Metal Ion Detection System,” Analytical Sciences 39, no. 9 (2023): 1475–1482. PubMed
Liu Y. P., Lu Z. H., He W. H., Wu Y. Y., Li J. M., and Sun C. M., “A Novel Portable Microchip Electrophoresis System for Rapid On‐Site Detection of Soil Nutrient Ions,” Measurement Science & Technology 35, no. 7 (2024): 075104.
Hong Y., Wang L., Wang R., et al., “Contactless Conductivity Microfluidic Chip for Rapid Determination of Soil Nitrogen and Potassium Content,” Smart Agriculture 6, no. 1 (2024): 18–27.
Meng J. Y., Arega N. G., Pullagura B. K., and Kim D., “Numerical‐Simulation‐Based Buffer Design for Microchip Electrophoresis With Capacitively Coupled Contactless Conductivity Detection,” Biochip Journal 18, no. 1 (2024): 115–136.
Arsenjuk L., Wiesehahn M., Zimmermann E. M., Katschan W., and Agar D. W., “Capacitive Determination of Wall‐Film Thickness in Liquid‐Liquid Slug Flow and Its Application as a Non‐Invasive Microfluidic Viscosity Sensor,” Sensors and Actuators A: Physical 315 (2020): 112342.
Gao H. M., Ku S. C., and Jian X. H., “Void Fraction Measurement of Gas‐Liquid Two‐Phase Flow Based on Compressed Sensing Theory and Capacitively Coupled Electrical Resistance Tomography System,” Measurement Science & Technology 34, no. 12 (2023): 125404.
He Y. C., He Y., Jiang Y. D., et al., “A New Online Monitoring Method for Water‐in‐Oil Droplet Based Microfluidic Devices,” IEEE Sensors Journal 23, no. 5 (2023): 4373–4382.
Hoang B. A., Bui V. A., Trung K. D., et al., “Development of a Wireless Passive Capacitively Coupled Contactless Conductivity Detection (WPC4D) for Fluidic Flow Detection Utilizing 3D Printing and PCB Technologies,” Instrumentation Science and Technology 51, no. 6 (2023): 591–609.
Huang J. C., Jiang Y. D., Ji H. F., Wang B. L., and Huang Z. Y., “Electrical Impedance Characteristics of Slug Flow in Small Channels and Its Application to Void Fraction Estimation,” International Journal of Multiphase Flow 156 (2022): 104200.
Liang Y. Q., Hu S. Q., Zhang Q., Zhang D. T., Guo G. S., and Wang X. Y., “Determination of Nanoplastics Using a Novel Contactless Conductivity Detector With Controllable Geometric Parameters,” Analytical Chemistry 94, no. 3 (2022): 1552–1558. PubMed
Van P. N., Hoang A. B., Thanh H. T., Thu H. N., Thu H. B., and Quang L. D., “Numerical Calculation and Analysis of a Novel Complex Impedance Sensing Approach for In‐Flow Droplet Detection Utilizing the C4D Technique,” Modelling and Simulation in Materials Science and Engineering 31, no. 7 (2023): 075011.
Sheng B. X., Huang J. C., Ji H. F., and Huang Z. Y., “A New Contactless Cross‐Correlation Velocity Measurement System for Gas‐Liquid Two‐Phase Flow,” Sensors 23, no. 10 (2023): 4886. PubMed PMC
Wang C. X., Huang J. C., Ji H. F., and Huang Z. Y., “Response Characteristics of Contactless Impedance Detection (CID) Sensor on Slug Flow in Small Channels: The Investigation on Slug Separation Distance,” Sensors 22, no. 22 (2022): 8987. PubMed PMC
Guo Z. W., Huang J. C., Huang Q., Jiang Y. D., Ji H. F., and Huang Z. Y., “New Contactless Velocity Measurement Sensor for Bubble/Slug Flow in Small Scale Pipes,” IEEE Access 8 (2020): 198035–198046.
Huang J. C., Guo Z. W., Tang X. Y., Ji H., Wang B. L., and Huang Z. Y., “A Method for Void Fraction Measurement of Bubble/Slug Flow in Small Channels Based on Contactless Impedance Detection,” Review of Scientific Instruments 92, no. 10 (2021): 105006. PubMed
Huang Q., Huang J. C., Jiang Y. D., Ji H. F., Wang B. L., and Huang Z. Y., “Investigation of the Effects of Electrode Geometry on the Performance of C4D Sensor With Radial Configuration,” Sensors 21, no. 13 (2021): 4454. PubMed PMC
Maruška A., Drevinskas T., Stankevičius M., et al., “Single‐Chip Based Contactless Conductivity Detection System for Multi‐Channel Separations,” Analytical Methods 13, no. 1 (2021): 141–146. PubMed
Tang X. Y., Huang J. C., Ji H. F., Wang B. L., and Huang Z. Y., “New Contactless Conductivity Detection (CCD) Sensor for Fluid Conductivity Measurement,” IEEE Sensors Journal 20, no. 19 (2020): 11256–11264.
Yang M. P., Cao M. Y., Zhang Z. X., and Wang C. F., “PCB‐C4D Coupled With Paper‐Based Microfluidic Sampling for the Rapid Detection of Liquid Conductivity,” Analytical Methods 16, no. 16 (2024): 2543–2555. PubMed
Yuskina E., Makarov N., Khaydukova M., et al., “A Simple Contactless High‐Frequency Electromagnetic Sensor: Proof of Concept,” Analytical Chemistry 94, no. 35 (2022): 11978–11982. PubMed
Zhang S. F., Yuan H. Y., and Xiao D., “A Study on Double Inputs Direct Contact and Single Output Capacitively Coupled Conductivity Detector,” Sensors 22, no. 7 (2022): 2729. PubMed PMC
Zürn M. and Hanemann T., “Development of a Contactless Conductivity Sensor in Flowing Micro Systems for Cerium Nitrate,” Processes 10, no. 10 (2022): 2075.
Liang P. H., Jiang Y. D., Ji H. F., Wang B. L., and Huang Z. Y., “A New Electrical Resistance Measurement Method of Carbon Fiber‐Reinforced Polymer Tubes Based on C4D Technique,” IEEE Sensors Journal 23, no. 5 (2023): 4352–4361.
Marques R., Lima N. M., Cantarino L. F., et al., “3‐(Methacryloxy)propyl Trimethoxysilane‐Based Monolithic Stationary Phases for Capillary‐Scale Chromatography and Their Characterization by Contactless Conductivity Detection and Solid‐State NMR Spectroscopy,” Microchemical Journal 161 (2021): 105783.
Böhm D. and Matysik F. M., “Characterization of Linearly Coupled Capillaries With Various Inner Diameters in the Context of Capillary Electrophoresis,” Monatshefte für Chemie 152, no. 9 (2021): 1053–1060.
Ishida A., Nishimura T., Koyama K., Maeki M., Tani H., and Tokeshi M., “A Portable Liquid Chromatography System Based on a Separation/Detection Chip Module Consisting of a Replaceable Ultraviolet‐Visible Absorbance or Contactless Conductivity Detection Unit,” Journal of Chromatography A 1706 (2023): 464272. PubMed
Liu W. W., Liang Z. Q., Wang Y. Y., et al., “A Facile Online Multi‐Gear Capacitively Coupled Contactless Conductivity Detector for an Automatic and Wide Range Monitoring of High Salt in HPLC,” Analyst 147, no. 3 (2022): 496–504. PubMed
Niezen L. E., Bos T. S., Schoenmakers P. J., Somsen G. W., and Pirok B. W. J., “Capacitively Coupled Contactless Conductivity Detection to Account for System‐Induced Gradient Deformation in Liquid Chromatography,” Analytica Chimica Acta 1271 (2023): 341466. PubMed
Figueredo F., Stolowicz F., Vojnov A., et al., “Towards a Versatile and Economic Chagas Disease Point‐of‐Care Testing System, by Integrating Loop‐Mediated Isothermal Amplification and Contactless/Label‐Free Conductivity Detection,” PLOS Neglected Tropical Diseases 15, no. 5 (2021): e0009406. PubMed PMC
Fukana N., Sonsa‐ard T., Chantipmanee N., Hauser P. C., Wilairat P., and Nacapricha D., “Contactless Conductivity Sensor as Detector for Microfluidic Paper‐Based Analytical Device With Application to Unique Rapid Method for Quantifying Sulfite Preservative,” Sensors & Actuators, B: Chemical 339 (2021): 129838.
Zhang R. H., Guo Z. H., Zhang Q., et al., “Determination of Human Serum Total Protein via Electrophoresis Titration and Capacitively Coupled Contactless Conductivity Detection,” Chinese Journal of Chromatography 41, no. 8 (2023): 707–713. PubMed PMC
Zhang R. H., Zhang Q., Guo Z. H., et al., “A Facile Electrophoresis Sensor With Capacitively Coupled Contactless Conductivity for Detection of Protein Content in Biosamples,” Sensors & Actuators, B: Chemical 393 (2023): 134134.
Tang Z. Y., Tao Z. M., Cao Y. R., Zhang Q., Liu W. W., and Cao C. X., “Capacitively Coupled Contactless Conductivity Detection‐Based Sensor for Liquid Level Measurement and Application to Clinical Infusion Monitoring,” Sensors and Actuators A: Physical 367 (2024): 115073.
Wu Y. K., Lu B. P., Zhang W., Jiang Y. D., Wang B. L., and Huang Z. Y., “A New Logging‐While‐Drilling Method for Resistivity Measurement in Oil‐Based Mud,” Sensors 20, no. 4 (2020): 1075. PubMed PMC
Riboldi C., Castillo D. A. C., Crafa D. M., and Carminati M., “Contactless Sensing of Water Properties for Smart Monitoring of Pipelines,” Sensors 23, no. 4 (2023): 2075. PubMed PMC
Khan N. Z., Martin D., Pliquett U., et al., “High‐Frequency Contactless Sensor for the Detection of Heparin‐Induced Thrombocytopenia Antibodies via Platelet Aggregation,” International Journal of Molecular Sciences 23, no. 22 (2022): 14395. PubMed PMC
Zhang X. Z., Jiang X. Y., Yang Q. Q., et al., “Affordable Automated Phenotypic Antibiotic Susceptibility Testing Method Based on a Contactless Conductometric Sensor,” Scientific Reports 10, no. 1 (2020): 21216. PubMed PMC
Zhang X. Z., Wang X. C., Cheng H. R., Zheng Y. H., Zhao J., and Qu K. M., “A Universal Automated Method for Determining the Bacteriostatic Activity of Nanomaterials,” Journal of Hazardous Materials 413 (2021): 125320. PubMed
Zhang X. Z., Yang Q. Q., Ma L. Y., et al., “Automatically Showing Microbial Growth Kinetics With a High‐Performance Microbial Growth Analyzer,” Biosensors & Bioelectronics 239 (2023): 115626. PubMed