Monitoring of amoxicilline and ceftazidime in the microdialysate of diabetic foot and serum by capillary electrophoresis with contactless conductivity detection

. 2022 Jun ; 43 (11) : 1129-1139. [epub] 20220418

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35072285

Determination of the broad-spectrum antibiotics amoxicilline (AMX) and ceftazidime (CTZ) in blood serum and microdialysates of the subcutaneous tissue of the lower limbs is performed using CE with contactless conductivity detection (C4 D). Baseline separation of AMX is achieved in 0.5 M acetic acid as the background electrolyte and separation of CTZ in 3.2 M acetic acid with addition of 13% v/v methanol. The CE-C4 D determination is performed in a 25 µm capillary with suppression of the EOF using INST-coating on an effective length of 18 cm and the attained migration time is 4.2 min for AMX and 4.4 min for CTZ. The analysis was performed using 20 µl of serum and 15 µl of microdialysate, treated by the addition of acetonitrile in a ratio of 1/3 v/v and the sample is injected into the capillary using the large volume sample stacking technique. The LOQ attained in the microdialysate is 148 ng/ml for AMX and 339 ng/ml for CTZ, and in serum 143 ng/ml for AMX and 318 ng/ml for CTZ. The CE-C4 D method is employed for monitoring the passage of AMX and CTZ from the blood circulatory system into the subcutaneous tissue at the sites of diabetic ulceration in patients suffering from diabetic foot syndrome and also for measuring the pharmacokinetics following intravenous application of bolus antibiotic doses.

Zobrazit více v PubMed

van Netten JJ, Bus SA, Apelqvist J, Lipsky BA, Hinchliffe RJ, Game F, et al. Definitions and criteria for diabetic foot disease. Diabetes Metab Res Rev. 2020;36(1):e3268.

Bus SA, Lavery LA, Monteiro-Soares M, Rasmussen A, Raspovic A, Sacco ICN, et al. Guidelines on the prevention of foot ulcers in persons with diabetes (IWGDF 2019 update). Diabetes Metab Res Rev. 2020;36(1):e3269.

Fejfarova V, Jirkovska A, Dubsky M, Game F, Vydlakova J, Sekerkova A, et al. An alteration of lymphocytes subpopulations and immunoglobulins levels in patients with diabetic foot ulcers infected particularly by resistant pathogens. J Diabetes Res. 2016;2016:2356870.

de Marco BA, Natori JSH, Fanelli S, Totoli EG, Salgado HRN. Characteristics, properties and analytical methods of amoxicillin: a review with green approach. Crit Rev Anal Chem. 2017;47:267-77.

Duan XY, Zhang Y, Yan JQ, Zhou Y, Li GH, Feng XS. Progress in pretreatment and analysis of cephalosporins: an update since 2005. Crit Rev Anal Chem. 2021;51:55-86.

Nandi P, Lunte SM. Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: a review. Anal Chim Acta. 2009;651:1-14.

Saylor RA, Lunte SM. A review of microdialysis coupled to microchip electrophoresis for monitoring biological events. J Chromatogr A. 2015;1382:48-64.

Guihen E, O'Connor WT. Current separation and detection methods in microdialysis the drive towards sensitivity and speed. Electrophoresis 2009;30:2062-75.

Dominguez-Vega E, Perez-Fernandez V, Crego AL, Garcia MA, Marina ML. Recent advances in CE analysis of antibiotics and its use as chiral selectors. Electrophoresis 2014;35:28-49.

Paul P, Sanger-van de Griend C, Adams E, Van Schepdael A. Recent advances in the capillary electrophoresis analysis of antibiotics with capacitively coupled contactless conductivity detection. J Pharm Biomed Anal. 2018;158:405-15.

Hauser PC, Kubáň P. Capacitively coupled contactless conductivity detection for analytical techniques: developments from 2018 to 2020. J Chromatogr A. 2020;1632:19.

Pham TNM, Le TB, Le DD, Ha TH, Nguyen NS, Pham TD, et al. Determination of carbapenem antibiotics using a purpose-made capillary electrophoresis instrument with contactless conductivity detection. J Pharm Biomed Anal. 2020;178:8.

Le TB, Hauser PC, Pham TNM, Kieu TLP, Le TPQ, Hoang QA, et al. Low cost and versatile analytical tool with purpose made capillary electrophoresis coupled to contactless conductivity detection: application to antibiotics quality control in Vietnam. Electrophoresis 2020;41:1980-90.

Nguyen TAH, Pham TNM, Le TB, Le DC, Tran TTP, Nguyen TQH, et al. Cost-effective capillary electrophoresis with contactless conductivity detection for quality control of beta-lactam antibiotics. J Chromatogr A. 2019;1605:360356.

El-Attug MN, Hoogmartens J, Adams E, Van Schepdael A. Optimization of capillary electrophoresis method with contactless conductivity detection for the analysis of tobramycin and its related substances. J Pharm Biomed Anal. 2012;58:49-57.

Yang ZJ, Qin WD. Separation of fluoroquinolones in acidic buffer by capillary electrophoresis with contactless conductivity detection. J Chromatogr A. 2009;1216:5327-32.

Marra MC, Cunha RR, Munoz RAA, Batista AD, Richter EM. Single-run capillary electrophoresis method for the fast simultaneous determination of amoxicillin, clavulanate, and potassium. J Sep Sci. 2017;40:3557-62.

Law WS, Kuban P, Yuan LL, Zhao JH, Li SFY, Hauser PC. Determination of tobramycin in human serum by capillary electrophoresis with contactless conductivity detection. Electrophoresis 2006;27:1932-8.

Mukhtar NH, Mamat NA, See HH. Monitoring of tobramycin in human plasma via mixed matrix membrane extraction prior to capillary electrophoresis with contactless conductivity detection. J Pharm Biomed Anal. 2018;158:184-8.

Tůma P. Frequency tuned contactless conductivity detector for the electrophoretic separation of clinical samples in capillaries with very small internal dimensions. J Sep Sci. 2017;40:940-7.

Tůma P, Sommerová B, Šiklová M. Monitoring of adipose tissue metabolism using microdialysis and capillary electrophoresis with contactless conductivity detection. Talanta 2019;192:380-6.

Tůma P. Rapid determination of globin chains in red blood cells by capillary electrophoresis using INSTCoated fused-silica capillary. J Sep Sci. 2014;37:1026-32.

Tůma P, Hložek T, Kamišová J, Gojda J. Monitoring of circulating amino acids in patients with pancreatic cancer and cancer cachexia using capillary electrophoresis and contactless conductivity detection. Electrophoresis 2021;42:1885-91.

Tůma P, Heneberg P, Vaculín S, Koval D. Electrophoretic large volume sample stacking for sensitive determination of the anti-microbial agent pentamidine in rat plasma for pharmacological studies. Electrophoresis 2018;39:2605-11.

Chefer VI, Thompson AC, Zapata A, Shippenberg TS. Overview of Brain Microdialysis. Curr Protoc Neurosci. 2009. https://doi.org/10.1002/0471142301.ns0701s47

Tůma P, Jaček M, Fejfarová V, Polák J. Electrophoretic stacking for sensitive determination of antibiotic ceftazidime in human blood and microdialysates from diabetic foot. Anal Chim Acta. 2016;942:139-45.

McWhinney BC, Wallis SC, Hillister T, Roberts JA, Lipman J, Ungerer JPJ. Analysis of 12 beta-lactam antibiotics in human plasma by HPLC with ultraviolet detection. J Chromatogr B: Anal Technol Biomed Life Sci. 2010;878:2039-43.

Tůma P. Determination of amino acids by capillary and microchip electrophoresis with contactless conductivity detection theory, instrumentation and applications. Talanta 2021;224:121922.

Tůma P, Gojda J. Rapid determination of branched chain amino acids in human blood plasma by pressure-assisted capillary electrophoresis with contactless conductivity detection. Electrophoresis 2015;36:1969-75.

Šolínová V, Kašička V. Recent applications of conductivity detection in capillary and chip electrophoresis. J Sep Sci. 2006;29:1743-62.

Shihabi ZK. Transient pseudo-isotachophoresis for sample concentration in capillary electrophoresis. Electrophoresis 2002;23:1612-7.

Garcia-Reiriz A, Damiani PC, Olivieri AC. Different strategies for the direct determination of amoxicillin in human urine by second-order multivariate analysis of kinetic spectrophotometric data. Talanta 2007;71:806-15.

Santos SM, Henriques M, Duarte AC, Esteves VI. Development and application of a capillary electrophoresis based method for the simultaneous screening of six antibiotics in spiked milk samples. Talanta 2007;71:731-7.

Yeh HH, Yang YH, Chou YW, Ko JY, Chou CA, Chen SH. Determination of ceftazidime in plasma and cerebrospinal fluid by micellar electrokinetic chromatography with direct sample injection. Electrophoresis 2005;26:927-34.

Hoizey G, Lamiable D, Frances C, Trenque T, Kaltenbach M, Denis J, et al. Simultaneous determination of amoxicillin and clavulanic acid in human plasma by HPLC with UV detection. J Pharm Biomed Anal. 2002;30:661-6.

Pei Q, Yang GP, Li ZJ, Peng XD, Fan JH, Liu ZQ. Simultaneous analysis of amoxicillin and sulbactam in human plasma by HPLC-DAD for assessment of bioequivalence. J Chromatogr B: Anal Technol Biomed Life Sci. 2011;879:2000-4.

Fernandez-Torres R, Consentino MO, Lopez MAB, Mochon MC. Simultaneous determination of 11 antibiotics and their main metabolites from four different groups by reversed-phase high-performance liquid chromatography-diode array-fluorescence (HPLC-DAD-FLD) in human urine samples. Talanta 2010;81:871-80.

Yoon KH, Lee SY, Kim W, Park JS, Kim HJ. Simultaneous determination of amoxicillin and clavulanic acid in human plasma by HPLC ESI mass spectrometry. J Chromatogr B: Anal Technol Biomed Life Sci. 2004;813:121-7.

Szultka M, Krzeminski R, Szeliga J, Jackowski M, Buszewski B. A new approach for antibiotic drugs determination in human plasma by liquid chromatography mass spectrometry. J Chromatogr A. 2013;1272:41-9.

Bergman J, Harvill L, Hawkins S, Sladky K, Cox S. Determination of ceftazidime in plasma by RP HPLC and ultraviolet detection. Biomed Chromatogr. 2021;35:e5104.

Isla A, Arzuaga A, Maynar J, Gascon AR, Solinis MA, Corral E, et al. Determination of ceftazidime and cefepime in plasma and dialysate-ultrafiltrate from patients undergoing continuous veno-venous hemodiafiltration by HPLC. J Pharm Biomed Anal. 2005;39:996-1005.

Ye GM, Cai XJ, Wang B, Zhou ZX, Yu XH, Wang WB, et al. Simultaneous determination of vancomycin and ceftazidime in cerebrospinal fluid in craniotomy patients by high-performance liquid chromatography. J Pharm Biomed Anal. 2008;48:860-5.

Colin P, De Bock L, T'Jollyn H, Boussery K, Van Bocxlaer J. Development and validation of a fast and uniform approach to quantify Î2-lactam antibiotics in human plasma by solid phase extraction-liquid chromatography electrospray-tandem mass spectrometry. Talanta 2013;103:285-93.

Cazorla-Reyes R, Romero-Gonzalez R, Frenich AG, Maresca MAR, Vidal JLM. Simultaneous analysis of antibiotics in biological samples by ultra high performance liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal. 2014;89:203-12.

Abdulla A, Bahmany S, Wijma RA, van der Nagel BCH, Koch BCP. Simultaneous determination of nine Î2-lactam antibiotics in human plasma by an ultrafast hydrophilic-interaction chromatography tandem mass spectrometry. J Chromatogr B: Anal Technol Biomed Life Sci. 2017;1060:138-43.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...