Does PAD and microcirculation status impact the tissue availability of intravenously administered antibiotics in patients with infected diabetic foot? Results of the DFIATIM substudy

. 2024 ; 15 () : 1326179. [epub] 20240507

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38774229

AIMS/HYPOTHESIS: The aim of this substudy (Eudra CT No:2019-001997-27)was to assess ATB availability in patients with infected diabetic foot ulcers(IDFUs)in the context of microcirculation and macrocirculation status. METHODS: For this substudy, we enrolled 23 patients with IDFU. Patients were treated with boluses of amoxicillin/clavulanic acid(AMC)(12patients) or ceftazidime(CTZ)(11patients). After induction of a steady ATB state, microdialysis was performed near the IDFU. Tissue fluid samples from the foot and blood samples from peripheral blood were taken within 6 hours. ATB potential efficacy was assessed by evaluating the maximum serum and tissue ATB concentrations(Cmax and Cmax-tissue)and the percentage of time the unbound drug tissue concentration exceeds the minimum inhibitory concentration (MIC)(≥100% tissue and ≥50%/60% tissue fT>MIC). Vascular status was assessed by triplex ultrasound, ankle-brachial and toe-brachial index tests, occlusive plethysmography comprising two arterial flow phases, and transcutaneous oxygen pressure(TcPO2). RESULTS: Following bolus administration, the Cmax of AMC was 91.8 ± 52.5 μgmL-1 and the Cmax-tissue of AMC was 7.25 ± 4.5 μgmL-1(P<0.001). The Cmax for CTZ was 186.8 ± 44.1 μgmL-1 and the Cmax-tissue of CTZ was 18.6 ± 7.4 μgmL-1(P<0.0001). Additionally, 67% of patients treated with AMC and 55% of those treated with CTZ achieved tissue fT>MIC levels exceeding 50% and 60%, respectively. We observed positive correlations between both Cmax-tissue and AUCtissue and arterial flow. Specifically, the correlation coefficient for the first phase was r=0.42; (P=0.045), and for the second phase, it was r=0.55(P=0.01)and r=0.5(P=0.021). CONCLUSIONS: Bactericidal activity proved satisfactory in only half to two-thirds of patients with IDFUs, an outcome that appears to correlate primarily with arterial flow.

Zobrazit více v PubMed

. Available online at: https://iwgdfguidelines.org/guidelines-2023/.

Boulton AJM, Whitehouse RW. The Diabetic Foot (2023). Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al., editors. South Dartmouth (MA: MDText.com, Inc.).

Boffeli TJ, Luer SA, Brett KM, Chang HC. A review of consecutive cases to identify the rate of underlying osteomyelitis in patients undergoing surgical treatment of gangrene of the forefoot and impact of acute infection on outcome following amputation. J Foot Ankle Surg. (2022) 61:286–92. doi: 10.1053/j.jfas.2021.08.001 PubMed DOI

Noor S, Khan RU, Ahmad J. Understanding diabetic foot infection and its management. Diabetes Metab Syndr. (2017) 11:149–56. doi: 10.1016/j.dsx.2016.06.023 PubMed DOI

Dixon D, Edmonds M. Managing diabetic foot ulcers: pharmacotherapy for wound healing. Drugs. (2021) 81:29–56. doi: 10.1007/s40265-020-01415-8 PubMed DOI

Matheson EM, Bragg SW, Blackwelder RS. Diabetes-related foot infections: diagnosis and treatment. Am Fam Physician. (2021) 104:64–72. PubMed

Lipsky BA, Silverman MH, Joseph WS. A proposed new classification of skin and soft tissue infections modeled on the subset of diabetic foot infection. Open Forum Infect Dis. (2017) 4(1):ofw255. doi: 10.1093/ofid/ofw255 PubMed DOI PMC

Pea F. Practical concept of pharmacokinetics/pharmacodynamics in the management of skin and soft tissue infections. Curr Opin Infect Dis. (2016) 29:153–9. doi: 10.1097/QCO.0000000000000256 PubMed DOI

Mills JL, Conte MS, Armstrong DG, Pomposelli FB, Schanzer A, Sidawy AN, et al. . The society for vascular surgery lower extremity threatened limb classification system: Risk stratification based on Wound, Ischemia, and foot Infection (WIfI). J Vasc Surg. (2014) 59:220–34. doi: 10.1016/j.jvs.2013.08.003 PubMed DOI

Lam K, van Asten SAV, Nguyen T, La Fontaine J, Lavery LA. Diagnostic accuracy of probe to bone to detect osteomyelitis in the diabetic foot: A systematic review. Clin Infect Dis. (2016) 63:944–8. doi: 10.1093/cid/ciw445 PubMed DOI

Transcutaneous PO2 measurements. In: Catalano M, Pecsvarady Z, Wautrecht J-C, BE, Olinic DM, Gerotziafas GT, et al. VAS European Book on Angiology/Vascular Medicine (2018). Aracne, ISBN: ISBN 978-88-255-1052-2. R. M, P. A.

Fejfarová V, Matuška J, Jude E, Pithová P, Flekač M, Roztočil K, et al. . Stimulation TcPO2 testing improves diagnosis of peripheral arterial disease in patients with diabetic foot. Front Endocrinol. (2021) 12. doi: 10.3389/fendo.2021.744195 PubMed DOI PMC

Přibil J, Přibilova A, Frollo I. First-Step PPG Signal Analysis for Evaluation of Stress Induced during Scanning in the Open-AirMRI Device. Sensors (Basel). (2020) 20(12):3532. doi: 10.3390/s20123532 PubMed DOI PMC

Oliva I, Roztocil K. Toe Pulse Wave Analysis in Obliterating Atherosclerosis. Angiology. (1983) 34, 610–9. PubMed

Korpas FD, Hálek J, Dolezal L. Parameters describing the pulse wave. Physiol Res. (2009) 58(4):473-9. doi: 10.33549/physiolres.931468 PubMed DOI

Urban M, Fouasson-Chailloux A, Signolet I, Ribas CC, Feuilloy M, Abraham P. Comparison of two devices for measuring exercise transcutaneous oxygen pressures in patients with claudication. Vasa - Eur J Vasc Med. (2015) 44:355–62. doi: 10.1024/0301-1526/a000454 PubMed DOI

Plock N, Kloft C. Microdialysis - theoretical background and recent implementation in applied life-sciences. Eur J Pharm Sci. (2005) 25:1–24. doi: 10.1016/j.ejps.2005.01.017 PubMed DOI

Zhou QY, Gallo JM. In vivo microdialysis for PK and PD studies of anticancer drugs. AAPS J. (2005) 7:E659–67. doi: 10.1208/aapsj070366 PubMed DOI PMC

Tůma P, Jaček M, Fejfarová V, Polák J. Electrophoretic stacking for sensitive determination of antibiotic ceftazidime in human blood and microdialysates from diabetic foot. Anal Chim Acta. (2016) 942:139–45. doi: 10.1016/j.aca.2016.09.008 PubMed DOI

Chefer VI, Thompson AC, Zapata A, Shippenberg TS. Overview of brain microdialysis. Curr Protoc Neurosci. (2009), Unit7.1. doi: 10.1002/0471142301.ns0701s47 PubMed DOI PMC

Tůma P, Jaček M, Sommerová B, Dlouhý P, Jarošíková R, Husáková J, et al. . Monitoring of amoxicilline and ceftazidime in the microdialysate of diabetic foot and serum by capillary electrophoresis with contactless conductivity detection. Electrophoresis. (2022) 43:1129–39. doi: 10.1002/elps.202100366 PubMed DOI

Zhou QY, Gallo JM. In vivo microdialysis for PK and PD studies of anticancer drugs.(2005) 7:E659–67. doi: 10.1208/aapsj070366 PubMed DOI PMC

Nandi P, Lunte SM. Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: A review. Anal Chim Acta. (2009) 651:1–14. doi: 10.1016/j.aca.2009.07.064 PubMed DOI PMC

Booth MA, Gowers SAN, Leong CL, Rogers ML, Samper IC, Wickham AP, et al. . Chemical monitoring in clinical settings: Recent developments toward real-time chemical monitoring of patients. Anal Chem. (2018) 90:2–18. doi: 10.1021/acs.analchem.7b04224 PubMed DOI

Zhang W, Ramautar R. CE-MS for metabolomics: Developments and applications in the period 2018-2020. Electrophoresis. (2021) 42:381–401. doi: 10.1002/elps.202000203 PubMed DOI PMC

van Mever M, Segers K, Drouin N, Guled F, Vander Heyden Y, Van Eeckhaut A, et al. . Direct profiling of endogenous metabolites in rat brain microdialysis samples by capillary electrophoresis-mass spectrometry with on-line preconcentration. Microchem J. (2020) 156:1–10. doi: 10.1016/j.microc.2020.104949 DOI

Guihen E, O'Connor WT. Current separation and detection methods in microdialysis the drive towards sensitivity and speed. Electrophoresis. (2009) 30:2062–75. doi: 10.1002/elps.200900039 PubMed DOI

Guihen E, O'Connor WT. Capillary and microchip electrophoresis in microdialysis: Recent applications. Electrophoresis. (2010) 31:55–64. doi: 10.1002/elps.200900467 PubMed DOI

Fejfarová V, Jarošíková R, Polák J, Sommerová B, Husáková J, Wosková V, et al. . Microdialysis as a tool for antibiotic assessment in patients with diabetic foot: a review. Front Endocrinol. (2023) 14. doi: 10.3389/fendo.2023.1141086 PubMed DOI PMC

Štěpánová S, Kašička V. Applications of capillary electromigration methods for separation and analysis of proteins (2017–mid 2021) – A review. Anal Chim Acta. (2022) 1209:1–29. doi: 10.1016/j.aca.2022.339447 PubMed DOI

Tůma P. Monitoring of biologically active substances in clinical samples by capillary and microchip electrophoresis with contactless conductivity detection: A review. Anal Chim Acta. (2022) 1225:1–20. doi: 10.1016/j.aca.2022.340161 PubMed DOI

Olid AS, Sola I, Barajas-Nava LA, Gianneo OD, Cosp XB, Lipsky BA. Systemic antibiotics for treating diabetic foot infections. Cochrane Database Syst Rev. (2015). doi: 10.1002/14651858.CD009061.pub2 PubMed DOI PMC

Raymakers JT, Houben AJ, van der Heyden JJ, Tordoir JH, Kitslaar PJ, Schaper NC. The effect of diabetes and severe ischaemia on the penetration of ceftazidime into tissues of the limb. Diabetic Med. (2001) 18:229–34. doi: 10.1046/j.1464-5491.2001.00460.x PubMed DOI

Ray A, Malin D, Nicolau DP, Wiskirchen DE. Antibiotic tissue penetration in diabetic foot infections A review of the microdialysis literature and needs for future research. J Am Podiatr Med Assoc. (2015) 105:520–31. doi: 10.7547/14-036.1 PubMed DOI

Hernandez M, Borrull F, Calull M. Analysis of antibiotics in biological samples by capillary electrophoresis. Trac-Trends Anal Chem. (2003) 22:416–27. doi: 10.1016/S0165-9936(03)00702-7 DOI

Schultz KN, Kennedy RT. Time-resolved microdialysis for in vivo neurochemical measurements and other applications. Annu Rev Analytical Chem Palo Alto Annu Rev. (2008), 627–61. doi: 10.1146/annurev.anchem.1.031207.113047 PubMed DOI

Tůma P, Samcová E, Štulík K. Determination of the spectrum of low molecular mass organic acids in urine by capillary electrophoresis with contactless conductivity and ultraviolet photometric detection - An efficient tool for monitoring of inborn metabolic disorders. Anal Chim Acta. (2011) 685:84–90. doi: 10.1016/j.aca.2010.11.007 PubMed DOI

Opekar F, Coufal P, Štulík K. Rapid capillary zone electrophoresis along short separation pathways and its use in some hyphenated systems: A critical review. Chem Rev. (2009) 109:4487–99. doi: 10.1021/cr900018r PubMed DOI

Tůma P. Progress in on-line, at-line, and in-line coupling of sample treatment with capillary and microchip electrophoresis over the past 10 years: A review. Anal Chim Acta. (2023) 1261. doi: 10.1016/j.aca.2023.341249 PubMed DOI

McWhinney BC, Wallis SC, Hillister T, Roberts JA, Lipman J, Ungerer JPJ. Analysis of 12 beta-lactam antibiotics in human plasma by HPLC with ultraviolet detection. J Chromatogr B. (2010) 878:2039–43. doi: 10.1016/j.jchromb.2010.05.027 PubMed DOI

Gariani K, Lebowitz D, Kressmann B, von Dach E, Sendi P, Waibel F, et al. . Oral amoxicillin-clavulanate for treating diabetic foot infections. Diabetes Obes Metab. (2019) 21:1483–6. doi: 10.1111/dom.13651 PubMed DOI

Soares A, Montanha MC, Alcantara CDS, Silva SRB, Kuroda CM, Yamada SS, et al. . Pharmacokinetics of amoxicillin in obese and nonobese subjects. Br J Clin Pharmacol. (2021) 87:3227–33. doi: 10.1111/bcp.14739 PubMed DOI

Varaki ES, Gargiulo GD, Penkala S, Breen PP. Peripheral vascular disease assessment in the lower limb: a review of current and emerging non-invasive diagnostic methods. BioMed Eng Online. (2018) 17. doi: 10.1186/s12938-018-0494-4 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...