Oxidative stress and detoxification biomarker responses in aquatic freshwater vertebrates exposed to microcystins and cyanobacterial biomass
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
- MeSH
- biologické markery analýza MeSH
- biomasa MeSH
- glutathion analýza MeSH
- glutathiontransferasa analýza MeSH
- mikrocystiny škodlivé účinky MeSH
- oxidační stres účinky léků MeSH
- peroxidace lipidů účinky léků MeSH
- ryby metabolismus MeSH
- sinice metabolismus MeSH
- škodlivý vodní květ MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
- glutathion MeSH
- glutathiontransferasa MeSH
- mikrocystiny MeSH
Cyanobacterial blooms represent a serious threat to the aquatic environment. Among other effects, biochemical markers have been studied in aquatic vertebrates after exposures to toxic cyanobacteria. Some parameters such as protein phosphatases may serve as selective markers of exposure to microcystins, but under natural conditions, fish are exposed to complex mixtures, which affect the overall biomarker response. This review aims to provide a critical summary of biomarker responses in aquatic vertebrates (mostly fish) to toxic cyanobacteria with a special focus on detoxification and oxidative stress. Detoxification biomarkers such as glutathione (GSH) and glutathione-S-transferase (GST) showed very high variability with poor general trends. Often, stimulations and/or inhibitions and/or no effects at GSH or GST have been reported, even within a single study, depending on many variables, including time, dose, tissue, species, etc. Most of the oxidative stress biomarkers (e.g., superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) provided more consistent responses, but only lipid peroxidation (LPO) seemed to fulfill the criteria needed for biomarkers, i.e., a sufficiently long half-life and systematic response. Indeed, reviewed papers demonstrated that toxic cyanobacteria systematically elevate levels of LPO, which indicates the important role of oxidative damage in cyanobacterial toxicity. In summary, the measurement of biochemical changes under laboratory conditions may provide information on the mode of toxic action. However, comparison of different studies is very difficult, and the practical use of detoxification or oxidative stress biomarkers as diagnostic tools or early warnings of cyanobacterial toxicity is questionable.
Zobrazit více v PubMed
Aquat Toxicol. 2006 May 10;77(3):314-21 PubMed
Environ Toxicol. 2004 Dec;19(6):564-70 PubMed
Environ Toxicol. 2006 Feb;21(1):22-32 PubMed
FEMS Microbiol Ecol. 2003 Mar 1;43(2):141-8 PubMed
Aquat Toxicol. 2000 Jun 1;49(3):189-198 PubMed
Ecotoxicology. 2011 Mar;20(2):479-90 PubMed
Environ Sci Pollut Res Int. 2011 Sep;18(8):1333-42 PubMed
Toxicology. 2003 Jun 30;188(2-3):285-96 PubMed
Arch Environ Contam Toxicol. 2011 Feb;60(2):319-26 PubMed
Environ Toxicol. 2001;16(6):535-42 PubMed
Toxicon. 1997 Apr;35(4):583-95 PubMed
Fish Physiol Biochem. 2010 Jun;36(2):165-72 PubMed
FEBS Lett. 1990 May 21;264(2):187-92 PubMed
Environ Health Perspect. 1998 Jul;106(7):409-13 PubMed
Toxicol Sci. 2000 Apr;54(2):365-73 PubMed
Aquat Toxicol. 2005 Apr 30;72(3):261-71 PubMed
Int J Biochem Cell Biol. 2004 May;36(5):931-41 PubMed
Aquat Toxicol. 2002 Oct 30;60(3-4):223-31 PubMed
Toxicon. 2007 Sep 1;50(3):365-76 PubMed
Environ Sci Pollut Res Int. 2010 Nov;17(9):1581-90 PubMed
Toxicon. 2005 Mar 15;45(4):395-402 PubMed
Toxicon. 2003 Jul;42(1):85-9 PubMed
Comp Biochem Physiol C Toxicol Pharmacol. 2005 Jul;141(3):292-6 PubMed
Toxicol Appl Pharmacol. 2000 Apr 1;164(1):73-81 PubMed
Toxicon. 2007 Jun 1;49(7):1042-53 PubMed
Ecotoxicology. 2011 Jul;20(5):1000-9 PubMed
PLoS One. 2011 Mar 18;6(3):e17615 PubMed
Environ Toxicol Chem. 2007 Dec;26(12):2687-93 PubMed
Environ Toxicol Chem. 2003 Jul;22(7):1632-41 PubMed
Toxicon. 2008 Jul;52(1):1-12 PubMed
Aquat Toxicol. 2006 Dec 30;80(4):346-54 PubMed
Environ Toxicol Chem. 2006 Jan;25(1):72-86 PubMed
Toxicon. 1997 Nov;35(11):1645-8 PubMed
Environ Toxicol Pharmacol. 2003 Feb;13(2):57-149 PubMed
J Appl Toxicol. 2011 Aug;31(6):561-7 PubMed
Toxicon. 2007 May;49(6):793-803 PubMed
Comp Biochem Physiol C Toxicol Pharmacol. 2007 Sep;146(3):357-67 PubMed
Aquat Toxicol. 2007 Oct 15;84(3):337-345 PubMed
Nat Toxins. 1999;7(2):81-4 PubMed
Environ Sci Pollut Res Int. 2003;10(2):126-39 PubMed
Water Res. 2008 Feb;42(4-5):1299-307 PubMed
Interdiscip Toxicol. 2009 Jun;2(2):36-41 PubMed
Biochim Biophys Acta. 1998 Nov 27;1425(3):527-33 PubMed
Aquat Toxicol. 2007 Mar 10;81(3):312-8 PubMed
Aquat Toxicol. 2006 Jan 5;76(1):1-12 PubMed
Toxicon. 2009 Feb;53(2):269-82 PubMed
Biomed Environ Sci. 2009 Aug;22(4):297-302 PubMed
Toxicol Appl Pharmacol. 2005 Mar 15;203(3):264-72 PubMed
J Biol Chem. 2009 Jan 30;284(5):2690-2696 PubMed
Chem Res Toxicol. 1992 Sep-Oct;5(5):591-6 PubMed
Toxicon. 1998 Jul;36(7):953-62 PubMed
Toxicon. 2004 Mar 1;43(3):295-301 PubMed
Sci Total Environ. 2008 Jul 15;398(1-3):34-47 PubMed
Toxicon. 2007 Sep 15;50(4):585-8 PubMed
FEMS Microbiol Rev. 2006 Jul;30(4):530-63 PubMed
Aquat Toxicol. 2003 Feb 12;62(3):219-26 PubMed
Comp Biochem Physiol C Toxicol Pharmacol. 2003 May;135(1):39-48 PubMed
Environ Sci Pollut Res Int. 2010 Mar;17(3):571-81 PubMed
Environ Toxicol Chem. 2008 May;27(5):1152-9 PubMed
Ecotoxicol Environ Saf. 2011 Oct;74(7):2082-90 PubMed