The effect of the administration form of antibiotic therapy on the gut microbiome in patients with infected diabetic foot ulcers - DFIATIM trial
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5104
the European Union- Next Generation EU
PubMed
40437354
PubMed Central
PMC12117690
DOI
10.1186/s12866-025-04041-0
PII: 10.1186/s12866-025-04041-0
Knihovny.cz E-zdroje
- Klíčová slova
- Antibiotics, Beta-lactam, Bolus, Continuous, Diabetes, Diabetic foot infection, Diabetic foot ulcers, Gut microbiota,
- MeSH
- antibakteriální látky * aplikace a dávkování terapeutické užití MeSH
- Bacteria klasifikace genetika účinky léků izolace a purifikace MeSH
- ceftazidim aplikace a dávkování terapeutické užití MeSH
- diabetická noha * farmakoterapie mikrobiologie MeSH
- dysbióza mikrobiologie MeSH
- feces mikrobiologie MeSH
- kombinace amoxicilinu a kyseliny klavulanové aplikace a dávkování MeSH
- lidé středního věku MeSH
- lidé MeSH
- RNA ribozomální 16S genetika MeSH
- senioři MeSH
- střevní mikroflóra * účinky léků MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- ceftazidim MeSH
- kombinace amoxicilinu a kyseliny klavulanové MeSH
- RNA ribozomální 16S MeSH
BACKGROUND: Diabetic foot infections (DFIs) contribute to the global disability burden. Beta-lactams are the most commonly used antibiotics for treating DFIs. However, the use of antibiotics may lead to disruption of the healthy balance of the gut microbiota, causing dysbiosis. METHODS: Patients with infected diabetic foot ulcers (iDFUs) were treated with two kinds of beta-lactams (amoxicillin/clavulanic acid or ceftazidime) according to microbial sensitivity of causative agents via bolus or continuous administration modes. Changes in the gut microbiome of patients were analyzed. Diabetic patients without iDFUs were used as a control group. 16 S ribosomal RNA gene amplicon sequencing was performed on stool samples collected from participants. RESULTS: Alpha diversity and beta diversity of gut microbiota of treated patients did not show significant differences between bolus and continuous modes. However, significant differences were observed between gut microbiota diversity of treated patients and control group. PCoA plots showed individualized responses of the patient's gut microbiota to antibiotics at different times using both administration forms associated with the pre-treatment state of microbiota composition. Enterococcus, Sellimonas, and Lachnoclostridium were the common bacterial markers differentially abundant in the gut microbiota of antibiotic-treated patients with iDFUs while Roseburia, Dorea, and Monoglobus were mainly abundant in the gut microbiota of patients without iDFUs. Predicted pathways like "Transporters", "ABC transporters" and "Phosphotranspherase system (PTS)" were upregulated in the gut microbiome of patients treated with bolus regime which may lead to increased intestinal barrier permeability. CONCLUSION: The present study reported alterations in gut microbiota composition and functionality and provided the bacterial markers as well as potential metabolic signatures associated with each administration mode in patients with iDFUs, which may be used as a reference set for future studies of the effect of antibiotics administration on the gut microbiome of patients with iDFUs. This study shed light on the importance of understanding the effect of antibiotic administration form on gut microbiome in patients with iDFUs. TRIAL REGISTRATION: The DFIATIM Clinical Trial (Full title: "Rationalisation of ATB therapy in diabetic foot infection and its impact on the intestinal microbiota") is submitted to the European Union Clinical Trials Database under the EudraCT Number: 2019-001997-27. The date of registration is July 17th, 2020.
Department of Hygiene 3rd Faculty of Medicine Charles University Prague Czech Republic
Department of Internal Medicine 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Pathophysiology 3rd Faculty of Medicine Charles University Prague Czech Republic
Diabetes Centre Institute for Clinical and Experimental Medicine Prague Czech Republic
Zobrazit více v PubMed
McDermott K, Fang M, Boulton AJM, Selvin E, Hicks CW. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers. Diabetes Care. 2023;46:209–11. 10.2337/dci22-0043. PubMed PMC
Del Core MA, Ahn J, Lewis RB, Raspovic KM, Lalli TAJ, Wukich DK. The evaluation and treatment of diabetic foot ulcers and diabetic foot infections. Foot Ankle Orthop. 2018;3. 10.1177/2473011418788864.
Anwander H, Vonwyl D, Hecht V, Tannast M, Kurze C, Krause F. Risk factors for failure after surgery in patients with diabetic foot syndrome. Foot Ankle Orthop. 2023;8. 10.1177/24730114231182656. PubMed PMC
Kim JH. Investigating diabetic foot pathophysiology and amputation prevention strategies through behavioral modification. J Wound Manag Res. 2023;19:167–72. 10.22467/jwmr.2023.02747.
Matheson EM, Bragg SW, Blackwelder RS. Diabetes-related foot infections: diagnosis and treatment. Am Fam Physician. 2021;104:386–94. PubMed
Senneville É, Albalawi Z, van Asten SA, Abbas ZG, Allison G, Aragón-Sánchez J, et al. IWGDF/IDSA guidelines on the diagnosis and treatment of diabetes-related foot infections (IWGDF/IDSA 2023). Clin Infect Dis. 2023;1–23. 10.1093/cid/ciad527. PubMed
Hicks CW, Selvarajah S, Mathioudakis N, Sherman RE, Hines KF, et al. Burden of infected diabetic foot ulcers on hospital admissions and costs. Ann Vasc Surg. 2016;33:149–58. 10.1016/j.avsg.2015.11.025. PubMed PMC
Vladimíra Fejfarová Pavlína, Piťhová A, Jirkovská M, Koliba J, Jirkovská. Hana Kůsová BS. Činnost podiatrie ve světle Posledních let (The activities of Czech podiatry in the light of recent years). Diabetologie. 2024;27:123–8.
Lipsky BA, Berendt AR, Cornia PB, Pile JC, Peters EJG, Armstrong DG, et al. Infectious diseases society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2012;54:132–73. 10.1093/cid/cis346. PubMed
Bader MS. Diabetic foot infection. Am Fam Physician. 2008;78. PubMed
Lipsky BA. Empirical therapy for diabetic foot infections: are there clinical clues to guide antibiotic selection? Clin Microbiol Infect. 2007;13:351–3. 10.1111/j.1469-0691.2007.01697.x. PubMed
Lipsky BA. Antibiotic therapy of diabetic foot infections. FEMS Immunol Med Microbiol. 1999;26(3–4):267–76. 10.1111/j.1574-695X.1999.tb01398.x. PubMed
Abdul-Aziz MH, Dulhunty JM, Bellomo R, Lipman J, Roberts JA. Continuous beta-lactam infusion in critically ill patients: the clinical evidence. Ann Intensive Care. 2012;2:1. 10.1186/2110-5820-2-37. PubMed PMC
Abdul-Aziz MH, Staatz CE, Kirkpatrick CM, Lipman J, Roberts JA. Continuous infusion vs. bolus dosing: implications for beta-lactam antibiotics. Minerva Anestesiol. 2012;78:94–104. PubMed
Hong LT, Downes KJ, FakhriRavari A, Abdul-Mutakabbir JC, Kuti JL, Jorgensen S, et al. International consensus recommendations for the use of prolonged‐infusion beta‐lactam antibiotics: endorsed by the American college of clinical pharmacy, British society for antimicrobial chemotherapy, cystic fibrosis foundation, European society of clini. Pharmacother J Hum Pharmacol Drug Ther. 2023;43:740–77. 10.1002/phar.2842. PubMed
Budai KA, Tímár ÁE, Obeidat M, Máté V, Nagy R, Harnos A, et al. Extended infusion of β-lactams significantly reduces mortality and enhances Microbiological eradication in paediatric patients: a systematic review and meta-analysis. eClinicalMedicine. 2023;65:102293. 10.1016/j.eclinm.2023.102293. PubMed PMC
Fishbein SRS, Mahmud B, Dantas G. Antibiotic perturbations to the gut Microbiome. Nat Rev Microbiol. 2023;21:772–88. 10.1038/s41579-023-00933-y. PubMed PMC
Fenneman AC, Weidner M, Chen LA, Nieuwdorp M, Blaser MJ. Antibiotics in the pathogenesis of diabetes and inflammatory diseases of the Gastrointestinal tract. Nat Rev Gastroenterol Hepatol. 2023;20:81–100. 10.1038/s41575-022-00685-9. PubMed PMC
Mikkelsen KH, Allin KH, Knop FK. Effect of antibiotics on gut microbiota, glucose metabolism and body weight regulation: A review of the literature. Diabetes Obes Metab. 2016;18:444–53. 10.1111/dom.12637. PubMed
Rodrigues RR, Greer RL, Dong X, DSouza KN, Gurung M, Wu JY, et al. Antibiotic-induced alterations in gut microbiota are associated with changes in glucose metabolism in healthy mice. Front Microbiol. 2017;8 NOV:1–14. 10.3389/fmicb.2017.02306. PubMed PMC
Yuan J, Hu YJ, Zheng J, Kim JH, Sumerlin T, Chen Y, et al. Long-term use of antibiotics and risk of type 2 diabetes in women: A prospective cohort study. Int J Epidemiol. 2020;49:1572–81. 10.1093/ije/dyaa122. PubMed PMC
Shuai M, Zhang G, Zeng F, fang, Fu Y, Liang X, Yuan L, et al. Human gut antibiotic resistome and progression of diabetes. Adv Sci. 2022;9:1–14. 10.1002/advs.202104965. PubMed PMC
Chen X, Liu Y, Yao H, Song W, Song Y, Gu J, et al. Antibiotics-induced disruption of gut microbiota increases systemic exposure of clopidogrel active metabolite in type 2 diabetic rats. Drug Metab Dispos. 2022;50:1142–50. 10.1124/dmd.122.000906. PubMed
Fu L, Qiu Y, Shen L, Cui C, Wang S, Wang S, et al. The delayed effects of antibiotics in type 2 diabetes, friend or foe? J Endocrinol. 2018;238:137–49. 10.1530/JOE-17-0709. PubMed
Brown K, Godovannyi A, Ma C, Zhang Y, Ahmadi-Vand Z, Dai C, et al. Prolonged antibiotic treatment induces a diabetogenic intestinal Microbiome that accelerates diabetes in NOD mice. ISME J. 2016;10:321–32. 10.1038/ismej.2015.114. PubMed PMC
Sechovcová H, Mahayri TM, Mrázek J, Jarošíková R, Husáková J, Wosková V, et al. Gut microbiota in relationship to diabetes mellitus and its late complications with a focus on diabetic foot syndrome: A review. Folia Microbiol (Praha). 2024;69:259–82. 10.1007/s12223-023-01119-y. PubMed
Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020;51:102590. 10.1016/j.ebiom.2019.11.051. PubMed PMC
Ye J, Wu Z, Zhao Y, Zhang S, Liu W, Su Y. Role of gut microbiota in the pathogenesis and treatment of diabetes mullites: advanced research-based review. Front Microbiol. 2022;13:1–13. PubMed PMC
Larsen N, Vogensen FK, Van Den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE. 2010;5. 10.3389/fmicb.2022.1029890. PubMed PMC
Zhang S, Cai Y, Meng C, Ding X, Huang J, Luo X, et al. The role of the Microbiome in diabetes mellitus. Diabetes Res Clin Pract. 2021;172:108645. 10.1016/j.diabres.2020.108645. PubMed
Zhou Z, Sun B, Yu D, Zhu C. Gut microbiota: an important player in type 2 diabetes mellitus. Front Cell Infect Microbiol. 2022;12:1–15. PubMed PMC
Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE. 2013;8. 10.1371/journal.pone.0071108. PubMed PMC
Gomes AC, Bueno AA, Mota RGM, de S. Gut microbiota, probiotics and diabetes. Nutr J. 2014;13:1–13. 10.1186/1475-2891-13-60. PubMed PMC
Huda MN, Kim M, Bennett BJ. Modulating the microbiota as a therapeutic intervention for type 2 diabetes. Front Endocrinol. 2021;12:632335. 10.3389/fendo.2021.632335. PubMed PMC
Sharma BR, Jaiswal S, Ravindra PV. Modulation of gut microbiota by bioactive compounds for prevention and management of type 2 diabetes. Biomed Pharmacother. 2022;152:113148. 10.1016/j.biopha.2022.113148. PubMed
Jiang H, Cai M, Shen B, Wang Q, Zhang T, Zhou X. Synbiotics and gut microbiota: new perspectives in the treatment of type 2 diabetes mellitus. Foods. 2022;11:1–18. 10.3390/foods11162438. PubMed PMC
Vitetta L, Gorgani NN, Vitetta G, Henson JD. Prebiotics progress shifts in the intestinal Microbiome that benefits patients with type 2 diabetes mellitus. Biomolecules. 2023;13. 10.3390/biom13091307. PubMed PMC
He L, Chen R, Zhang B, Zhang S, Khan BA, Zhu D, et al. Fecal microbiota transplantation treatment of autoimmune-mediated type 1 diabetes mellitus. Front Immunol. 2022;13 August:1–17. 10.3389/fimmu.2022.930872. PubMed PMC
Ding D, Yong H, You N, Lu W, Yang X, Ye X, et al. Prospective study reveals host microbial determinants of clinical response to fecal microbiota transplant therapy in type 2 diabetes patients. Front Cell Infect Microbiol. 2022;12 March:1–12. 10.3389/fcimb.2022.820367. PubMed PMC
Peng J, Narasimhan S, Marchesi JR, Benson A, Wong FS, Wen L. Long term effect of gut microbiota transfer on diabetes development. J Autoimmun. 2014;53 C:85–94. 10.1016/j.jaut.2014.03.005. PubMed PMC
Wu Z, Zhang B, Chen F, Xia R, Zhu D, Chen B, et al. Fecal microbiota transplantation reverses insulin resistance in type 2 diabetes: A randomized, controlled, prospective study. Front Cell Infect Microbiol. 2023;12:1–14. 10.3389/fcimb.2022.1089991. PubMed PMC
Iatcu CO, Steen A, Covasa M. Gut microbiota and complications of type-2 diabetes. Nutrients. 2022;14. 10.3390/nu14010166. PubMed PMC
Awasthi A, Corrie L, Vishwas S, Gulati M, Kumar B, Chellappan DK, et al. Gut dysbiosis and diabetic foot ulcer: role of probiotics. Pharmaceutics. 2022;14:1–26. 10.3390/pharmaceutics14112543. PubMed PMC
Pessemier B, De, Grine L, Debaere M, Maes A, Paetzold B, Callewaert C. Gut–skin axis: current knowledge of the interrelationship between microbial dysbiosis and skin conditions. Microorganisms. 2021;9:1–33. 10.3390/microorganisms9020353. PubMed PMC
Mohseni S, Bayani M, Bahmani F, Tajabadi-Ebrahimi M, Bayani MA, Jafari P, et al. The beneficial effects of probiotic administration on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double-blind, placebo-controlled trial. Diabetes Metab Res Rev. 2018;34. 10.1002/dmrr.2970. PubMed
Patel BK, Patel KH, Huang RY, Lee CN, Moochhala SM. The gut-skin microbiota axis and its role in diabetic wound healing—a review based on current literature. Int J Mol Sci. 2022;23. 10.3390/ijms23042375. PubMed PMC
Fejfarová V, Jarošíková R, Antalová S, Husáková J, Wosková V, Beca P, et al. Does PAD and microcirculation status impact the tissue availability of intravenously administered antibiotics in patients with infected diabetic foot? Results of the DFIATIM substudy. Front Endocrinol (Lausanne). 2024;15 May:1–11. 10.3389/fendo.2024.1326179. PubMed PMC
Milani C, Hevia A, Foroni E, Duranti S, Turroni F, Lugli GA, et al. Assessing the fecal microbiota: an optimized ion torrent 16s Rrna gene-based analysis protocol. PLoS ONE. 2013;8. 10.1371/journal.pone.0068739. PubMed PMC
Mekadim C, Skalnikova HK, Cizkova J, Cizkova V, Palanova A, Horak V, et al. Dysbiosis of skin Microbiome and gut Microbiome in melanoma progression. BMC Microbiol. 2022;22:1–19. 10.1186/s12866-022-02458-5. PubMed PMC
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible Microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. 10.1038/s41587-019-0209-9. PubMed PMC
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from illumina amplicon data. Nat Methods. 2016;13:581–3. 10.1038/nmeth.3869. PubMed PMC
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: A versatile open source tool for metagenomics. PeerJ. 2016;2016:1–22. 10.7717/peerj.2584. PubMed PMC
Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8. 10.1038/s41587-020-0548-6. PubMed PMC
Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30:3123–4. 10.1038/s41587-020-0548-6. PubMed PMC
Levast B, Benech N, Gasc C, Batailler C, Senneville E, Lustig S, et al. Impact on the gut microbiota of intensive and prolonged antimicrobial therapy in patients with bone and joint infection. Front Med. 2021;8 March:1–14. 10.3389/fmed.2021.586875. PubMed PMC
Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL, Cohen H. Antibiotics as major disruptors of gut microbiota. Front Cell Infect Microbiol. 2020;10 November:1–10. 10.3389/fcimb.2020.572912. PubMed PMC
Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM, Li B, et al. Antibiotic-induced shifts in the mouse gut Microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014;5. 10.1038/ncomms4114. PubMed PMC
Langdon A, Crook N, Dantas G. The effects of antibiotics on the Microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016;8. 10.1186/s13073-016-0294-z. PubMed PMC
Becattini S, Taur Y, Pamer EG. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med. 2016;22:458–78. 10.1016/j.molmed.2016.04.003. PubMed PMC
Modi SR, Collins JJ, Relman DA. Antibiotics and the gut microbiota. J Clin Invest. 2014;124:4212–8. 10.1172/JCI72333. PubMed PMC
Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut. 2016;65:1906–15. 10.1136/gutjnl-2016-312297. PubMed
Sharma S, Tripathi P. Gut Microbiome and type 2 diabetes: where we are and where to go? J Nutr Biochem. 2019;63:101–8. 10.1016/j.jnutbio.2018.10.003. PubMed
Pop M, Paulson JN, Chakraborty S, Astrovskaya I, Lindsay BR, Li S, et al. Individual-specific changes in the human gut microbiota after challenge with enterotoxigenic Escherichia coli and subsequent Ciprofloxacin treatment. BMC Genomics. 2016;17:1–11. 10.1186/s12864-016-2777-0. PubMed PMC
Rashidi A, Ebadi M, Rehman TU, Elhusseini H, Nalluri H, Kaiser T, et al. Gut microbiota response to antibiotics is personalized and depends on baseline microbiota. Microbiome. 2021;9:1–11. 10.1186/s40168-021-01170-2. PubMed PMC
Campos LF, Tagliari E, Casagrande TAC, de Noronha L, Campos ACL, Matias JEF. Effects of probiotics supplementation on skin wound healing in diabetic rats. Arq Bras Cir Dig. 2020;33:1–6. 10.1590/0102-672020190001e1498. PubMed PMC
Mohtashami M, Mohamadi M, Azimi-Nezhad M, Saeidi J, Nia FF, Ghasemi A. Lactobacillus bulgaricus and Lactobacillus plantarum improve diabetic wound healing through modulating inflammatory factors. Biotechnol Appl Biochem. 2021;68:1421–31. 10.1002/bab.2064. PubMed
Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, et al. Metformin alters the gut Microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23:850–8. 10.1038/nm.4345. PubMed
Bhute SS, Suryavanshi MV, Joshi SM, Yajnik CS, Shouche YS, Ghaskadbi SS. Gut microbial diversity assessment of Indian type-2-diabetics reveals alterations in eubacteria, archaea, and eukaryotes. Front Microbiol. 2017;8 FEB:1–15. 10.3389/fmicb.2017.00214. PubMed PMC
Alvarez-Silva C, Kashani A, Hansen TH, Pinna NK, Anjana RM, Dutta A, et al. Trans-ethnic gut microbiota signatures of type 2 diabetes in Denmark and India. Genome Med. 2021;13:1–13. 10.1186/s13073-021-00856-4. PubMed PMC
Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103. 10.1038/nature12198. PubMed
Sedighi M, Razavi S, Navab-Moghadam F, Khamseh ME, Alaei-Shahmiri F, Mehrtash A, et al. Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals. Microb Pathog. 2017;111:362–9. 10.1016/j.micpath.2017.08.038. PubMed
Liu J, Chen Y, Peng C. The causal relationship between gut microbiota and diabetic neuropathy: a bi-directional two-sample Mendelian randomization study. Diabetol Metab Syndr. 2024;15:1–12. 10.1186/s13098-024-01424-7. PubMed PMC
Zhao X, Zhang Y, Guo R, Yu W, Zhang F, Wu F et al. The alteration in composition and function of gut microbiome in patients with type 2 diabetes. J Diabetes Res. 2020;2020; 10.1155/2020/8842651 PubMed PMC
Wei B, Wang Y, Xiang S, Jiang Y, Chen R, Hu N. Alterations of gut Microbiome in patients with type 2 diabetes mellitus who had undergone cholecystectomy. Am J Physiol - Endocrinol Metab. 2021;320:E113–21. 10.1152/AJPENDO.00471.2020. PubMed
Dash NR, Al Bataineh MT, Alili R, Al Safar H, Alkhayyal N, Prifti E, et al. Functional alterations and predictive capacity of gut Microbiome in type 2 diabetes. Sci Rep. 2023;13:1–12. 10.1038/s41598-023-49679-w. PubMed PMC
Ma Q, Li Y, Wang J, Li P, Duan Y, Dai H, et al. Investigation of gut Microbiome changes in type 1 diabetic mellitus rats based on high-throughput sequencing. Biomed Pharmacother. 2020;124:109873. 10.1016/j.biopha.2020.109873. PubMed
Wang Y, Zhang H, Ma G, Tian Z, Wang B. The contribution of intestinal Streptococcus to the pathogenesis of diabetic foot ulcers: an analysis based on 16S rRNA sequencing. Int Wound J. 2022;19:1658–68. 10.1111/iwj.13766. PubMed PMC
Kaur P, Choudhury D. Modulation of inflammatory dynamics by insulin to promote wound recovery of diabetic ulcers. Wound Heal. 2020;1–21. 10.5772/intechopen.92096.
Nakamura M, Verboon JM, Allen TE, Abreu-Blanco MT, Liu R, Dominguez ANM, et al. Autocrine insulin pathway signaling regulates actin dynamics in cell wound repair. PLoS Genet. 2020;16(12):e1009186. 10.1371/journal.pgen.1009186. PubMed PMC
Lima MHM, Caricilli AM, de Abreu LL, Araújo EP, Pelegrinelli FF, Thirone ACP, et al. Topical insulin accelerates wound healing in diabetes by enhancing the AKT and ERK pathways: A double-blind placebo-controlled clinical trial. PLoS ONE. 2012;7:1–13. 10.1371/journal.pone.0036974. PubMed PMC
AbdelKader DH, Osman MA, Elgizawy SA, Faheem AM, McCarron PA. The role of insulin in wound healing process: mechanism of action and pharmaceutical applications. J Anal Pharm Res. 2016;2:7–10. 10.15406/japlr.2016.02.00007.
Inoue R, Ohue-Kitano R, Tsukahara T, Tanaka M, Masuda S, Inoue T, et al. Prediction of functional profiles of gut microbiota from 16S rRNA metagenomic data provides a more robust evaluation of gut dysbiosis occurring in Japanese type 2 diabetic patients. J Clin Biochem Nutr. 2017;61:217–21. 10.3164/jcbn.17-44. PubMed PMC
Fujisaka S, Ussar S, Clish C, Devkota S, Dreyfuss JM, Sakaguchi M, et al. Antibiotic effects on gut microbiota and metabolism are host dependent. J Clin Invest. 2016;126:4430–43. 10.1172/JCI86674. PubMed PMC
Proffitt C, Bidkhori G, Lee S, Tebani A, Mardinoglu A, Uhlen M, et al. Genome-scale metabolic modelling of the human gut Microbiome reveals changes in the glyoxylate and dicarboxylate metabolism in metabolic disorders. iScience. 2022;25:104513. 10.1016/j.isci.2022.104513. PubMed PMC
Nikiforova VJ, Giesbertz P, Wiemer J, Bethan B, Looser R, Liebenberg V, et al. Glyoxylate, a new marker metabolite of type 2 diabetes. J Diabetes Res. 2014;2014:685204. 10.1155/2014/685204. PubMed PMC
Koçak E, Özkul C. Metabolic response of Escherichia coli to subinhibitory concentration of Ofloxacin. J Res Pharm. 2020;24:593–601. 10.35333/jrp.2020.207.
D’Arpa P, Karna SLR, Chen T, Leung KP. Pseudomonas aeruginosa transcriptome adaptations from colonization to biofilm infection of skin wounds. Sci Rep. 2021;11:1–13. 10.1038/s41598-021-00073-4. PubMed PMC
Dong Y, Wang P, Yang X, Chen M, Li J. Potential of gut microbiota for lipopolysaccharide biosynthesis in European women with type 2 diabetes based on metagenome. Front Cell Dev Biol. 2022;10 October:1–14. 10.3389/fcell.2022.1027413. PubMed PMC
Leiva-Gea I, Sánchez-Alcoholado L, Martín-Tejedor B, Castellano-Castillo D, Moreno-Indias I, Urda-Cardona A, et al. Gut microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: A case-control study. Diabetes Care. 2018;41:2385–95. 10.2337/dc18-0253. PubMed
Ibrahim KS, Bourwis N, Dolan S, Lang S, Spencer J, Craft JA. Characterisation of gut microbiota of obesity and type 2 diabetes in a rodent model. Biosci Microbiota Food Heal. 2020;40:65–74. 10.12938/BMFH.2019-031. PubMed PMC
Park JU, Oh B, Lee JP, Choi MH, Lee MJ, Kim BS. Influence of microbiota on diabetic foot wound in comparison with adjacent normal skin based on the clinical features. Biomed Res Int. 2019;2019; 10.1155/2019/7459236 PubMed PMC
Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A Branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26. 10.1016/j.cmet.2009.02.002. PubMed PMC
Haufe S, Engeli S, Kaminski J, Witt H, Rein D, Kamlage B, et al. Branched-chain amino acid catabolism rather than amino acids plasma concentrations is associated with diet-induced changes in insulin resistance in overweight to obese individuals. Nutr Metab Cardiovasc Dis. 2017;27:858–64. 10.1016/j.numecd.2017.07.001. PubMed
Zhang X, Li H, Wang Y, Kang Y, Li Z. Metagenomic analysis reveals antibiotic resistance profiles in tissue samples from patients with diabetic foot infections. J Glob Antimicrob Resist. 2023;34:202–10. 10.1016/j.jgar.2023.05.008. PubMed
Prevel R, Enaud R, Orieux A, Camino A, Sioniac P, M’Zali F, et al. Bridging gut microbiota composition with extended-spectrum beta-lactamase Enterobacteriales faecal carriage in critically ill patients (microbe cohort study). Ann Intensive Care. 2023;13. 10.1186/s13613-023-01121-0. PubMed PMC
Aires-de-Sousa M, Lopes E, Gonçalves ML, Pereira AL, Machado e Costa A, de Lencastre H, et al. Intestinal carriage of extended-spectrum beta-lactamase–producing Enterobacteriaceae at admission in a Portuguese hospital. Eur J Clin Microbiol Infect Dis. 2020;39:783–90. 10.1007/s10096-019-03798-3. PubMed
Brolund A. Overview of ESBL-producing Enterobacteriaceae from a nordic perspective. Infect Ecol Epidemiol. 2014;4. 10.3402/iee.v4.24555. PubMed PMC
Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, et al. Intestinal permeability - a new target for disease prevention and therapy. BMC Gastroenterol. 2014;14:1–25. 10.1186/s12876-014-0189-7. PubMed PMC
Camilleri M. Leaky Gut: mechanisms, measurement and clinical implications in humans. Gut. 2019;68:1516–26. 10.1136/gutjnl-2019-318427. PubMed PMC
Zhou J, Lin Y, Liu Y, Chen K. Antibiotic exposure and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Environ Sci Pollut Res. 2021;28:65052–61. 10.1007/s11356-021-16781-3. PubMed
Boursi B, Mamtani R, Haynes K, Yang YX. The effect of past antibiotic exposure on diabetes risk. Eur J Endocrinol. 2015;172:639–48. 10.1530/EJE-14-1163. PubMed PMC
Wernroth ML, Fall K, Svennblad B, Ludvigsson JF, Sjölander A, Almqvist C, et al. Early childhood antibiotic treatment for otitis media and other respiratory tract infections is associated with risk of type 1 diabetes: A nationwide register-based study with sibling analysis. Diabetes Care. 2020;43:991–9. 10.2337/dc19-1162. PubMed PMC
Antvorskov JC, Morgen CS, Buschard K, Jess T, Allin KH, Josefsen K. Antibiotic treatment during early childhood and risk of type 1 diabetes in children: A National birth cohort study. Pediatr Diabetes. 2020;21:1457–64. 10.1111/pedi.13111. PubMed PMC
Tulstrup MVL, Christensen EG, Carvalho V, Linninge C, Ahrné S, Højberg O, et al. Antibiotic treatment affects intestinal permeability and gut microbial composition in Wistar rats dependent on antibiotic class. PLoS ONE. 2015;10:1–17. 10.1371/journal.pone.0144854. PubMed PMC
Abbas W, Bi R, Hussain MD, Tajdar A, Guo F, Guo Y, et al. Antibiotic cocktail effects on intestinal microbial community, barrier function, and immune function in early broiler chickens. Antibiotics. 2024;13:1–21. 10.3390/Antibiotics13050413. PubMed PMC
Ran Y, Fukui H, Xu X, Wang X, Ebisutani N, Tanaka Y, et al. Alteration of colonic mucosal permeability during antibiotic-induced dysbiosis. Int J Mol Sci. 2020;21:1–14. 10.3390/ijms21176108. PubMed PMC
Snelson M, de Pasquale C, Ekinci EI, Coughlan MT. Gut microbiome, prebiotics, intestinal permeability and diabetes complications. Best Pract Res Clin Endocrinol Metab. 2021;35:101507. 10.1016/j.beem.2021.101507. PubMed
Leech B, Schloss J, Steel A. Association between increased intestinal permeability and disease: A systematic review. Adv Integr Med. 2019;6:23–34. 10.1016/j.aimed.2018.08.003.
Mokhtari P, Metos J, Anandh Babu PV. Impact of type 1 diabetes on the composition and functional potential of gut Microbiome in children and adolescents: possible mechanisms, current knowledge, and challenges. Gut Microbes. 2021;13:1–18. 10.1080/19490976.2021.1926841. PubMed PMC
Cox AJ, Zhang P, Bowden DW, Devereaux B, Davoren PM, Cripps AW, et al. Increased intestinal permeability as a risk factor for type 2 diabetes. Diabetes Metab. 2017;43:163–6. 10.1016/j.diabet.2016.09.004. PubMed
Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. Evaluating the causal role of gut microbiota in type 1 diabetes and its possible pathogenic mechanisms. Front Endocrinol (Lausanne). 2020;11 March:1–13. 10.3389/fendo.2020.00125. PubMed PMC
Nah G, Park SC, Kim K, Kim S, Park J, Lee S, et al. Type-2 diabetics reduces Spatial variation of Microbiome based on extracellur vesicles from gut microbes across human body. Sci Rep. 2019;9:1–10. 10.1038/s41598-019-56662-x. PubMed PMC
Harbison JE, Roth-Schulze AJ, Giles LC, Tran CD, Ngui KM, Penno MA, et al. Gut Microbiome dysbiosis and increased intestinal permeability in children with islet autoimmunity and type 1 diabetes: A prospective cohort study. Pediatr Diabetes. 2019;20:574–83. 10.1111/pedi.12865. PubMed