Comparative assessment of UV-C radiation and non-thermal plasma for inactivation of foodborne fungal spores suspension in vitro
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38784412
PubMed Central
PMC11114098
DOI
10.1039/d4ra01689k
PII: d4ra01689k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Fungal contamination poses a persistent challenge to industries, particularly in food, healthcare, and clinical sectors, due to the remarkable resilience of fungi in withstanding conventional control methods. In this context, our research delves into the comparative efficacy of UV radiation and non-thermal plasma (NTP) on key foodborne fungal contaminants - Alternaria alternata, Aspergillus niger, Fusarium culmorum, and Fusarium graminearum. The study examined the impact of varying doses of UV radiation on the asexual spores of all mentioned fungal strains. Simultaneously, the study compared the effects of UV radiation and NTP on the metabolic activity of cells after spore germination and their subsequent germination ability. The results revealed that UV-C radiation (254 nm) did not significantly suppress the metabolic activity of cells after spore germination. In contrast, NTP exhibited almost 100% effectiveness on both selected spores and their subsequent germination, except for A. niger. In the case of A. niger, the effectiveness of UV-C and NTP was nearly comparable, showing only a 35% decrease in metabolic activity after 48 hours of germination, while the other strains (A. alternata, F. culmorum, F. graminearum) exhibited a reduction of more than 95%. SEM images illustrate the morphological changes in structure of all tested spores after both treatments. This study addresses a crucial gap in existing literature, offering insights into the adaptation possibilities of treated cells and emphasizing the importance of considering exposure duration and nutrient conditions (introduction of fresh medium). The results highlighted the promising antimicrobial potential of NTP, especially for filamentous fungi, paving the way for enhanced sanitation processes with diverse applications.
Research Centre Rez Department of Material Analysis Hlavní 130 250 68 Husinec Řež Czech Republic
Research Institute of Brewing and Malting Lípová 15 120 44 Prague Czech Republic
Zobrazit více v PubMed
Snyder A. B. Worobo R. W. J. Food Prot. 2018;81:1035–1040. PubMed
Pandey A. K. Samota M. K. Kumar A. Silva A. S. Dubey N. K. Front. Sustain. Food Syst. 2023;7:1162595.
Sharma R. Singh D. Singh R. Biol. Control. 2009;50:205–221.
Bourke P. Ziuzina D. Han L. Cullen P. Gilmore B. F. J. Appl. Microbiol. 2017;123:308–324. PubMed
Russotto V. Cortegiani A. Fasciana T. Iozzo P. Raineri S. M. Gregoretti C. Giammanco A. Giarratano A. BioMed Res. Int. 2017;2017:1–8. PubMed PMC
Garvey M. Meade E. Rowan N. J. Sci. Total Environ. 2022;851:158284. PubMed
Alonso V. P. P. Gonçalves M. P. M. de Brito F. A. E. Barboza G. R. Rocha L. d. O. Silva N. C. C. Compr. Rev. Food Sci. Food Saf. 2023;22:688–713. PubMed
Mendoza I. C. Luna E. O. Pozo M. D. Vásquez M. V. Montoya D. C. Moran G. C. Romero L. G. Yépez X. Salazar R. Romero-Peña M. LWT—Food Sci. Technol. 2022;165:113714. PubMed PMC
Zhang H. Mahunu G. K. Castoria R. Apaliya M. T. Yang Q. Trends Food Sci. Technol. 2017;69:36–45.
Chacha J. S. Zhang L. Ofoedu C. E. Suleiman R. A. Dotto J. M. Roobab U. Agunbiade A. O. Duguma H. T. Mkojera B. T. Hossaini S. M. Foods. 2021;10:1430. PubMed PMC
Punia Bangar S. Suri S. Nayi P. Phimolsiripol Y. J. Food Process. Preserv. 2022;46:e16850.
Alonso V. P. P. Furtado M. M. Iwase C. H. T. Brondi-Mendes J. Z. Nascimento M. d. S. Crit. Rev. Food Sci. Nutr. 2022:1–16. PubMed
Huang S. Lin S. Qin H. Jiang H. Liu M. Biomedicines. 2023;11:1197. PubMed PMC
Xuan W. He Y. Huang L. Huang Y.-Y. Bhayana B. Xi L. Gelfand J. A. Hamblin M. R. Sci. Rep. 2018;8:17130. PubMed PMC
Goldberg D. J. J. Clin. Aesthet. Dermatol. 2012;5:45. PubMed PMC
Pile D. F. Nat. Photonics. 2018;12:568.
Hessling M. Haag R. Sieber N. Vatter P. GMS Hyg. Infect. Control. 2021;16:1–17. PubMed PMC
Ashrafudoulla M. Ulrich M. S. Toushik S. H. Nahar S. Roy P. K. Mizan F. R. Park S. H. Ha S.-D. World's Poult. Sci. J. 2023;79:3–26.
Kim S.-J. Kim D.-K. Kang D.-H. Appl. Environ. Microbiol. 2016;82:11–17. PubMed PMC
Nakpan W. Yermakov M. Indugula R. Reponen T. Grinshpun S. A. Sci. Total Environ. 2019;671:59–65. PubMed
Soušková H., Scholtz V., Julák J. and Savická D., 2012
Bosso A. Tortora F. Culurciello R. Di Nardo I. Pistorio V. Carraturo F. Colecchia A. Di Girolamo R. Cafaro V. Notomista E. Int. J. Mol. Sci. 2023;24:12951. PubMed PMC
Otter J., Yezli S., Perl T., Barbut F. and French G., in Decontamination in Hospitals and Healthcare, Elsevier, 2014, pp. 413–460
Rapacka-Zdonczyk A. Wozniak A. Nakonieczna J. Grinholc M. Int. J. Mol. Sci. 2021;22:2224. PubMed PMC
Duque-Sarango P. Delgado-Armijos N. Romero-Martínez L. Pinos-Vélez V. Front. Environ. Sci. 2023;11:1212807.
Tóthová L. and Frankova E., WIT Transactions on Biomedicine and Health, 2001, 5
Kowalski W., Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection, Springer science & business media, 2010
Cortesão M. De Haas A. Unterbusch R. Fujimori A. Schütze T. Meyer V. Moeller R. Front. Microbiol. 2020;11:560. PubMed PMC
Abdelrahman E. Takatori K. Matsuda Y. Tsukada M. Kirino F. Biocontrol Sci. 2018;23:177–186. PubMed
Misra N. Yadav B. Roopesh M. Jo C. Compr. Rev. Food Sci. Food Saf. 2019;18:106–120. PubMed
Molina-Hernandez J. B. Capelli F. Laurita R. Tappi S. Laika J. Gioia L. Valbonetti L. Chaves-López C. Innov. Food Sci. Emerg. Technol. 2022;82:103194.
Mravlje J. Regvar M. Vogel-Mikuš K. J. Fungi. 2021;7:650. PubMed PMC
Veerana M. Yu N. Ketya W. Park G. J. Fungi. 2022;8:102. PubMed PMC
Hoppanová L. Kryštofová S. Int. J. Mol. Sci. 2022;23:11592. PubMed PMC
Rabochová M. Kulišová M. Lorinčík J. Maťátková O. Khun J. Scholtz V. Kolouchová I. J. Food Control. 2024:110522.
Kulišová M. Rabochová M. Lorinčík J. Brányik T. Hrudka J. Scholtz V. Jarošová Kolouchová I. Foods. 2024;13:1054. PubMed PMC
Kulišová M. Maťátková O. Brányik T. Zelenka J. Drábová L. Kolouchová I. J. J. Microbiol. Methods. 2023;205:106676. PubMed
Khun J. Machková A. Kašparová P. Klenivskyi M. Vaňková E. Galář P. Julák J. Scholtz V. Molecules. 2021;27:238. PubMed PMC
Kang J.-W. Hong H.-N. Kang D.-H. Appl. Environ. Microbiol. 2020;86:e00159. PubMed PMC
Matthes R. Assadian O. Kramer A. GMS Hyg. Infect. Control. 2014;9:1–5. PubMed PMC
Fitzhenry K. Rowan N. del Rio A. V. Cremillieux A. Clifford E. J. Water Proc. Engineering. 2019;27:67–76.
Zhai Y. Tian J. Ping R. Xiu H. Xiang Q. Shen R. Wang Z. Food Sci. Technol. Int. 2021;27:334–343. PubMed
Wang J. Zhang F. Yao T. Li Y. Wei N. Front. Microbiol. 2023;13:1115592. PubMed PMC
Chen Y. Li H. Chen C. Zhou M. Phytoparasitica. 2008;36:326–337.
Gonçalves N. P. del Puerto O. Medana C. Calza P. Roslev P. J. Environ. Chem. Eng. 2021;9:106275.
Del Puerto O. Gonçalves N. P. Medana C. Prevot A. B. Roslev P. Environ. Sci. Pollut. Res. 2022;29:58312–58325. PubMed PMC
Urban M. Motteram J. Jing H. C. Powers S. Townsend J. Devonshire J. Pearman I. Kanyuka K. Franklin J. Hammond-Kosack K. J. Appl. Microbiol. 2011;110:675–687. PubMed
Gunter-Ward D. M. Patras A. Bhullar M. S. Kilonzo-Nthenge A. Pokharel B. Sasges M. J. Food Process. Preserv. 2018;42:e13485.
Anderson J. G. Rowan N. J. MacGregor S. J. Fouracre R. A. Farish O. IEEE Trans. Plasma Sci. 2000;28:83–88.
Goldman R. P. Travisano M. Evolution. 2011;65:3486–3498. PubMed
Karentz D. Cleaver J. E. Mitchell D. L. J. Phycol. 1991;27:326–341.
Davies R. Sinskey A. J. J. Bacteriol. 1973;113:133–144. PubMed PMC
Shen J., Cheng C., Xu Z., Lan Y., Ni G. and Sui S., Applications of Cold Plasma in Food Safety, 2022, pp. 1–36
Hage M. Khelissa S. Akoum H. Chihib N.-E. Jama C. Appl. Microbiol. Biotechnol. 2022:1–20. PubMed PMC
Cheng J.-H. Lv X. Pan Y. Sun D.-W. Trends Food Sci. Technol. 2020;103:239–247.
Moreau S. Moisan M. Tabrizian M. Barbeau J. Pelletier J. Ricard A. Yahia L. H. J. Appl. Phys. 2000;88:1166–1174.
Hertwig C. Meneses N. Mathys A. Trends Food Sci. Technol. 2018;77:131–142.
Wang S. Doona C. J. Setlow P. Li Y.-q. Appl. Environ. Microbiol. 2016;82:5775–5784. PubMed PMC
Ochi A. Konishi H. Ando S. Sato K. Yokoyama K. Tsushima S. Yoshida S. Morikawa T. Kaneko T. Takahashi H. Plant Pathol. 2017;66:67–76.
Julák J. Soušková H. Scholtz V. Kvasničková E. Savická D. Kříha V. Folia Microbiol. 2018;63:63–68. PubMed
Yong H. I. Lee H. Park S. Park J. Choe W. Jung S. Jo C. Meat Sci. 2017;123:151–156. PubMed
Sen Y. Onal-Ulusoy B. Mutlu M. Innovative Food Sci. Emerging Technol. 2019;54:235–242.
Waskow A. Betschart J. Butscher D. Oberbossel G. Klöti D. Büttner-Mainik A. Adamcik J. Von Rohr P. R. Schuppler M. Front. Microbiol. 2018;9:3164. PubMed PMC
Cordero R. J. Casadevall A. Fungal Biol. Rev. 2017;31:99–112. PubMed PMC
Molina-Hernandez J. B. Laika J. Peralta-Ruiz Y. Palivala V. K. Tappi S. Cappelli F. Ricci A. Neri L. Chaves-López C. Foods. 2022;11:210. PubMed PMC
Ki S. H. Noh H. Ahn G. R. Kim S. H. Kaushik N. K. Choi E. H. Lee G. J. Appl. Sci. 2020;10:6378.
Zhao L. Wang J. Sheng X. Li S. Yan W. Qian J. Zhang J. Raghavan V. Chem. Eng. J. 2023;475:146017.
Hoppanová L. Dylíková J. Kováčik D. Medvecká V. Ďurina P. Kryštofová S. Hudecová D. Kaliňáková B. Appl. Microbiol. Biotechnol. 2022;106:2107–2119. PubMed
Mumtaz S. Rana J. N. Lim J. S. Javed R. Choi E. H. Han I. Int. J. Mol. Sci. 2023;24:5289. PubMed
Hojnik N. Cvelbar U. Tavčar-Kalcher G. Walsh J. L. Križaj I. Toxins. 2017;9:151. PubMed PMC
Montie T. C. Kelly-Wintenberg K. Roth J. R. IEEE Trans. Plasma Sci. 2000;28:41–50.
Hopke A. Brown A. J. Hall R. A. Wheeler R. T. Trends Microbiol. 2018;26:284–295. PubMed PMC
Ambrico P. F. Šimek M. Rotolo C. Morano M. Minafra A. Ambrico M. Pollastro S. Gerin D. Faretra F. De Miccolis Angelini R. M. Sci. Rep. 2020;10:3673. PubMed PMC
Sakudo A. Yagyu Y. Onodera T. Int. J. Mol. Sci. 2019;20:5216. PubMed PMC
MeiTing G. Huang J. HongYing H. WenJun L. Biomed. Environ. Sci. 2011;24:400–407. PubMed
Scholtz V. Jirešová J. Šerá B. Julák J. Foods. 2021;10:2927. PubMed PMC