Comparative assessment of UV-C radiation and non-thermal plasma for inactivation of foodborne fungal spores suspension in vitro

. 2024 May 22 ; 14 (24) : 16835-16845. [epub] 20240523

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38784412

Fungal contamination poses a persistent challenge to industries, particularly in food, healthcare, and clinical sectors, due to the remarkable resilience of fungi in withstanding conventional control methods. In this context, our research delves into the comparative efficacy of UV radiation and non-thermal plasma (NTP) on key foodborne fungal contaminants - Alternaria alternata, Aspergillus niger, Fusarium culmorum, and Fusarium graminearum. The study examined the impact of varying doses of UV radiation on the asexual spores of all mentioned fungal strains. Simultaneously, the study compared the effects of UV radiation and NTP on the metabolic activity of cells after spore germination and their subsequent germination ability. The results revealed that UV-C radiation (254 nm) did not significantly suppress the metabolic activity of cells after spore germination. In contrast, NTP exhibited almost 100% effectiveness on both selected spores and their subsequent germination, except for A. niger. In the case of A. niger, the effectiveness of UV-C and NTP was nearly comparable, showing only a 35% decrease in metabolic activity after 48 hours of germination, while the other strains (A. alternata, F. culmorum, F. graminearum) exhibited a reduction of more than 95%. SEM images illustrate the morphological changes in structure of all tested spores after both treatments. This study addresses a crucial gap in existing literature, offering insights into the adaptation possibilities of treated cells and emphasizing the importance of considering exposure duration and nutrient conditions (introduction of fresh medium). The results highlighted the promising antimicrobial potential of NTP, especially for filamentous fungi, paving the way for enhanced sanitation processes with diverse applications.

Zobrazit více v PubMed

Snyder A. B. Worobo R. W. J. Food Prot. 2018;81:1035–1040. PubMed

Pandey A. K. Samota M. K. Kumar A. Silva A. S. Dubey N. K. Front. Sustain. Food Syst. 2023;7:1162595.

Sharma R. Singh D. Singh R. Biol. Control. 2009;50:205–221.

Bourke P. Ziuzina D. Han L. Cullen P. Gilmore B. F. J. Appl. Microbiol. 2017;123:308–324. PubMed

Russotto V. Cortegiani A. Fasciana T. Iozzo P. Raineri S. M. Gregoretti C. Giammanco A. Giarratano A. BioMed Res. Int. 2017;2017:1–8. PubMed PMC

Garvey M. Meade E. Rowan N. J. Sci. Total Environ. 2022;851:158284. PubMed

Alonso V. P. P. Gonçalves M. P. M. de Brito F. A. E. Barboza G. R. Rocha L. d. O. Silva N. C. C. Compr. Rev. Food Sci. Food Saf. 2023;22:688–713. PubMed

Mendoza I. C. Luna E. O. Pozo M. D. Vásquez M. V. Montoya D. C. Moran G. C. Romero L. G. Yépez X. Salazar R. Romero-Peña M. LWT—Food Sci. Technol. 2022;165:113714. PubMed PMC

Zhang H. Mahunu G. K. Castoria R. Apaliya M. T. Yang Q. Trends Food Sci. Technol. 2017;69:36–45.

Chacha J. S. Zhang L. Ofoedu C. E. Suleiman R. A. Dotto J. M. Roobab U. Agunbiade A. O. Duguma H. T. Mkojera B. T. Hossaini S. M. Foods. 2021;10:1430. PubMed PMC

Punia Bangar S. Suri S. Nayi P. Phimolsiripol Y. J. Food Process. Preserv. 2022;46:e16850.

Alonso V. P. P. Furtado M. M. Iwase C. H. T. Brondi-Mendes J. Z. Nascimento M. d. S. Crit. Rev. Food Sci. Nutr. 2022:1–16. PubMed

Huang S. Lin S. Qin H. Jiang H. Liu M. Biomedicines. 2023;11:1197. PubMed PMC

Xuan W. He Y. Huang L. Huang Y.-Y. Bhayana B. Xi L. Gelfand J. A. Hamblin M. R. Sci. Rep. 2018;8:17130. PubMed PMC

Goldberg D. J. J. Clin. Aesthet. Dermatol. 2012;5:45. PubMed PMC

Pile D. F. Nat. Photonics. 2018;12:568.

Hessling M. Haag R. Sieber N. Vatter P. GMS Hyg. Infect. Control. 2021;16:1–17. PubMed PMC

Ashrafudoulla M. Ulrich M. S. Toushik S. H. Nahar S. Roy P. K. Mizan F. R. Park S. H. Ha S.-D. World's Poult. Sci. J. 2023;79:3–26.

Kim S.-J. Kim D.-K. Kang D.-H. Appl. Environ. Microbiol. 2016;82:11–17. PubMed PMC

Nakpan W. Yermakov M. Indugula R. Reponen T. Grinshpun S. A. Sci. Total Environ. 2019;671:59–65. PubMed

Soušková H., Scholtz V., Julák J. and Savická D., 2012

Bosso A. Tortora F. Culurciello R. Di Nardo I. Pistorio V. Carraturo F. Colecchia A. Di Girolamo R. Cafaro V. Notomista E. Int. J. Mol. Sci. 2023;24:12951. PubMed PMC

Otter J., Yezli S., Perl T., Barbut F. and French G., in Decontamination in Hospitals and Healthcare, Elsevier, 2014, pp. 413–460

Rapacka-Zdonczyk A. Wozniak A. Nakonieczna J. Grinholc M. Int. J. Mol. Sci. 2021;22:2224. PubMed PMC

Duque-Sarango P. Delgado-Armijos N. Romero-Martínez L. Pinos-Vélez V. Front. Environ. Sci. 2023;11:1212807.

Tóthová L. and Frankova E., WIT Transactions on Biomedicine and Health, 2001, 5

Kowalski W., Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection, Springer science & business media, 2010

Cortesão M. De Haas A. Unterbusch R. Fujimori A. Schütze T. Meyer V. Moeller R. Front. Microbiol. 2020;11:560. PubMed PMC

Abdelrahman E. Takatori K. Matsuda Y. Tsukada M. Kirino F. Biocontrol Sci. 2018;23:177–186. PubMed

Misra N. Yadav B. Roopesh M. Jo C. Compr. Rev. Food Sci. Food Saf. 2019;18:106–120. PubMed

Molina-Hernandez J. B. Capelli F. Laurita R. Tappi S. Laika J. Gioia L. Valbonetti L. Chaves-López C. Innov. Food Sci. Emerg. Technol. 2022;82:103194.

Mravlje J. Regvar M. Vogel-Mikuš K. J. Fungi. 2021;7:650. PubMed PMC

Veerana M. Yu N. Ketya W. Park G. J. Fungi. 2022;8:102. PubMed PMC

Hoppanová L. Kryštofová S. Int. J. Mol. Sci. 2022;23:11592. PubMed PMC

Rabochová M. Kulišová M. Lorinčík J. Maťátková O. Khun J. Scholtz V. Kolouchová I. J. Food Control. 2024:110522.

Kulišová M. Rabochová M. Lorinčík J. Brányik T. Hrudka J. Scholtz V. Jarošová Kolouchová I. Foods. 2024;13:1054. PubMed PMC

Kulišová M. Maťátková O. Brányik T. Zelenka J. Drábová L. Kolouchová I. J. J. Microbiol. Methods. 2023;205:106676. PubMed

Khun J. Machková A. Kašparová P. Klenivskyi M. Vaňková E. Galář P. Julák J. Scholtz V. Molecules. 2021;27:238. PubMed PMC

Kang J.-W. Hong H.-N. Kang D.-H. Appl. Environ. Microbiol. 2020;86:e00159. PubMed PMC

Matthes R. Assadian O. Kramer A. GMS Hyg. Infect. Control. 2014;9:1–5. PubMed PMC

Fitzhenry K. Rowan N. del Rio A. V. Cremillieux A. Clifford E. J. Water Proc. Engineering. 2019;27:67–76.

Zhai Y. Tian J. Ping R. Xiu H. Xiang Q. Shen R. Wang Z. Food Sci. Technol. Int. 2021;27:334–343. PubMed

Wang J. Zhang F. Yao T. Li Y. Wei N. Front. Microbiol. 2023;13:1115592. PubMed PMC

Chen Y. Li H. Chen C. Zhou M. Phytoparasitica. 2008;36:326–337.

Gonçalves N. P. del Puerto O. Medana C. Calza P. Roslev P. J. Environ. Chem. Eng. 2021;9:106275.

Del Puerto O. Gonçalves N. P. Medana C. Prevot A. B. Roslev P. Environ. Sci. Pollut. Res. 2022;29:58312–58325. PubMed PMC

Urban M. Motteram J. Jing H. C. Powers S. Townsend J. Devonshire J. Pearman I. Kanyuka K. Franklin J. Hammond-Kosack K. J. Appl. Microbiol. 2011;110:675–687. PubMed

Gunter-Ward D. M. Patras A. Bhullar M. S. Kilonzo-Nthenge A. Pokharel B. Sasges M. J. Food Process. Preserv. 2018;42:e13485.

Anderson J. G. Rowan N. J. MacGregor S. J. Fouracre R. A. Farish O. IEEE Trans. Plasma Sci. 2000;28:83–88.

Goldman R. P. Travisano M. Evolution. 2011;65:3486–3498. PubMed

Karentz D. Cleaver J. E. Mitchell D. L. J. Phycol. 1991;27:326–341.

Davies R. Sinskey A. J. J. Bacteriol. 1973;113:133–144. PubMed PMC

Shen J., Cheng C., Xu Z., Lan Y., Ni G. and Sui S., Applications of Cold Plasma in Food Safety, 2022, pp. 1–36

Hage M. Khelissa S. Akoum H. Chihib N.-E. Jama C. Appl. Microbiol. Biotechnol. 2022:1–20. PubMed PMC

Cheng J.-H. Lv X. Pan Y. Sun D.-W. Trends Food Sci. Technol. 2020;103:239–247.

Moreau S. Moisan M. Tabrizian M. Barbeau J. Pelletier J. Ricard A. Yahia L. H. J. Appl. Phys. 2000;88:1166–1174.

Hertwig C. Meneses N. Mathys A. Trends Food Sci. Technol. 2018;77:131–142.

Wang S. Doona C. J. Setlow P. Li Y.-q. Appl. Environ. Microbiol. 2016;82:5775–5784. PubMed PMC

Ochi A. Konishi H. Ando S. Sato K. Yokoyama K. Tsushima S. Yoshida S. Morikawa T. Kaneko T. Takahashi H. Plant Pathol. 2017;66:67–76.

Julák J. Soušková H. Scholtz V. Kvasničková E. Savická D. Kříha V. Folia Microbiol. 2018;63:63–68. PubMed

Yong H. I. Lee H. Park S. Park J. Choe W. Jung S. Jo C. Meat Sci. 2017;123:151–156. PubMed

Sen Y. Onal-Ulusoy B. Mutlu M. Innovative Food Sci. Emerging Technol. 2019;54:235–242.

Waskow A. Betschart J. Butscher D. Oberbossel G. Klöti D. Büttner-Mainik A. Adamcik J. Von Rohr P. R. Schuppler M. Front. Microbiol. 2018;9:3164. PubMed PMC

Cordero R. J. Casadevall A. Fungal Biol. Rev. 2017;31:99–112. PubMed PMC

Molina-Hernandez J. B. Laika J. Peralta-Ruiz Y. Palivala V. K. Tappi S. Cappelli F. Ricci A. Neri L. Chaves-López C. Foods. 2022;11:210. PubMed PMC

Ki S. H. Noh H. Ahn G. R. Kim S. H. Kaushik N. K. Choi E. H. Lee G. J. Appl. Sci. 2020;10:6378.

Zhao L. Wang J. Sheng X. Li S. Yan W. Qian J. Zhang J. Raghavan V. Chem. Eng. J. 2023;475:146017.

Hoppanová L. Dylíková J. Kováčik D. Medvecká V. Ďurina P. Kryštofová S. Hudecová D. Kaliňáková B. Appl. Microbiol. Biotechnol. 2022;106:2107–2119. PubMed

Mumtaz S. Rana J. N. Lim J. S. Javed R. Choi E. H. Han I. Int. J. Mol. Sci. 2023;24:5289. PubMed

Hojnik N. Cvelbar U. Tavčar-Kalcher G. Walsh J. L. Križaj I. Toxins. 2017;9:151. PubMed PMC

Montie T. C. Kelly-Wintenberg K. Roth J. R. IEEE Trans. Plasma Sci. 2000;28:41–50.

Hopke A. Brown A. J. Hall R. A. Wheeler R. T. Trends Microbiol. 2018;26:284–295. PubMed PMC

Ambrico P. F. Šimek M. Rotolo C. Morano M. Minafra A. Ambrico M. Pollastro S. Gerin D. Faretra F. De Miccolis Angelini R. M. Sci. Rep. 2020;10:3673. PubMed PMC

Sakudo A. Yagyu Y. Onodera T. Int. J. Mol. Sci. 2019;20:5216. PubMed PMC

MeiTing G. Huang J. HongYing H. WenJun L. Biomed. Environ. Sci. 2011;24:400–407. PubMed

Scholtz V. Jirešová J. Šerá B. Julák J. Foods. 2021;10:2927. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace