Exploring Non-Thermal Plasma and UV Radiation as Biofilm Control Strategies against Foodborne Filamentous Fungal Contaminants

. 2024 Mar 29 ; 13 (7) : . [epub] 20240329

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38611358

Grantová podpora
22-13745S Czech Science Foundation
LM2023041 Ministry of Education Youth and Sports

In recent years, non-thermal plasma (NTP) has emerged as a promising tool for decontamination and disinfection within the food industry. Given the increasing resistance of microbial biofilms to conventional disinfectants and their adverse environmental effects, this method has significant potential for eliminating biofilm formation or mitigating the metabolic activity of grown biofilms. A comparative study was conducted evaluating the efficacy of UV radiation and NTP in eradicating mature biofilms of four common foodborne filamentous fungal contaminants: Alternaria alternata, Aspergillus niger, Fusarium culmorum, and Fusarium graminearum. The findings reveal that while UV radiation exhibits variable efficacy depending on the duration of exposure and fungal species, NTP induces substantial morphological alterations in biofilms, disrupting hyphae, and reducing extracellular polymeric substance production, particularly in A. alternata and F. culmorum. Notably, scanning electron microscopy analysis demonstrates significant disruption of the hyphae in NTP-treated biofilms, indicating its ability to penetrate the biofilm matrix, which is a promising outcome for biofilm eradication strategies. The use of NTP could offer a more environmentally friendly and potentially more effective alternative to traditional disinfection methods.

Zobrazit více v PubMed

Köhler J.R., Casadevall A., Perfect J. The spectrum of fungi that infects humans. Cold Spring Harb. Perspect. Med. 2015;5:a019273. doi: 10.1101/cshperspect.a019273. PubMed DOI PMC

O’Brien H.E., Parrent J.L., Jackson J.A., Moncalvo J.-M., Vilgalys R. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ. Microbiol. 2005;71:5544–5550. doi: 10.1128/AEM.71.9.5544-5550.2005. PubMed DOI PMC

Douglas L.J. Candida biofilms and their role in infection. Trends Microbiol. 2003;11:30–36. doi: 10.1016/S0966-842X(02)00002-1. PubMed DOI

Ramage G., Rajendran R., Sherry L., Williams C. Fungal biofilm resistance. Int. J. Microbiol. 2012;2012:528521. doi: 10.1155/2012/528521. PubMed DOI PMC

Bourke P., Ziuzina D., Han L., Cullen P., Gilmore B.F. Microbiological interactions with cold plasma. J. Appl. Microbiol. 2017;123:308–324. doi: 10.1111/jam.13429. PubMed DOI

Shay R., Wiegand A.A., Trail F. Biofilm formation and structure in the filamentous fungus Fusarium graminearum, a plant pathogen. Microbiol. Spectr. 2022;10:e00171-22. doi: 10.1128/spectrum.00171-22. PubMed DOI PMC

Breitenbach R., Gerrits R., Dementyeva P., Knabe N., Schumacher J., Feldmann I., Radnik J., Ryo M., Gorbushina A.A. The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering. NPJ Mater. Degrad. 2022;6:42. doi: 10.1038/s41529-022-00253-1. DOI

Pfaller M.A., Diekema D. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev. 2007;20:133–163. doi: 10.1128/CMR.00029-06. PubMed DOI PMC

Yapar N. Epidemiology and risk factors for invasive candidiasis. Ther. Clin. Risk Manag. 2014;10:95–105. doi: 10.2147/TCRM.S40160. PubMed DOI PMC

Watchaputi K., Jayasekara L.C.B., Ratanakhanokchai K., Soontorngun N. Inhibition of cell cycle-dependent hyphal and biofilm formation by a novel cytochalasin 19, 20-epoxycytochalasin Q in Candida albicans. Sci. Rep. 2023;13:9724. doi: 10.1038/s41598-023-36191-4. PubMed DOI PMC

Lohse M.B., Gulati M., Johnson A.D., Nobile C.J. Development and regulation of single-and multi-species Candida albicans biofilms. Nat. Rev. Microbiol. 2018;16:19–31. doi: 10.1038/nrmicro.2017.107. PubMed DOI PMC

Gómez-Gaviria M., Ramírez-Sotelo U., Mora-Montes H.M. Non-albicans Candida species: Immune response, evasion mechanisms, and new plant-derived alternative therapies. J. Fungi. 2022;9:11. doi: 10.3390/jof9010011. PubMed DOI PMC

Tekaia F., Latgé J.-P. Aspergillus fumigatus: Saprophyte or pathogen? Curr. Opin. Microbiol. 2005;8:385–392. doi: 10.1016/j.mib.2005.06.017. PubMed DOI

Kwon-Chung K.J., Sugui J.A. Aspergillus fumigatus—What makes the species a ubiquitous human fungal pathogen? PLoS Pathog. 2013;9:e1003743. doi: 10.1371/journal.ppat.1003743. PubMed DOI PMC

Ramírez-Granillo A., Bautista-Hernández L.A., Bautista-De Lucío V.M., Magaña-Guerrero F.S., Domínguez-López A., Córdova-Alcántara I.M., Pérez N.O., Martinez-Rivera M.d.l.A., Rodríguez-Tovar A.V. Microbial warfare on three fronts: Mixed biofilm of Aspergillus fumigatus and Staphylococcus aureus on primary cultures of human limbo-corneal fibroblasts. Front. Cell. Infect. Microbiol. 2021;11:646054. doi: 10.3389/fcimb.2021.646054. PubMed DOI PMC

da Cruz Cabral L., Pinto V.F., Patriarca A. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int. J. Food Microbiol. 2013;166:1–14. doi: 10.1016/j.ijfoodmicro.2013.05.026. PubMed DOI

Ribes S., Fuentes A., Talens P., Barat J.M. Prevention of fungal spoilage in food products using natural compounds: A review. Crit. Rev. Food Sci. Nutr. 2018;58:2002–2016. doi: 10.1080/10408398.2017.1295017. PubMed DOI

Pitt J.I., Hocking A.D. Fungi and Food Spoilage. Volume 519 Springer; Berlin/Heidelberg, Germany: 2009.

Leyva Salas M., Mounier J., Valence F., Coton M., Thierry A., Coton E. Antifungal microbial agents for food biopreservation—A review. Microorganisms. 2017;5:37. doi: 10.3390/microorganisms5030037. PubMed DOI PMC

Garcia M.V., Bernardi A.O., Copetti M.V. The fungal problem in bread production: Insights of causes, consequences, and control methods. Curr. Opin. Food Sci. 2019;29:1–6. doi: 10.1016/j.cofs.2019.06.010. DOI

Afonso T.B., Simões L.C., Lima N. Effect of quorum sensing and quenching molecules on inter-kingdom biofilm formation by Penicillium expansum and bacteria. Biofouling. 2020;36:965–976. doi: 10.1080/08927014.2020.1836162. PubMed DOI

Coughlan L.M., Cotter P.D., Hill C., Alvarez-Ordóñez A. New weapons to fight old enemies: Novel strategies for the (bio) control of bacterial biofilms in the food industry. Front. Microbiol. 2016;7:1641. doi: 10.3389/fmicb.2016.01641. PubMed DOI PMC

Cui H., Zhang C., Li C., Lin L. Inhibition of Escherichia coli O157:H7 biofilm on vegetable surface by solid liposomes of clove oil. LWT. 2020;117:108656. doi: 10.1016/j.lwt.2019.108656. DOI

Zhang C., Li C., Abdel-Samie M.A., Cui H., Lin L. Unraveling the inhibitory mechanism of clove essential oil against Listeria monocytogenes biofilm and applying it to vegetable surfaces. LWT. 2020;134:110210. doi: 10.1016/j.lwt.2020.110210. DOI

O’donnell C., Tiwari B., Bourke P., Cullen P. Effect of ultrasonic processing on food enzymes of industrial importance. Trends Food Sci. Technol. 2010;21:358–367. doi: 10.1016/j.tifs.2010.04.007. DOI

Pandiselvam R., Subhashini S., Banuu Priya E., Kothakota A., Ramesh S., Shahir S. Ozone based food preservation: A promising green technology for enhanced food safety. Ozone Sci. Eng. 2019;41:17–34. doi: 10.1080/01919512.2018.1490636. DOI

Pandiselvam R., Kaavya R., Jayanath Y., Veenuttranon K., Lueprasitsakul P., Divya V., Kothakota A., Ramesh S. Ozone as a novel emerging technology for the dissipation of pesticide residues in foods–a review. Trends Food Sci. Technol. 2020;97:38–54. doi: 10.1016/j.tifs.2019.12.017. DOI

Grigelmo-Miguel N., Soliva-Fortuny R., Barbosa-Cánovas G.V., Martín-Belloso O. Use of oscillating magnetic fields in food preservation. Nonthermal Process. Technol. Food. 2011;45:222–243. doi: 10.1002/9780470958360.ch16. DOI

Siemer C., Toepfl S., Heinz V. Inactivation of Bacillus subtilis spores by pulsed electric fields (PEF) in combination with thermal energy–I. Influence of process-and product parameters. Food Control. 2014;39:163–171. doi: 10.1016/j.foodcont.2013.10.025. DOI

Song K., Taghipour F., Mohseni M. Microorganisms inactivation by continuous and pulsed irradiation of ultraviolet light-emitting diodes (UV-LEDs) Chem. Eng. J. 2018;343:362–370. doi: 10.1016/j.cej.2018.03.020. DOI

Gavahian M., Meng-Jen T., Khaneghah A.M. Emerging techniques in food science: The resistance of chlorpyrifos pesticide pollution against arc and dielectric barrier discharge plasma. Qual. Assur. Saf. Crops Foods. 2020;12:9–17. doi: 10.15586/qas.v12iSP1.807. DOI

Pan Y., Cheng J.H., Sun D.W. Cold plasma-mediated treatments for shelf life extension of fresh produce: A review of recent research developments. Compr. Rev. Food Sci. Food Saf. 2019;18:1312–1326. doi: 10.1111/1541-4337.12474. PubMed DOI

Alonso V.P.P., Furtado M.M., Iwase C.H.T., Brondi-Mendes J.Z., Nascimento M.d.S. Microbial resistance to sanitizers in the food industry. Crit. Rev. Food Sci. Nutr. 2022;64:654–669. doi: 10.1080/10408398.2022.2107996. PubMed DOI

Afshari R., Hosseini H. Non-thermal plasma as a new food preservation method, its present and future prospect. Arch. Adv. Biosci. 2014;5:116–120. doi: 10.22037/JPS.V5I1.5348. DOI

Asl P.J., Rajulapati V., Gavahian M., Kapusta I., Putnik P., Khaneghah A.M., Marszałek K. Non-thermal plasma technique for preservation of fresh foods: A review. Food Control. 2022;134:108560. doi: 10.1016/j.foodcont.2021.108560. DOI

Patil S., Bourke P., Cullen P. Cold Plasma in Food and Agriculture. Elsevier; Amsterdam, The Netherlands: 2016. Principles of nonthermal plasma decontamination; pp. 143–177.

Shen J., Cheng C., Xu Z., Lan Y., Ni G., Sui S. Applications of Cold Plasma in Food Safety. Springer; Singapore: 2022. Principles and characteristics of cold plasma at gas phase and gas-liquid phase; pp. 1–36.

Cheng J.-H., Lv X., Pan Y., Sun D.-W. Foodborne bacterial stress responses to exogenous reactive oxygen species (ROS) induced by cold plasma treatments. Trends Food Sci. Technol. 2020;103:239–247. doi: 10.1016/j.tifs.2020.07.022. DOI

Gururani P., Bhatnagar P., Bisht B., Kumar V., Joshi N.C., Tomar M.S., Pathak B. Cold plasma technology: Advanced and sustainable approach for wastewater treatment. Environ. Sci. Pollut. Res. 2021;28:65062–65082. doi: 10.1007/s11356-021-16741-x. PubMed DOI PMC

Ashrafudoulla M., Ulrich M.S., Toushik S.H., Nahar S., Roy P.K., Mizan F.R., Park S.H., Ha S.-D. Challenges and opportunities of non-conventional technologies concerning food safety. World’s Poult. Sci. J. 2023;79:3–26. doi: 10.1080/00439339.2023.2163044. DOI

Russotto V., Cortegiani A., Fasciana T., Iozzo P., Raineri S.M., Gregoretti C., Giammanco A., Giarratano A. What healthcare workers should know about environmental bacterial contamination in the intensive care unit. BioMed Res. Int. 2017;2017:6905450. doi: 10.1155/2017/6905450. PubMed DOI PMC

Fitzhenry K., Rowan N., del Rio A.V., Cremillieux A., Clifford E. Inactivation efficiency of Bacillus endospores via modified flow-through PUV treatment with comparison to conventional LPUV treatment. J. Water Process Eng. 2019;27:67–76. doi: 10.1016/j.jwpe.2018.11.009. DOI

Otter J., Yezli S., Perl T., Barbut F., French G. Decontamination in Hospitals and Healthcare. Elsevier; Amsterdam, The Netherlands: 2014. A guide to no-touch automated room disinfection (NTD) systems; pp. 413–460.

Farrell H., Garvey M., Rowan N. Studies on the inactivation of medically important Candida species on agar surfaces using pulsed light. FEMS Yeast Res. 2009;9:956–966. doi: 10.1111/j.1567-1364.2009.00543.x. PubMed DOI

Garvey M., Rabbitt D., Stocca A., Rowan N. Pulsed ultraviolet light inactivation of Pseudomonas aeruginosa and Staphylococcus aureus biofilms. Water Environ. J. 2015;29:36–42. doi: 10.1111/wej.12088. DOI

Anderson J.G., Rowan N.J., MacGregor S.J., Fouracre R.A., Farish O. Inactivation of food-borne enteropathogenic bacteria and spoilage fungi using pulsed-light. IEEE Trans. Plasma Sci. 2000;28:83–88. doi: 10.1109/27.842870. DOI

Shikano A., Kuda T., Takahashi H., Kimura B. Effect of quantity of food residues on resistance to desiccation, disinfectants, and UV-C irradiation of spoilage yeasts adhered to a stainless steel surface. LWT. 2017;80:169–177. doi: 10.1016/j.lwt.2017.02.020. DOI

Watson I., Kamble P., Shanks C., Khan Z., El Darra N. Decontamination of chilli flakes in a fluidized bed using combined technologies: Infrared, UV and ozone. Innov. Food Sci. Emerg. Technol. 2020;59:102248. doi: 10.1016/j.ifset.2019.102248. DOI

Kulišová M., Maťátková O., Brányik T., Zelenka J., Drábová L., Kolouchová I.J. Detection of microscopic filamentous fungal biofilms–Choosing the suitable methodology. J. Microbiol. Methods. 2023;205:106676. doi: 10.1016/j.mimet.2023.106676. PubMed DOI

Mendoza I.C., Luna E.O., Pozo M.D., Vásquez M.V., Montoya D.C., Moran G.C., Romero L.G., Yépez X., Salazar R., Romero-Peña M. Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables. LWT. 2022;165:113714. doi: 10.1016/j.lwt.2022.113714. PubMed DOI PMC

Alonso V.P.P., Gonçalves M.P.M., de Brito F.A.E., Barboza G.R., Rocha L.d.O., Silva N.C.C. Dry surface biofilms in the food processing industry: An overview on surface characteristics, adhesion and biofilm formation, detection of biofilms, and dry sanitization methods. Compr. Rev. Food Sci. Food Saf. 2023;22:688–713. doi: 10.1111/1541-4337.13089. PubMed DOI

Cortegiani A., Russotto V., Maggiore A., Attanasio M., Naro A.R., Raineri S.M., Giarratano A. Cochrane Database of Systematic Reviews. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2016. Antifungal agents for preventing fungal infections in non-neutropenic critically ill patients. PubMed DOI PMC

Kramer A., Schwebke I., Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 2006;6:130. doi: 10.1186/1471-2334-6-130. PubMed DOI PMC

Weinstein R.A., Hota B. Contamination, disinfection, and cross-colonization: Are hospital surfaces reservoirs for nosocomial infection? Clin. Infect. Dis. 2004;39:1182–1189. doi: 10.1086/424667. PubMed DOI PMC

Macaluso J.N., Jr. Hospital, catheter, peritoneal dialysis acquired infections: Visible light as a new solution to reduce risk and incidence. Cureus. 2023;15:e43043. doi: 10.7759/cureus.43043. PubMed DOI PMC

Lu J., Hu X., Ren L. Biofilm control strategies in food industry: Inhibition and utilization. Trends Food Sci. Technol. 2022;123:103–113. doi: 10.1016/j.tifs.2022.03.007. DOI

Ashley J., Rasooly J.A., Tran I., Yost L.E., Chertow G.M. Effect of UV light on disinfection of peritoneal dialysis catheter connections. Perit. Dial. Int. 2017;37:109–111. doi: 10.3747/pdi.2016.00106. PubMed DOI

Byun K.-H., Park S.Y., Lee D.U., Chun H.S., Ha S.-D. Effect of UV-C irradiation on inactivation of Aspergillus flavus and Aspergillus parasiticus and quality parameters of roasted coffee bean (Coffea arabica L.) Food Addit. Contam. Part A. 2020;37:507–518. doi: 10.1080/19440049.2020.1711971. PubMed DOI

Rapacka-Zdonczyk A., Wozniak A., Nakonieczna J., Grinholc M. Development of antimicrobial phototreatment tolerance: Why the methodology matters. Int. J. Mol. Sci. 2021;22:2224. doi: 10.3390/ijms22042224. PubMed DOI PMC

Goosen N., Moolenaar G.F. Repair of UV damage in bacteria. DNA Repair. 2008;7:353–379. doi: 10.1016/j.dnarep.2007.09.002. PubMed DOI

Coelho L.M., Aquino-Ferreira R., Maffei C.M.L., Martinez-Rossi N.M. In vitro antifungal drug susceptibilities of dermatophytes microconidia and arthroconidia. J. Antimicrob. Chemother. 2008;62:758–761. doi: 10.1093/jac/dkn245. PubMed DOI

Garvey M., Rowan N.J. Pathogenic drug resistant fungi: A review of mitigation strategies. Int. J. Mol. Sci. 2023;24:1584. doi: 10.3390/ijms24021584. PubMed DOI PMC

Garvey M., Meade E., Rowan N.J. Effectiveness of front line and emerging fungal disease prevention and control interventions and opportunities to address appropriate eco-sustainable solutions. Sci. Total Environ. 2022;851:158284. doi: 10.1016/j.scitotenv.2022.158284. PubMed DOI

Wuren T., Toyotome T., Yamaguchi M., Takahashi-Nakaguchi A., Muraosa Y., Yahiro M., Wang D.-N., Watanabe A., Taguchi H., Kamei K. Effect of serum components on biofilm formation by Aspergillus fumigatus and other Aspergillus species. Jpn. J. Infect. Dis. 2014;67:172–179. doi: 10.7883/yoken.67.172. PubMed DOI

Rayón-López G., Carapia-Minero N., Medina-Canales M.G., García-Pérez B.E., Reséndiz-Sánchez J., Pérez N.O., Rodríguez-Tovar A.V., Ramírez-Granillo A. Lipid-like biofilm from a clinical brain isolate of Aspergillus terreus: Quantification, structural characterization and stages of the formation cycle. Mycopathologia. 2023;188:35–49. doi: 10.1007/s11046-022-00692-z. PubMed DOI

Goldman R.P., Travisano M. Experimental evolution of ultraviolet radiation resistance in Escherichia coli. Evolution. 2011;65:3486–3498. doi: 10.1111/j.1558-5646.2011.01438.x. PubMed DOI

Zhang H., Mahunu G.K., Castoria R., Apaliya M.T., Yang Q. Augmentation of biocontrol agents with physical methods against postharvest diseases of fruits and vegetables. Trends Food Sci. Technol. 2017;69:36–45. doi: 10.1016/j.tifs.2017.08.020. DOI

Chacha J.S., Zhang L., Ofoedu C.E., Suleiman R.A., Dotto J.M., Roobab U., Agunbiade A.O., Duguma H.T., Mkojera B.T., Hossaini S.M. Revisiting non-thermal food processing and preservation methods—Action mechanisms, pros and cons: A technological update (2016–2021) Foods. 2021;10:1430. doi: 10.3390/foods10061430. PubMed DOI PMC

Punia Bangar S., Suri S., Nayi P., Phimolsiripol Y. Cold plasma for microbial safety: Principle, mechanism, and factors responsible. J. Food Process. Preserv. 2022;46:e16850. doi: 10.1111/jfpp.16850. DOI

Soušková H., Scholtz V., Julák J., Savická D. Plasma for Bio-Decontamination, Medicine and Food Security. Springer; Dordrecht, The Netherlands: 2012. The fungal spores survival under the low-temperature plasma; pp. 57–66.

Nakpan W., Yermakov M., Indugula R., Reponen T., Grinshpun S.A. Inactivation of bacterial and fungal spores by UV irradiation and gaseous iodine treatment applied to air handling filters. Sci. Total Environ. 2019;671:59–65. doi: 10.1016/j.scitotenv.2019.03.310. PubMed DOI

Sakudo A., Yagyu Y., Onodera T. Disinfection and sterilization using plasma technology: Fundamentals and future perspectives for biological applications. Int. J. Mol. Sci. 2019;20:5216. doi: 10.3390/ijms20205216. PubMed DOI PMC

Maeda K., Toyokawa Y., Shimizu N., Imanishi Y., Sakudo A. Inactivation of Salmonella by nitrogen gas plasma generated by a static induction thyristor as a pulsed power supply. Food Control. 2015;52:54–59. doi: 10.1016/j.foodcont.2014.12.012. DOI

Zahoranová A., Hoppanová L., Šimončicová J., Tučeková Z., Medvecká V., Hudecová D., Kaliňáková B., Kováčik D., Černák M. Effect of cold atmospheric pressure plasma on maize seeds: Enhancement of seedlings growth and surface microorganisms inactivation. Plasma Chem. Plasma Process. 2018;38:969–988. doi: 10.1007/s11090-018-9913-3. DOI

Hoppanová L., Kryštofová S. Nonthermal plasma effects on fungi: Applications, fungal responses, and future perspectives. Int. J. Mol. Sci. 2022;23:11592. doi: 10.3390/ijms231911592. PubMed DOI PMC

Šimončicová J., Kaliňáková B., Kováčik D., Medvecká V., Lakatoš B., Kryštofová S., Hoppanová L., Palušková V., Hudecová D., Ďurina P. Cold plasma treatment triggers antioxidative defense system and induces changes in hyphal surface and subcellular structures of Aspergillus flavus. Appl. Microbiol. Biotechnol. 2018;102:6647–6658. doi: 10.1007/s00253-018-9118-y. PubMed DOI

Nowinski D., Czapka T., Maliszewska I. Effect of multiple nonthermal plasma treatments of filamentous fungi on cellular phenotypic changes and phytopathogenicity. Int. J. Food Microbiol. 2024;408:110428. doi: 10.1016/j.ijfoodmicro.2023.110428. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...