Innovative antifungal strategies: enhanced biofilm inhibition of Candida albicans by a modified tea tree oil formulation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39881994
PubMed Central
PMC11778174
DOI
10.3389/fmicb.2024.1518598
Knihovny.cz E-zdroje
- Klíčová slova
- Candida albicans, Minimum Biofilm Inhibitory Concentration (MBIC), Minimum Fungicidal Concentration (MFC), antifungal, biofilm, biofilm inhibition, modified tea tree oil formulation, tea tree oil,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Candida albicans is a significant human pathogen with the ability to form biofilms, a critical factor in its resistance to antifungal treatments. This study aims to evaluate the antifungal activity and biofilm inhibition potential of Tea Tree Oil (TTO) derived from Melaleuca alternifolia cultivated in Vietnam. METHODS: The antifungal activity of TTO was assessed by determining the Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), Minimum Biofilm Inhibitory Concentration (MBIC), and Minimum Biofilm Eradication Concentration (MBEC) using broth dilution methods. The experiments were conducted on C. albicans in both planktonic and biofilm states across concentrations ranging from 0.1 μL/mL to 10 μL/mL. RESULTS: TTO demonstrated significant antifungal efficacy, with a MIC of 0.1 μL/mL (∼91.217 μg/mL) and an MFC of 10 μL/mL (∼9121.7 μg/mL). It effectively inhibited biofilm formation with a recorded MBIC of 2 μL/mL (∼1824.34 μg/mL). However, MBEC values were not determinable as the concentrations tested did not achieve the eradication of more than 50% of mature biofilm within the experimental conditions. DISCUSSION: These findings highlight TTO as a promising natural antifungal agent with strong biofilm-inhibitory properties. However, its limited efficacy in eradicating mature biofilms underscores the need for further studies, potentially involving higher concentrations or synergistic combinations with conventional antifungal agents.
An Binh Hospital Ho Chi Minh City Vietnam
Faculty of Chemical Engineering Industrial University of Ho Chi Minh City Ho Chi Minh City Vietnam
Zobrazit více v PubMed
Alves A. M. C. V., Lopes B. O., Leite A. C. R. M., Cruz G. S., Brito ÉH. S., Lima L. F., et al. (2023). Characterization of oral candida spp. biofilms in children and adults carriers from Eastern Europe and South America. Antibiotics 12:797. 10.3390/antibiotics12050797 PubMed DOI PMC
Blanc A. R., Sortino M. A., Butassi E., Svetaz L. A. (2023). Synergistic effects of Thymus vulgaris essential oil in combination with antifungal agents and inhibition of virulence factors of Candida albicans. Phytomed. Plus 3:100481.
Brambilla E., Ionescu A. C., Cazzaniga G., Ottobelli M., Samaranayake L. P. (2016). Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation. J. Basic Microbiol. 56 480–492. 10.1002/jobm.201500329 PubMed DOI
Brun P., Bernabè G., Filippini R., Piovan A. (2019). In vitro antimicrobial activities of commercially available tea tree (Melaleuca alternifolia) essential oils. Curr. Microbiol. 76 108–116. 10.1007/s00284-018-1594-x PubMed DOI
Carson C. F., Hammer K. A., Riley T. V. (2006). Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev. 19 50–62. PubMed PMC
Carson C., Riley T. (1994). Susceptibility of Propionibacterium acnes to the essential oil of Melaleuca alternifolia. Lett. Appl. Microbiol. 19 24–25.
Casagrande Pierantoni D., Corte L., Roscini L., Cardinali G. (2019). High-Throughput rapid and inexpensive assay for quantitative determination of low cell-density yeast cultures. Microorganisms 7:32. 10.3390/microorganisms7020032 PubMed DOI PMC
Catalán A., Pacheco J. G., Martínez A., Mondaca M. A. (2008). In vitro and in vivo activity of Melaleuca alternifolia mixed with tissue conditioner on Candida albicans. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 105 327–332. 10.1016/j.tripleo.2007.08.025 PubMed DOI
Chen S., Li Z., Gu Z., Ban X., Hong Y., Cheng L., et al. (2023). A new micro-agar dilution method to determine the minimum inhibitory concentration of essential oils against microorganisms. J. Microbiol. Methods 211:106791. 10.1016/j.mimet.2023.106791 PubMed DOI
Cox S. D., Markham J. (2007). Susceptibility and intrinsic tolerance of Pseudomonas aeruginosa to selected plant volatile compounds. J. Appl. Microbiol. 103 930–936. 10.1111/j.1365-2672.2007.03353.x PubMed DOI
Cox S., Mann C., Markham J. (2001). Interactions between components of the essential oil of Melaleuca alternifolia. J. Appl. Microbiol. 91 492–497. PubMed
Dalleau S., Cateau E., Bergès T., Berjeaud J. M., Imbert C. (2008). In vitro activity of terpenes against Candida biofilms. Int. J. Antimicrob. Agents 31 572–576. PubMed
Figueiral M. H., Azul A., Pinto E., Fonseca P. A., Branco F. M., Scully C., et al. (2007). Denture-related stomatitis: identification of aetiological and predisposing factors–a large cohort. J. Oral Rehabil. 34 448–455. 10.1111/j.1365-2842.2007.01709.x PubMed DOI
Francisconi R. S., Bordini E. A. F., Nogueira M. N. M., Fontana A., Lombardi Bedran T. B., Correia M. F., et al. (2015). Effect of Melaleuca alternifolia and its components on Candida albicans and Candida tropicalis. J. US China Med. Sci. 12 91–98.
Grando T., de Sá M. F., Baldissera M. D., Oliveira C. B., de Souza M. E., Raffin R. P., et al. (2016). In vitro activity of essential oils of free and nanostructured Melaleuca alternifolia and of terpinen-4-ol on eggs and larvae of Haemonchus contortus. J. Helminthol. 90 377–382. 10.1017/S0022149X15000401 PubMed DOI
Hammer K., Carson C., Riley T. (2002). In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamentous fungi. J. Antimicrob. Chemother. 50 195–199. 10.1093/jac/dkf112 PubMed DOI
Hammer K., Carson C., Riley T. (2003a). Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 95 853–860. PubMed
Hammer K., Dry L., Johnson M., Michalak E. M., Carson C. F., Riley T. V., et al. (2003b). Susceptibility of oral bacteria to Melaleuca alternifolia (tea tree) oil in vitro. Oral Microbiol. Immunol. 18 389–392. 10.1046/j.0902-0055.2003.00105.x PubMed DOI
Hulankova R. (2022). The influence of liquid medium choice in determination of minimum inhibitory concentration of essential oils against pathogenic bacteria. Antibiotics 11:150. 10.3390/antibiotics11020150 PubMed DOI PMC
Krueger Q., Phippen B., Reitzel A. (2024). Antibiotics alter development and gene expression in the model cnidarian Nematostella vectensis. PeerJ 12:e17349. 10.7717/peerj.17349 PubMed DOI PMC
Kulišová M., Rabochová M., Lorinèík J., Brányik T., Hrudka J., Scholtz V., et al. (2024). Exploring non-thermal plasma and UV radiation as biofilm control strategies against foodborne filamentous fungal contaminants. Foods 13:1054. 10.3390/foods13071054 PubMed DOI PMC
Lohse M. B., Gulati M., Johnson A. D., Nobile C. J. (2018). Development and regulation of single-and multi-species Candida albicans biofilms. Nat. Rev. Microbiol. 16 19–31. 10.1038/nrmicro.2017.107 PubMed DOI PMC
Mahmoudabadi A. Z., Zarrin M., Kiasat N. (2014). Biofilm formation and susceptibility to amphotericin B and fluconazole in Candida albicans. Jundishapur J. Microbiol. 7:e17105. PubMed PMC
Makambi W. K., Ikonomova S. P., Karlsson A. J. (2023). Quantifying the antifungal activity of peptides against Candida albicans. J. Visual. Exp. 10.3791/64416 PubMed DOI PMC
Maquera Huacho P. M., Rodriguez Herrero E., Verspecht T., Pauwels M., Marcantonio E., Palomari Spolidorio D. M., et al. (2019). Terpinen-4-ol and carvacrol affect multi-species biofilm composition. Biofouling 35 561–572. 10.1080/08927014.2019.1630386 PubMed DOI
Maquera-Huacho P. M., Tonon C. C., Correia M. F., Francisconi R. S., Bordini E. A. F., Marcantonio É, et al. (2018). In vitro antibacterial and cytotoxic activities of carvacrol and terpinen-4-ol against biofilm formation on titanium implant surfaces. Biofouling 34 699–709. 10.1080/08927014.2018.1485892 PubMed DOI
Merritt J. H., Kadouri D. E., O’Toole G. A. (2011). Growing and analyzing static biofilms. Curr. Protoc. Microbiol. 22 Chater1:Unit1B.1. PubMed PMC
Mondello F., De Bernardis F., Girolamo A., Cassone A., Salvatore G. (2006). In vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree) oil against azole-susceptible and-resistant human pathogenic Candida species. BMC Infect. Dis. 6:158. 10.1186/1471-2334-6-158 PubMed DOI PMC
Morales-Medina W. R. (2021). Assessing the Microbial Ecology of Sewer Biofilms for Pathogens, Antibiotic Resistance, and SARS-CoV-2 and Drinking Water Biofilters for Manganese Removal. New Brunswick, NJ: Rutgers The State University of New Jersey, School of Graduate Studies.
Noumi E., Snoussi M., Hajlaoui H., Trabelsi N., Ksouri R., Valentin E., et al. (2011). Chemical composition, antioxidant and antifungal potential of Melaleuca alternifolia (tea tree) and Eucalyptus globulus essential oils against oral Candida species. J. Med. Plants Res. 5 4147–4156.
Oro D., Heissler A., Rossi E. M., Scapin D., da Silva Malheiros P., Boff E., et al. (2015). Antifungal activity of natural compounds against Candida species isolated from HIV-positive patients. Asian Pacific J. Trop. Biomed. 5 781–784. 10.1016/j.heliyon.2022.e09073 PubMed DOI PMC
Otajevwo D. F., Osawaru O. E. (2020). Testing the efficacy of Mueller Hinton agar over Nutrient agar for optimal antibiotic sensitivity testing response by selected clinical bacterial pathogens. GSC Adv. Res. Rev. 5 061–074.
Pereira L., Silva S., Ribeiro B., Henriques M., Azeredo J. (2015). Influence of glucose concentration on the structure and quantity of biofilms formed by Candida parapsilosis. FEMS Yeast Res. 15:fov043. 10.1093/femsyr/fov043 PubMed DOI
Purwasena I. A., Astuti D. I., Taufik I., Putri F. Z. (2020). The potential of clove essential oil microemulsion as an alternative biocide against Pseudomonas aeruginosa biofilm. J. Pure Appl. Microbiol. 14 261–269.
Ramage G., Milligan S., Lappin D. F., Sherry L., Sweeney P., Williams C., et al. (2012). Antifungal, cytotoxic, and immunomodulatory properties of tea tree oil and its derivative components: potential role in management of oral candidosis in cancer patients. Front. Microbiol. 3:220. 10.3389/fmicb.2012.00220 PubMed DOI PMC
Rodriguez-Tudela J. L., Cuenca-Estrella M., Díaz-Guerra T. M., Mellado E. (2001). Standardization of antifungal susceptibility variables for a semiautomated methodology. J. Clin. Microbiol. 39 2513–2517. PubMed PMC
Rosato A., Vitali C., Gallo D., Balenzano L., Mallamaci R. (2008). The inhibition of Candida species by selected essential oils and their synergism with amphotericin B. Phytomedicine 15 635–638. PubMed
Rouf A., Kanojia V., Naik H. R., Naseer B., Qadri T. (2017). An overview of microbial cell culture. J. Pharmacogn. Phytochem. 6 1923–1928.
Salem M. Z., Elansary H. O., Ali H. M., El-Settawy A. A., Elshikh M. S., Abdel-Salam E. M., et al. (2018). Bioactivity of essential oils extracted from Cupressus macrocarpa branchlets and Corymbia citriodora leaves grown in Egypt. BMC Complement. Altern. Med. 18:23. 10.1186/s12906-018-2085-0 PubMed DOI PMC
Silva S., Henriques M., Martins A., Oliveira R., Williams D., Azeredo J., et al. (2009). Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Med. Mycol. 47 681–689. 10.3109/13693780802549594 PubMed DOI
Stewart P. S., Franklin M. J. (2008). Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6 199–210. PubMed
Thosar N., Basak S., Bahadure R. N., Rajurkar M. (2013). Antimicrobial efficacy of five essential oils against oral pathogens: an in vitro study. Eur. J. Dentistry 7(S 01) S071–S077. 10.4103/1305-7456.119078 PubMed DOI PMC
Van Nguyen H., Vu T. T., Chu-Ky S., Sarter S. (2017). Interaction effects of Litsea cubeba essential oil and antibiotics on antibacterial activity against pathogenic bacteria in aquaculture. Vietnam J. Sci. Technol. 55 66–73.
Vaňková E., Paldrychová M., Kašparová P., Lokoèová K., Kodeš Z., Mat’átková O., et al. (2020). Natural antioxidant pterostilbene as an effective antibiofilm agent, particularly for gram-positive cocci. World J. Microbiol. Biotechnol. 36:101. 10.1007/s11274-020-02876-5 PubMed DOI
Vu K., Buckley B. J., Bujaroski R. S., Blumwald E., Kelso M. J., Gelli A., et al. (2023). Antifungal activity of 6-substituted amiloride and hexamethylene amiloride (HMA) analogs. Front. Cell. Infect. Microbiol. 13:1101568. 10.3389/fcimb.2023.1101568 PubMed DOI PMC
Xie J. L., Singh-Babak S. D., Cowen L. E. (2012). Minimum inhibitory concentration (MIC) assay for antifungal drugs. BioProtocol 2: e252.