The Influence of Liquid Medium Choice in Determination of Minimum Inhibitory Concentration of Essential Oils against Pathogenic Bacteria
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Institutional Research Support
University of Veterinary Sciences Brno
PubMed
35203753
PubMed Central
PMC8868168
DOI
10.3390/antibiotics11020150
PII: antibiotics11020150
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial activity, broth microdilution method, essential oil, growth kinetics, minimum inhibitory concentration (MIC),
- Publikační typ
- časopisecké články MeSH
So far there is no internationally accepted, standardized method for MIC determination of natural substances such as essential oils (EOs). The aim of this study was to elucidate how much the MIC values obtained from various studies using different culture media are comparable. The median MICs for cinnamon essential oil (EO) obtained by broth dilution were 517, 465 and 517 µg/mL for Mueller-Hinton Broth (MHB), Tryptone Soya Broth (TSB) and Brain Heart Infusion (BHI), respectively. The MIC values for oregano EO were significantly (p < 0.001) lower in MHB than in highly nutritious media; the median MICs were 616 µg/mL for MHB and 474 µg/mL for TSB and BHI. This statistically significant difference was noted for all the pathogens studied (Salmonella Enteritidis, Escherichia coli O157, Listeria monocytogenes, Staphylococcus aureus). In the presence of oregano EO lag phase was also much less prolonged in MHB (by 6-17%) than in the other media (by 92-189%). Some components of EOs may bind to starch in MHB; since the phenomenon seems to be selective and EO dependent, the use of MHB for comparison of antimicrobial properties of various EOs thus cannot be recommended.
Zobrazit více v PubMed
Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016;6:71–79. doi: 10.1016/j.jpha.2015.11.005. PubMed DOI PMC
Wiegand I., Hilpert K., Hancock R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008;3:163–175. doi: 10.1038/nprot.2007.521. PubMed DOI
CLSI . M07: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. CLSI; Wayne, PA, USA: 2018. pp. 1–112.
EUCAST . Media Preparation for EUCAST Disk Diffusion Testing and for Determination of MIC Values by the Broth Microdilution Method, Version 6.0. EUCAST; Växjö, Sweden: 2020. [(accessed on 21 October 2021)]. pp. 4–5. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2020_manuals/Media_preparation_v_6.0_EUCAST_AST.pdf.
Van de Vel E., Sampers I., Raes K. A Review on influencing factors on the minimum inhibitory concentration of essential oils. Crit. Rev. Food Sci. Nutr. 2019;59:357–378. doi: 10.1080/10408398.2017.1371112. PubMed DOI
Gutierrez J., Barry-Ryan C., Bourke P. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol. 2008;124:91–97. doi: 10.1016/j.ijfoodmicro.2008.02.028. PubMed DOI
Juven B.J., Kanner J., Schved F., Weisslowicz H. Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J. Appl. Bacteriol. 1994;76:626–631. doi: 10.1111/j.1365-2672.1994.tb01661.x. PubMed DOI
Veldhuizen E.J., Creutzberg T.O., Burt S.A., Haagsman H.P. Low temperature and binding to food components inhibit the antibacterial activity of carvacrol against Listeria monocytogenes in steak tartare. J. Food Prot. 2007;70:2127–2132. doi: 10.4315/0362-028X-70.9.2127. PubMed DOI
Gutierrez J., Barry-Ryan C., Bourke P. Antimicrobial activity of plant essential oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiol. 2009;26:142–150. doi: 10.1016/j.fm.2008.10.008. PubMed DOI
Cendrowski A., Kraśniewska K., Przybył J.L., Zielińska A., Kalisz S. Antibacterial and antioxidant activity of extracts from rose fruits (Rosa rugosa) Molecules. 2020;25:1365. doi: 10.3390/molecules25061365. PubMed DOI PMC
Serio A., Chiarini M., Tettamanti E., Paparella A. Electronic paramagnetic resonance investigation of the activity of Origanum vulgare L. essential oil on the Listeria monocytogenes membrane. Lett. Appl. Microbiol. 2010;51:149–157. doi: 10.1111/j.1472-765X.2010.02877.x. PubMed DOI
Granata G., Stracquadanio S., Leonardi M., Napoli E., Malandrino G., Cafiso V., Stefani S., Geraci C. Oregano and thyme essential oils encapsulated in chitosan nanoparticles as effective antimicrobial agents against foodborne pathogens. Molecules. 2021;26:4055. doi: 10.3390/molecules26134055. PubMed DOI PMC
Simionato I., Domingues F.C., Nerín N., Silva F. Encapsulation of cinnamon oil in cyclodextrin nanosponges and their potential use for antimicrobial food packaging. Food Chem. Toxicol. 2019;132:110647. doi: 10.1016/j.fct.2019.110647. PubMed DOI
CLSI . M45: Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. 3rd ed. CLSI; Wayne, PA, USA: 2016. p. 44.
Bouarab-Chibane L., Forquet V., Lanteri P., Clement Y., Leonard-Akkari L., Oulahal N., Degraeve P., Bordes C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) models. Front. Microbiol. 2019;10:829. doi: 10.3389/fmicb.2019.00829. PubMed DOI PMC
Chaleshtori F.D., Saholi M., Chaleshtori R.S. Chemical composition, antioxidant and antibacterial activity of Bunium persicum, Eucalyptus globulus, and rose water on multidrug-resistant Listeria species. J. Evid.-Based Integr. Med. 2018;23:2515690X17751314. doi: 10.1177/2515690X17751314. PubMed DOI PMC
Kang J.H., Song K.B. Combined washing effect of noni extract and oregano essential oil on the decontamination of Listeria monocytogenes on romaine lettuce. Int. J. Food Sci. 2020;55:3515–3523. doi: 10.1111/ijfs.14685. DOI
Puškárová A., Bučková M., Kraková L., Pangallo D., Kozics K. The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci. Rep. 2017;7:8211. doi: 10.1038/s41598-017-08673-9. PubMed DOI PMC
Saraiva C., Silva A.C., Garcia-Diez J., Cenci-Goga B., Grispoldi L., Silva A.F., Almeida J.M. Antimicrobial activity of Myrtus communis L. and Rosmarinus officinalis L. essential oils against Listeria monocytogenes in cheese. Foods. 2021;10:1106. doi: 10.3390/foods10051106. PubMed DOI PMC
Shahbazi Y. Chemical composition and in vitro antibacterial activity of Mentha spicata essential oil against common food-borne pathogenic bacteria. J. Pathog. 2015:916305. doi: 10.1155/2015/916305. PubMed DOI PMC
Limsuwan C., Subhadhirasakul S., Voravuthikunchai S.P. Medicinal plants with significant activity against important pathogenic bacteria. Pharm. Biol. 2009;47:683–689. doi: 10.1080/13880200902930415. DOI
Bagheri L., Khodaei N., Salmeri S., Karboune S., Lacroix M. Correlation between chemical composition and antimicrobial properties of essential oils against most common food pathogens and spoilers: In-vitro efficacy and predictive modelling. Microb. Pathog. 2020;147:e104212. doi: 10.1016/j.micpath.2020.104212. PubMed DOI
Holm S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979;6:65–70.
Liu Y., Wang X., Liu B., Dong Q. Microrisk Lab: An online freeware for predictive microbiology. Foodborne Pathog. Dis. 2021;18:607–615. doi: 10.1089/fpd.2020.2919. PubMed DOI
Baranyi J., Roberts T.A. Mathematics of predictive food microbiology. Int. J. Food Microbiol. 1995;26:199–218. doi: 10.1016/0168-1605(94)00121-L. PubMed DOI
Methods for Determination of Antimicrobial Activity of Essential Oils In Vitro-A Review