Methods for Determination of Antimicrobial Activity of Essential Oils In Vitro-A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Institutional support
University of Veterinary Sciences Brno
PubMed
39409654
PubMed Central
PMC11478843
DOI
10.3390/plants13192784
PII: plants13192784
Knihovny.cz E-zdroje
- Klíčová slova
- agar diffusion, agar dilution, antibacterial, biofilm, broth dilution, plant extracts, vapor phase,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Essential oils (EOs) have been gaining popularity in the past decades among researchers due to their potential to replace conventional chemicals used in the fight against pests, pathogenic and spoilage microbes, and oxidation processes. EOs are complex mixtures with many chemical components, the content of which depends on many factors-not just the plant genus, species, or subspecies, but also chemotype, locality, climatic conditions, phase of vegetation, method of extraction, and others. Due to this fact, there is still much to study, with antimicrobial effect being one of the key properties of EOs. There are many methods that have been frequently used by researchers for in vitro evaluation; however, although the research has been going on for decades, an internationally accepted standard is still missing. Most of methods are based on time-proven standards used for the testing of antibiotics. Due to the specific properties of EOs and their components, such as volatility and hydrophobicity, many modifications of these standard procedures have been adopted. The aim of this review is to describe the most common methods and their modifications for the testing of antimicrobial properties of EOs and to point out the most controversial variables which can potentially affect results of the assays.
Zobrazit více v PubMed
Franz C., Novak J. Sources of Essential Oils. In: Baser K.H.C., Buchbauer G., editors. Handbook of Essential Oils: Science, Technology, and Applications. 3rd ed. CRC Press; Boca Raton, FL, USA: 2020. pp. 41–84.
Ribeiro-Santos R., Andrade M., Sanches-Silva A., de Melo N.R. Essential Oils for Food Application: Natural Substances with Established Biological Activities. Food Bioprocess Technol. 2018;11:43–71. doi: 10.1007/s11947-017-1948-6. DOI
Hyldgaard M., Mygind T., Meyer R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012;3:12. doi: 10.3389/fmicb.2012.00012. PubMed DOI PMC
de Sousa D.P., Damasceno R.O.S., Amorati R., Elshabrawy H.A., de Castro R.D., Bezerra D.P., Nunes V.R.V., Gomes R.C., Lima T.C. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules. 2023;13:1144. doi: 10.3390/biom13071144. PubMed DOI PMC
Amiri A., Mottaghipisheh J., Jamshidi-Kia F., Saeidi K., Vitalini S., Iriti M. Antimicrobial Potencies of Major Functional Foods’ Essential Oils in Liquid and Vapor Phases: A Short Review. Appl. Sci. 2020;10:8103. doi: 10.3390/app10228103. DOI
Reyes-Jurado F., Franco-Vega A., Ramirez-Corona N., Palou E., López-Malo A. Essential Oils: Antimicrobial Activities, Extraction Methods, and Their Modeling. Food Eng. Rev. 2015;7:275–297. doi: 10.1007/s12393-014-9099-2. DOI
Masyita A., Mustika Sari R., Dwi Astuti A., Yasir B., Rahma Rumata N., Emran T.B., Nainu F., Simal-Gandara J. Terpenes and Terpenoids as Main Bioactive Compounds of Essential Oils, Their Roles in Human Health and Potential Application as Natural Food Preservatives. Food Chem. X. 2022;13:100217. doi: 10.1016/j.fochx.2022.100217. PubMed DOI PMC
Sadgrove N.J., Padilla-González G.F., Phumthum M. Fundamental Chemistry of Essential Oils and Volatile Organic Compounds, Methods of Analysis and Authentication. Plants. 2022;11:789. doi: 10.3390/plants11060789. PubMed DOI PMC
Burt S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004;94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022. PubMed DOI
Ramsey J.T., Shropshire B.C., Nagy T.R., Chambers K.D., Li Y., Korach K.S. Essential Oils and Health. Yale J. Biol. Med. 2020;93:291–305. PubMed PMC
Baser K.H.C., Franz C. Essential Oils Used in Veterinary Medicine. In: Baser K.H.C., Buchbauer G., editors. Handbook of Essential Oils: Science, Technology, and Applications. 3rd ed. CRC Press; Boca Raton, FL, USA: 2020. pp. 919–932.
Guzmán E., Lucia A. Essential Oils and Their Individual Components in Cosmetic Products. Cosmetics. 2021;8:114. doi: 10.3390/cosmetics8040114. DOI
Nahas R.I. Natural antioxidants as food and beverage ingredients. In: Baines D., Seal R., editors. Natural Food Additives, Ingredients and Flavourings. Woodhead Publishing; Cambridge, UK: 2012. pp. 100–126.
Delves-Broughton J. Natural antimicrobials as additives and ingredients for the preservation of foods and beverages. In: Baines D., Seal R., editors. Natural Food Additives, Ingredients and Flavourings. Woodhead Publishing; Cambridge, UK: 2012. pp. 127–161.
Rowe D.J. Natural aroma chemicals for use in foods and beverages. In: Baines D., Seal R., editors. Natural Food Additives, Ingredients and Flavourings. Woodhead Publishing; Cambridge, UK: 2012. pp. 212–230.
Catani L., Grassi E., di Montanara A.C., Guidi L., Sandulli R., Manachini B., Semprucci F. Essential Oils and Their Applications in Agriculture and Agricultural Products: A Literature Analysis through VOSviewer. Biocatal. Agric. Biotechnol. 2022;45:102502. doi: 10.1016/j.bcab.2022.102502. DOI
Calo J.R., Crandall P.G., O’Bryan C.A., Ricke S.C. Essential Oils as Antimicrobials in Food Systems—A Review. Food Control. 2015;54:111–119. doi: 10.1016/j.foodcont.2014.12.040. DOI
WHO . Global Antimicrobial Resistance Surveillance System: Manual for Early Implementation. World Health Organization; Geneva, Switzerland: 2015. [(accessed on 25 May 2024)]. Available online: https://apps.who.int/iris/handle/10665/188783.
Othman M., Loh H.S., Wiart C., Khoo T.J., Lim K.H., Ting K.N. Optimal Methods for Evaluating Antimicrobial Activities from Plant Extracts. J. Microbiol. Methods. 2011;84:161–166. doi: 10.1016/j.mimet.2010.11.008. PubMed DOI
Balouiri M., Sadiki M., Ibnsouda S.K. Methods for In Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016;6:71–79. doi: 10.1016/j.jpha.2015.11.005. PubMed DOI PMC
Van de Vel E., Sampers I., Raes K. A Review on Influencing Factors on the Minimum Inhibitory Concentration of Essential Oils. Crit. Rev. Food Sci. Nutr. 2019;59:357–378. doi: 10.1080/10408398.2017.1371112. PubMed DOI
Rao J., Chen B., McClements D.J. Improving the Efficacy of Essential Oils as Antimicrobials in Foods: Mechanisms of Action. Annu. Rev. Food Sci. Technol. 2019;10:365–387. doi: 10.1146/annurev-food-032818-121727. PubMed DOI
Mihajilov-Krstev T., Radnovic D., Kitic D., Stojanovic-Radic Z., Zlatkovic B. Antimicrobial Activity of Satureja hortensis L. Essential Oil Against Pathogenic Microbial Strains. Biotechnol. Biotechnol. Equip. 2009;23:1492–1496. doi: 10.2478/V10133-009-0018-2. DOI
Hussain A.I., Anwar F., Nigam P.S., Sarker S.D., Moore J.E., Rao J.R., Mazumdar A. Antibacterial Activity of Some Lamiaceae Essential Oils Using Resazurin as an Indicator of Cell Growth. LWT—Food Sci. Technol. 2011;44:1199–1206. doi: 10.1016/j.lwt.2010.10.005. DOI
Jadhav S., Shah R., Bhave M., Palombo E.A. Inhibitory Activity of Yarrow Essential Oil on Listeria Planktonic Cells and Biofilms. Food Control. 2013;29:125–130. doi: 10.1016/j.foodcont.2012.05.071. DOI
Miladinović D.L., Ilić B.S., Mihajilov-Krstev T.M., Nikolić D.M., Cvetković O.G., Marković M.S., Miladinović L.C. Antibacterial Activity of the Essential Oil of Heracleum sibiricum. Nat. Prod. Commun. 2013;8:1309–1311. doi: 10.1177/1934578X1300800931. PubMed DOI
Bazargani M.M., Rohloff J. Antibiofilm Activity of Essential Oils and Plant Extracts Against Staphylococcus aureus and Escherichia coli Biofilms. Food Control. 2016;61:156–164. doi: 10.1016/j.foodcont.2015.09.036. DOI
Puškárová A., Bučková M., Kraková L., Pangallo D., Kozics K. The Antibacterial and Antifungal Activity of Six Essential Oils and Their Cyto/Genotoxicity to Human HEL 12469 Cells. Sci. Rep. 2017;7:8211. doi: 10.1038/s41598-017-08673-9. PubMed DOI PMC
Thielmann J., Muranyi P., Kazman P. Screening Essential Oils for Their Antimicrobial Activities Against the Foodborne Pathogenic Bacteria Escherichia coli and Staphylococcus aureus. Heliyon. 2019;5:e01860. doi: 10.1016/j.heliyon.2019.e01860. PubMed DOI PMC
El Hachlafi N., Mrabti H.N., Al-Mijalli S.H., Jeddi M., Abdallah E.M., Benkhaira N., Hadni H., Assaggaf H., Qasem A., Goh K.W., et al. Antioxidant, Volatile Compounds; Antimicrobial, Anti-Inflammatory, and Dermatoprotective Properties of Cedrus atlantica (Endl.) Manetti Ex Carriere Essential Oil: In Vitro and In Silico Investigations. Molecules. 2023;28:5913. doi: 10.3390/molecules28155913. PubMed DOI PMC
Mrabti H.N., El Hachlafi N., Al-Mijalli S.H., Jeddi M., Elbouzidi A., Abdallah E.M., Flouchi R., Assaggaf H., Qasem A., Zengin G. Phytochemical Profile, Assessment of Antimicrobial and Antioxidant Properties of Essential Oils of Artemisia herba-alba Asso., and Artemisia dracunculus L.: Experimental and Computational Approaches. J. Mol. Struct. 2023;1294:136479. doi: 10.1016/j.molstruc.2023.136479. DOI
Pellegrini M., Ricci A., Serio A., Chaves-López C., Mazzarrino G., D’Amato S., Lo Sterzo C., Paparella A. Characterization of Essential Oils Obtained from Abruzzo Autochthonous Plants: Antioxidant and Antimicrobial Activities Assessment for Food Application. Foods. 2018;7:19. doi: 10.3390/foods7020019. PubMed DOI PMC
Houdkova M., Chaure A., Doskocil I., Havlik J., Kokoska L. New Broth Macrodilution Volatilization Method for Antibacterial Susceptibility Testing of Volatile Agents and Evaluation of Their Toxicity Using Modified MTT Assay In Vitro. Molecules. 2021;26:4179. doi: 10.3390/molecules26144179. PubMed DOI PMC
Hulankova R. Higher Resistance of Yersinia enterocolitica in Comparison to Yersinia pseudotuberculosis to Antibiotics and Cinnamon, Oregano and Thyme Essential Oils. Pathogens. 2022;11:1456. doi: 10.3390/pathogens11121456. PubMed DOI PMC
Ostrosky E.A., Mizumoto M.K., Lima M.E.L., Kaneko T.M., Nishikawa S.O., Freitas B.R. Methods for Evaluation of the Antimicrobial Activity and Determination of Minimum Inhibitory Concentration (MIC) of Plant Extracts. Rev. Bras. Farmacogn. 2008;18:301–307. doi: 10.1590/S0102-695X2008000200026. DOI
Wiegand I., Hilpert K., Hancock R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008;3:163–175. doi: 10.1038/nprot.2007.521. PubMed DOI
Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed. Clinical and Laboratory Standards Institute; Wayne, NJ, USA: 2018.
Zhao A., Zhang Y., Li F., Chen L., Huang X. Analysis of the Antibacterial Properties of Compound Essential Oil and the Main Antibacterial Components of Unilateral Essential Oils. Molecules. 2023;28:6304. doi: 10.3390/molecules28176304. PubMed DOI PMC
Cervenka L., Peskova I., Pejchalova M., Vytrasova J. Inhibition of Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii by Plant Oil Aromatics. J. Food Prot. 2008;71:165–169. doi: 10.4315/0362-028X-71.1.165. PubMed DOI
Donaldson J.R., Warner S.L., Cates R.G., Young D.G. Assessment of Antimicrobial Activity of Fourteen Essential Oils When Using Dilution and Diffusion Methods. Pharm. Biol. 2005;43:687–695. doi: 10.1080/13880200500384932. DOI
Sakkas H., Economou V., Gousia P., Bozidis P., Sakkas V.A., Petsios S., Mpekoulis G., Ilia A., Papadopoulou C. Antibacterial Efficacy of Commercially Available Essential Oils Tested Against Drug-Resistant Gram-Positive Pathogens. Appl. Sci. 2018;8:2201. doi: 10.3390/app8112201. DOI
de Azeredo G.A., Stamford T.L.M., Nunes P.C., Neto N.J.G., de Oliveira M.E.C., de Souza E.L. Combined Application of Essential Oils from Origanum vulgare L. and Rosmarinus officinalis L. to Inhibit Bacteria and Autochthonous Microflora Associated with Minimally Processed Vegetables. Food Res. Int. 2011;44:1541–1548. doi: 10.1016/j.foodres.2011.04.012. DOI
Porter J.A., Monu E.A. Evaluating the Antimicrobial Efficacy of White Mustard Essential Oil Alone and in Combination with Thymol and Carvacrol Against Salmonella. J. Food Prot. 2019;82:2038–2043. doi: 10.4315/0362-028X.JFP-19-029. PubMed DOI
Kavanagh A., Ramu S., Gong Y., Cooper M.A., Blaskovich M.A.T. Effects of Microplate Type and Broth Additives on Microdilution MIC Susceptibility Assays. Antimicrob. Agents Chemother. 2019;63:e01760-18. doi: 10.1128/AAC.01760-18. PubMed DOI PMC
Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices Part 1: Broth Micro-Dilution Reference Method for Testing the In Vitro Activity of Antimicrobial Agents against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases. International Organisation for Standardisation; Geneva, Switzerland: 2019.
Vanegas D., Abril-Novillo A., Khachatryan A., Jerves-Andrade L., Peñaherrera E., Cuzco N., Wilches I., Calle J., León-Tamariz F. Validation of a Method of Broth Microdilution for the Determination of Antibacterial Activity of Essential Oils. BMC Res. Notes. 2021;14:439. doi: 10.1186/s13104-021-05838-8. PubMed DOI PMC
Seow Y.X., Yeo C.R., Chung H.L., Yuk H.G. Plant Essential Oils as Active Antimicrobial Agents. Crit. Rev. Food Sci. Nutr. 2014;54:625–644. doi: 10.1080/10408398.2011.599504. PubMed DOI
Klančnik A., Piskernik S., Jeršek B., Smole Možina S. Evaluation of Diffusion and Dilution Methods to Determine the Antibacterial Activity of Plant Extracts. J. Microbiol. Methods. 2010;81:121–126. doi: 10.1016/j.mimet.2010.02.004. PubMed DOI
Kavanaugh N.L., Ribbeck K. Selected Antimicrobial Essential Oils Eradicate Pseudomonas spp. and Staphylococcus aureus Biofilms. Appl. Environ. Microbiol. 2012;78:4057–4061. doi: 10.1128/AEM.07499-11. PubMed DOI PMC
Boukhira S., Balouiri M., Bousta F., Moularat S., Taleb M.S., Bousta D. Antimicrobial Activities of Essential Oil of Five Plant Species from Morocco Against Some Microbial Strains. Int. J. Pharmacogn. Pharm. Res. 2016;8:1901–1906.
Park J.W., Wendt M., Heo G.J. Antimicrobial Activity of Essential Oil of Eucalyptus globulus Against Fish Pathogenic Bacteria. Lab Anim. Res. 2016;32:87–90. doi: 10.5625/lar.2016.32.2.87. PubMed DOI PMC
Alexopoulos A., Plessas S., Kimbaris A., Varvatou M., Mantzourani I., Fournomiti M. Mode of Antimicrobial Action of Origanum vulgare Essential Oil Against Clinical Pathogens. Curr. Res. Nutr. Food Sci. 2017;5:109–115. doi: 10.12944/CRNFSJ.5.2.07. DOI
Sadiki F.Z., El Idrissi M., Sbiti M., Lemrhari A., Trifan A., Cioanca O., Postu P.A., Hritcu L. Chemical Composition and Antibacterial Activity of Essential Oil of Tetraclinis articulata (Vahl) Masters Branches of Eastern Morocco. Chem. Biol. Technol. Agric. 2018;5:24. doi: 10.1186/s40538-018-0137-9. DOI
Gonçalves G.M.S., Barros P.P., Silva G.H., Fedes G.R. The Essential Oil of Curcuma longa Rhizomes as an Antimicrobial and Its Composition by CG-MS. Rev. Ciênc. Med. 2019;28:1–10. doi: 10.24220/2318-0897v28n1a4389. DOI
Rathore S., Mukhia S., Kapoor S., Bhatt V., Kumar R., Kumar R. Seasonal Variability in Essential Oil Composition and Biological Activity of Rosmarinus officinalis L. Accessions in the Western Himalaya. Sci. Rep. 2022;12:3305. doi: 10.1038/s41598-022-07298-x. PubMed DOI PMC
Van N.T.B., Vi O.T., Yen N.T.P., Nhung N.T., Cuong N.V., Kiet B.T., Hoang N.V., Hien V.B., Thwaites G., Campbell J., et al. Minimum Inhibitory Concentrations of Commercial Essential Oils Against Common Chicken Pathogenic Bacteria and Their Relationship with Antibiotic Resistance. J. Appl. Microbiol. 2022;132:1025–1035. doi: 10.1111/jam.15302. PubMed DOI PMC
Abdelatti M.A.I., Abd El-Aziz N.K., El-Naenaeey E.Y.M., Ammar A.M., Alharbi N.K., Alharthi A., Zakai S.A., Abdelkhalek A. Antibacterial and Anti-Efflux Activities of Cinnamon Essential Oil Against Pan and Extensive Drug-Resistant Pseudomonas aeruginosa Isolated from Human and Animal Sources. Antibiotics. 2023;12:1514. doi: 10.3390/antibiotics12101514. PubMed DOI PMC
Chen S., Li Z., Gu Z., Ban X., Hong Y., Cheng L., Li C. A New Micro-Agar Dilution Method to Determine the Minimum Inhibitory Concentration of Essential Oils Against Microorganisms. J. Microbiol. Methods. 2023;211:106791. doi: 10.1016/j.mimet.2023.106791. PubMed DOI
Cui Z.H., He H.L., Wu S.B., Dong C.L., Lu S.Y., Shan T.J., Fang L.X., Liao X.P., Liu Y.H., Sun J. Rapid Screening of Essential Oils as Substances Which Enhance Antibiotic Activity Using a Modified Well Diffusion Method. Antibiotics. 2021;10:463. doi: 10.3390/antibiotics10040463. PubMed DOI PMC
EUCAST . Media Preparation for EUCAST Disk Diffusion Testing and for Determination of MIC Values by the Broth Microdilution Method. European Committee on Antimicrobial Susceptibility Testing; Växjö, Sweden: 2020. Version 6.0.
Rota C., Carramiñana J.J., Burillo J., Herrera A. In Vitro Antimicrobial Activity of Essential Oils from Aromatic Plants Against Selected Foodborne Pathogens. J. Food Prot. 2004;67:1252–1256. doi: 10.4315/0362-028X-67.6.1252. PubMed DOI
Guo P., Li Z., Cai T., Guo D., Yang B., Zhang C., Shan Z., Wang X., Peng X., Liu G., et al. Inhibitory effect and mechanism of oregano essential oil on Listeria monocytogenes cells, toxins and biofilms. Microb. Pathog. 2024;194:106801. doi: 10.1016/j.micpath.2024.106801. PubMed DOI
Raeisi M., Tajik H., Yarahmadi A., Sanginabadi S. Antimicrobial Effect of Cinnamon Essential Oil Against Escherichia coli and Staphylococcus aureus. Health Scope. 2015;4:e21808. doi: 10.17795/jhealthscope-21808. DOI
Knezevic P., Aleksic Sabo V., Simin N., Lesjak M., Mimica-Dukic N. A Colorimetric Broth Microdilution Method for Assessment of Helicobacter pylori Sensitivity to Antimicrobial Agents. J. Pharm. Biomed. Anal. 2018;152:271–278. doi: 10.1016/j.jpba.2018.02.003. PubMed DOI
Zhan X., Tan Y., Lv Y., Fang J., Zhou Y., Gao X., Zhu H., Shi C. The Antimicrobial and Antibiofilm Activity of Oregano Essential Oil against Enterococcus faecalis and Its Application in Chicken Breast. Foods. 2022;11:2296. doi: 10.3390/foods11152296. PubMed DOI PMC
Gędas A., Draszanowska A., den Bakker H., Diez-Gonzalez F., Simões M., Olszewska M.A. Prevention of surface colonization and anti-biofilm effect of selected phytochemicals against Listeria innocua strain. Colloids Surf. B Biointerfaces. 2023;228:113391. doi: 10.1016/j.colsurfb.2023.113391. PubMed DOI
Hsaine S., Charof R., Ounine K. Evaluation of Antibacterial Activity of Essential Oil of Cinnamomum zeylanicum, Eugenia caryophyllata, and Rosmarinus officinalis Against Streptococcus oralis. Asian J. Pharm. Clin. Res. 2017;10:411–413. doi: 10.22159/ajpcr.2017.v10i5.17072. DOI
Bouyahya A., Abrini J., Dakka N., Bakri Y. Essential Oils of Origanum compactum Increase Membrane Permeability, Disturb Cell Membrane Integrity, and Suppress Quorum-Sensing Phenotype in Bacteria. J. Pharm. Anal. 2019;9:301–311. doi: 10.1016/j.jpha.2019.03.001. PubMed DOI PMC
Cazella L.N., Glamoclija J., Soković M., Gonçalves J.E., Linde G.A., Colauto N.B., Gazim Z.C. Antimicrobial Activity of Essential Oil of Baccharis dracunculifolia DC (Asteraceae) Aerial Parts at Flowering Period. Front. Plant Sci. 2019;10:27. doi: 10.3389/fpls.2019.00027. PubMed DOI PMC
Sateriale D., Forgione G., De Cristofaro G.A., Facchiano S., Boscaino F., Pagliuca C., Colicchio R., Salvatore P., Paolucci M., Pagliarulo C. Towards Green Strategies of Food Security: Antibacterial Synergy of Essential Oils from Thymus vulgaris and Syzygium aromaticum to Inhibit Escherichia coli and Staphylococcus aureus Pathogenic Food Isolates. Microorganisms. 2022;10:2446. doi: 10.3390/microorganisms10122446. PubMed DOI PMC
Cai T., Li Z., Guo P., Guo J., Wang R., Guo D., Yu J., Lü X., Xia X., Shi C. Antimicrobial and Antibiofilm Efficacy and Mechanism of Oregano Essential Oil Against Shigella flexneri. Foodborne Pathog. Dis. 2023;20:209–221. doi: 10.1089/fpd.2023.0006. PubMed DOI
Tapia-Rodriguez M.R., Cantu-Soto E.U., Vazquez-Armenta F.J., Bernal-Mercado A.T., Ayala-Zavala J.F. Inhibition of Acinetobacter baumannii Biofilm Formation by Terpenes from Oregano (Lippia graveolens) Essential Oil. Antibiotics. 2023;12:1539. doi: 10.3390/antibiotics12101539. PubMed DOI PMC
Zhu W.X., Li J.H., Tan J.Q., Gong M.M., Wang A.L., Liang C.C., Wang H.S., Xia X.D. Inhibition of Shewanella putrefaciens biofilm by laurel essential oil and its potential mechanisms. Food Control. 2025;167:110776. doi: 10.1016/j.foodcont.2024.110776. DOI
Iacovelli F., Romeo A., Lattanzio P., Ammendola S., Battistoni A., La Frazia S., Vindigni G., Unida V., Biocca S., Gaziano R., et al. Deciphering the Broad Antimicrobial Activity of Melaleuca alternifolia Tea Tree Oil by Combining Experimental and Computational Investigations. Int. J. Mol. Sci. 2023;24:12432. doi: 10.3390/ijms241512432. PubMed DOI PMC
de Barros J.C., da Conceição M.L., Neto N.J., da Costa A.C., de Souza E.L. Combination of Origanum vulgare L. Essential Oil and Lactic Acid to Inhibit Staphylococcus aureus in Meat Broth and Meat Model. Braz. J. Microbiol. 2012;43:1120–1127. doi: 10.1590/S1517-83822012000300039. PubMed DOI PMC
Nagalakshmi S., Saranraj P., Sivasakthivelan P. Determination of Minimum Inhibitory Concentration (MIC) and Percentage Bacterial Growth Inhibition of Essential Oils Against Gram Positive Bacterial Pathogens. J. Drug Deliv. Ther. 2019;9:33–35. doi: 10.22270/jddt.v9i3.2596. DOI
Liu J.X., Huang D.F., Hao D.L., Hu Q.P. Chemical Composition, Antibacterial Activity of the Essential Oil from Roots of Radix aucklandiae Against Selected Food-Borne Pathogens. Adv. Biosci. Biotechnol. 2014;5:1043–1047. doi: 10.4236/abb.2014.513119. DOI
Araby E., El-Tablawy S.Y. Inhibitory Effects of Rosemary (Rosmarinus officinalis L.) Essential Oil on Pathogenicity of Irradiated and Non-Irradiated Pseudomonas aeruginosa. J. Photochem. Photobiol. B. 2016;159:24–32. doi: 10.1016/j.jphotobiol.2016.02.024. PubMed DOI
Hulankova R. The Influence of Liquid Medium Choice in Determination of Minimum Inhibitory Concentration of Essential Oils Against Pathogenic Bacteria. Antibiotics. 2022;11:150. doi: 10.3390/antibiotics11020150. PubMed DOI PMC
Yalkowsky S.H., He Y., Jain P. Handbook of Aqueous Solubility Data. 2nd ed. CRC Press; Boca Raton, FL, USA: 2010.
Ilić B.S., Kocić B.D., Cirić V.M., Ćvetković O.G., Miladinović D.L. An In Vitro Synergistic Interaction of Combinations of Thymus glabrescens Essential Oil and Its Main Constituents with Chloramphenicol. Sci. World J. 2014;2014:826219. doi: 10.1155/2014/826219. PubMed DOI PMC
dal Pozzo M., Silva Loreto E., Flores Santurio D., Hartz Alves S., Rossatto L., Castagna de Vargas A., Viegas J., Matiuzzi da Costa M. Antibacterial Activity of Essential Oil of Cinnamon and Trans-Cinnamaldehyde Against Staphylococcus spp. Isolated from Clinical Mastitis of Cattle and Goats. Acta Sci. Vet. 2012;40:1–5.
Wadhwani T., Desai K., Patel D., Lawani D., Bahaley P., Joshi P., Vijay K. Effect of Various Solvents on Bacterial Growth in Context of Determining MIC of Various Antimicrobials. Internet J. Microbiol. 2018;7:1–6.
Tadtong S., Suppawat S., Tintawee A., Saramas P., Jareonvong S., Hongratanaworakit T. Antimicrobial Activity of Blended Essential Oil Preparation. Nat. Prod. Commun. 2012;7:1401–1404. doi: 10.1177/1934578X1200701041. PubMed DOI
Alitonou G.A., Sessou P., Tchobo P.F., Noudogbessi J.P., Avlessi F., Yehouenou B., Menut C., Villeneuve P., Sohounhloue D.C.K. Chemical Composition and Biological Activities of Essential Oils of Chenopodium ambrosioides L. Collected in Two Areas of Benin. Int. J. Biosci. 2012;2:58–66.
Nielsen C.K., Kjems J., Mygind T., Snabe T., Meyer R.L. Effects of Tween 80 on Growth and Biofilm Formation in Laboratory Media. Front. Microbiol. 2016;7:1878. doi: 10.3389/fmicb.2016.01878. PubMed DOI PMC
Tovidé S.N., Adeoti K., Yèhouénou B., Dahouénon-Ahoussi E., Baba-Moussa F., Toukourou F. Antimicrobial and Physico-Chemical Effects of Essential Oil on Fermented Milk During Preservation. J. Appl. Biosci. 2016;99:9469–9477.
da Silva B.D., do Rosário D.K.A., Neto L.T., Lelis C.A., Conte-Junior C.A. Antioxidant, Antibacterial and Antibiofilm Activity of Nanoemulsion-Based Natural Compound Delivery Systems Compared with Non-Nanoemulsified Versions. Foods. 2023;12:1901. doi: 10.3390/foods12091901. PubMed DOI PMC
Anwer M.K., Jamil S., Ibnouf E.O., Shakeel F. Enhanced Antibacterial Effects of Clove Essential Oil by Nanoemulsion. J. Oleo Sci. 2014;63:347–354. doi: 10.5650/jos.ess13213. PubMed DOI
Pimple V.V., Kulkarni A.S., Patil S.P., Dhoble S.J. Plant Essential Oils Based Nanoemulsion Formulations and Its Antibacterial Effect on Some Pathogens. Int. J. Innov. Technol. Explor. Eng. 2019;9:4800–4808. doi: 10.35940/ijitee.A6112.119119. DOI
Remmal A., Bouchikhi T., Tantaoui-Elaraki A., Ettayebi M. Inhibition of Antibacterial Activity of Essential Oils by Tween 80 and Ethanol in Liquid Medium. J. Pharm. Belg. 1993;48:352–356. PubMed
Mann C.M., Markham J.L. A New Method for Determining the Minimum Inhibitory Concentration of Essential Oils. J. Appl. Microbiol. 1998;84:538–544. doi: 10.1046/j.1365-2672.1998.00379.x. PubMed DOI
Weseler A., Geiss H.K., Saller R., Reichling J. A Novel Colorimetric Broth Microdilution Method to Determine the Minimum Inhibitory Concentration (MIC) of Antibiotics and Essential Oils Against Helicobacter pylori. Pharmazie. 2005;60:498–502. PubMed
Sarker S.D., Nahar L., Kumarasamy Y. Microtitre Plate-Based Antibacterial Assay Incorporating Resazurin as an Indicator of Cell Growth, and Its Application in the In Vitro Antibacterial Screening of Phytochemicals. Methods. 2007;42:321–324. doi: 10.1016/j.ymeth.2007.01.006. PubMed DOI PMC
Braissant O., Astasov-Frauenhoffer M., Waltimo T., Bonkat G. A Review of Methods to Determine Viability, Vitality, and Metabolic Rates in Microbiology. Front. Microbiol. 2020;11:547458. doi: 10.3389/fmicb.2020.547458. PubMed DOI PMC
Eloff J.N. Avoiding Pitfalls in Determining Antimicrobial Activity of Plant Extracts and Publishing the Results. BMC Complement. Altern. Med. 2019;19:106. doi: 10.1186/s12906-019-2519-3. PubMed DOI PMC
Zarai Z., Ben Chobba I., Ben Mansour R., Békir A., Gharsallah N., Kadri A. Essential Oil of the Leaves of Ricinus communis L.: In Vitro Cytotoxicity and Antimicrobial Properties. Lipids Health Dis. 2012;11:102. doi: 10.1186/1476-511X-11-102. PubMed DOI PMC
Nouioura G., El Fadili M., El Hachlafi N., Abuelizz H.A., Elidrissi A.E., Ferioun M., Soulo N., Er-Rahmani S., Lyoussi B., Derwich E. Petroselinum crispum L., essential oil as promising source of bioactive compounds, antioxidant, antimicrobial activities: In vitro and in silico predictions. Heliyon. 2024;10:e29520. doi: 10.1016/j.heliyon.2024.e29520. PubMed DOI PMC
Yèhouenou B., Wotto D.V., Sessou P., Noudogbessi J.P., Sohounhloue D.C.K. Chemical Study and Antimicrobial Activities of Volatile Extracts from Fresh Leaves of Crassocephalum rubens (Juss and Jack.) S. Moore Against Food Borne Pathogens. Sci. Study Res.Chem. Chem. Eng. Biotechnol. Food Ind. 2010;11:343–351.
Szweda P., Zalewska M., Pilch J., Kot B., Milewski S. Essential Oils as Potential Anti-Staphylococcal Agents. Acta Vet. 2018;68:95–107.
Kačániová M., Vukic M., Vukovic N.L., Čmiková N., Verešová A., Schwarzová M., Babošová M., Porhajašová J.I., Kluz M., Waszkiewicz-Robak B., et al. An In-Depth Study on the Chemical Composition and Biological Effects of Pelargonium graveolens Essential Oil. Foods. 2024;13:33. doi: 10.3390/foods13010033. PubMed DOI PMC
d’Acampora Zellner B., Dugo P., Dugo G., Mondello L. Analysis of Essential Oils. In: Baser K.H.C., Buchbauer G., editors. Handbook of Essential Oils: Science, Technology, and Applications. 3rd ed. CRC Press; Boca Raton, FL, USA: 2020. pp. 151–183.
Ríos J.L. Essential Oils: What They Are and How the Terms Are Used and Defined. In: Preedy V.R., editor. Essential Oils in Food Preservation, Flavor and Safety. 1st ed. Academic Press; London, UK: 2016. pp. 3–10.
Golus J., Sawicki R., Widelski J., Ginalska G. The Agar Microdilution Method—A New Method for Antimicrobial Susceptibility Testing for Essential Oils and Plant Extracts. J. Appl. Microbiol. 2016;121:1291–1299. doi: 10.1111/jam.13253. PubMed DOI
Fei P., Xu Y., Zhao S., Gong S., Guo L. Olive Oil Polyphenol Extract Inhibits Vegetative Cells of Bacillus cereus Isolated from Raw Milk. J. Dairy Sci. 2019;102:3894–3902. doi: 10.3168/jds.2018-15184. PubMed DOI
Liu M., Pan Y., Feng M., Guo W., Fan X., Feng L., Huang J., Cao Y. Garlic Essential Oil in Water Nanoemulsion Prepared by High-Power Ultrasound: Properties, Stability, and Its Antibacterial Mechanism Against MRSA Isolated from Pork. Ultrason. Sonochem. 2022;90:106201. doi: 10.1016/j.ultsonch.2022.106201. PubMed DOI PMC
López E.I.C., Balcázar M.F.H., Mendoza J.M.R., Ortiz A.D.R., Melo M.T.O., Parrales R.S., Delgado T.H. Antimicrobial Activity of Essential Oil of Zingiber officinale Roscoe (Zingiberaceae) Am. J. Plant Sci. 2017;8:1511–1524. doi: 10.4236/ajps.2017.87104. DOI
Ramezani M., Behravan J., Yazdinezhad A. Chemical Composition and Antimicrobial Activity of the Volatile Oil of Artemisia khorassanica from Iran. Pharm. Biol. 2005;42:599–602. doi: 10.1080/13880200490902482. DOI
Prabuseenivasan S., Jayakumar M., Ignacimuthu S. In Vitro Antibacterial Activity of Some Plant Essential Oils. BMC Complement. Altern. Med. 2006;6:39. doi: 10.1186/1472-6882-6-39. PubMed DOI PMC
Fraternale D., Genovese S., Ricci D. Essential Oil Composition and Antimicrobial Activity of Aerial Parts and Ripe Fruits of Echinophora spinosa (Apiaceae) from Italy. Nat. Prod. Commun. 2013;8:527–530. doi: 10.1177/1934578X1300800431. PubMed DOI
Shi C., Song K., Zhang X., Sun Y., Sui Y., Chen Y., Jia Z., Sun H., Sun Z., Xia X. Antimicrobial Activity and Possible Mechanism of Action of Citral Against Cronobacter sakazakii. PLoS ONE. 2016;11:e0159006. doi: 10.1371/journal.pone.0159006. PubMed DOI PMC
Sun Y., Guo D., Hua Z., Sun H., Zheng Z., Xia X., Shi C. Attenuation of Multiple Vibrio parahaemolyticus Virulence Factors by Citral. Front. Microbiol. 2019;10:894. doi: 10.3389/fmicb.2019.00894. PubMed DOI PMC
Nikolić I., Chua E.G., Tay A.C.Y., Kostrešević A., Pavlović B., Jončić Savić K. Savory, Oregano, and Thyme Essential Oil Mixture (HerbELICO®) Counteracts Helicobacter pylori. Molecules. 2023;28:2138. doi: 10.3390/molecules28052138. PubMed DOI PMC
Selim S. Antimicrobial Activity of Essential Oils Against Vancomycin-Resistant Enterococci (VRE) and Escherichia coli O157 in Feta Soft Cheese and Minced Beef Meat. Braz. J. Microbiol. 2011;42:187–196. doi: 10.1590/S1517-83822010005000005. PubMed DOI PMC
Valgas C., de Souza S.M., Smânia E.F.A., Smânia A. Screening Methods to Determine Antibacterial Activity of Natural Products. Braz. J. Microbiol. 2007;38:369–380. doi: 10.1590/S1517-83822007000200034. DOI
Ponce A.G., Fritz R., Del Valle C., Roura S.I. Antimicrobial Activity of Essential Oils on the Native Microflora of Organic Swiss Chard. Lebensm. Wiss. Technol. 2003;36:679–684. doi: 10.1016/S0023-6438(03)00088-4. DOI
Rota M.C., Herrera A., Martínez R.M., Sotomayor J.A., Jordán M.J. Antimicrobial Activity and Chemical Composition of Thymus vulgaris, Thymus zygis, and Thymus hyemalis Essential Oils. Food Control. 2008;19:681–687. doi: 10.1016/j.foodcont.2007.07.007. DOI
Performance Standards for Antimicrobial Disk Susceptibility Tests, 14th ed. Clinical and Laboratory Standards Institute; Wayne, NJ, USA: 2024.
Yuan Y., Sun J., Song Y., Raka R.N., Xiang J., Wu H., Xiao J., Jin J., Hui X. Antibacterial activity of oregano essential oils against Streptococcus mutans in vitro and analysis of active components. BMC Complement. Med. Ther. 2023;23:61. doi: 10.1186/s12906-023-03890-4. PubMed DOI PMC
Ignatiuk K., Dzikon E., Hagdej B., Slotwinska W., Malm M., Ossowski M., Kasela M. Comparison of Disc-Diffusion and Disc-Volatilization Assays for Determining the Antimicrobial Activity of Thymus vulgaris L. Essential Oil. Curr. Issues Pharm. Med. Sci. 2023;36:158–162. doi: 10.2478/cipms-2023-0027. DOI
Houdkova M., Kokoska L. Volatile Antimicrobial Agents and In Vitro Methods for Evaluating Their Activity in the Vapour Phase: A Review. Planta Med. 2020;86:822–857. doi: 10.1055/a-1158-4529. PubMed DOI
Laird K., Phillips C. Vapour Phase: A Potential Future Use for Essential Oils as Antimicrobials? Lett. Appl. Microbiol. 2012;54:169–174. doi: 10.1111/j.1472-765X.2011.03190.x. PubMed DOI
López P., Sánchez C., Batlle R., Nerín C. Solid- and Vapour-Phase Antimicrobial Activities of Six Essential Oils: Susceptibility of Selected Foodborne Bacterial and Fungal Strains. J. Agric. Food Chem. 2005;53:6939–6946. doi: 10.1021/jf050709v. PubMed DOI
Ács K., Balázs V.L., Kocsis B., Bencsik T., Böszörményi A., Horváth G. Antibacterial Activity Evaluation of Selected Essential Oils in Liquid and Vapor Phase on Respiratory Tract Pathogens. BMC Complement. Altern. Med. 2018;18:227. doi: 10.1186/s12906-018-2291-9. PubMed DOI PMC
Kloucek P., Smid J., Frankova A., Kokoska L., Valterova I., Pavela R. Fast Screening Method for Assessment of Antimicrobial Activity of Essential Oils in Vapour Phase. Food Res. Int. 2012;47:161–165. doi: 10.1016/j.foodres.2011.04.044. DOI
Houdkova M., Rondevaldova J., Doskocil I., Kokoska L. Evaluation of Antibacterial Potential and Toxicity of Plant Volatile Compounds Using New Broth Microdilution Volatilization Method and Modified MTT Assay. Fitoterapia. 2017;118:56–62. doi: 10.1016/j.fitote.2017.02.008. PubMed DOI
Han A., Lee S.Y. An Overview of Various Methods for In Vitro Biofilm Formation: A Review. Food Sci. Biotechnol. 2023;32:1617–1629. doi: 10.1007/s10068-023-01425-8. PubMed DOI PMC
Cui H.Y., Zhang C.H., Li C.Z., Lin L. Inhibition mechanism of cardamom essential oil on methicillin-resistant Staphylococcus aureus biofilm. LWT—Food Sci. Technol. 2020;122:109057. doi: 10.1016/j.lwt.2020.109057. DOI
Zhang C., Li C., Abdel-Samie M.A., Cui H., Li C. Unraveling the Inhibitory Mechanism of Clove Essential Oil Against Listeria monocytogenes Biofilm and Applying It to Vegetable Surfaces. LWT—Food Sci. Technol. 2020;134:110120. doi: 10.1016/j.lwt.2020.110210. DOI
Nuță D.C., Limban C., Chiriță C., Chifiriuc M.C., Costea T., Ioniță P., Nicolau I., Zarafu I. Contribution of Essential Oils to the Fight against Microbial Biofilms—A Review. Processes. 2021;9:537. doi: 10.3390/pr9030537. DOI
Nourbakhsh F., Nasrollahzadeh M.S., Tajani A.S., Soheili V., Hadizadeh F. Bacterial biofilms and their resistance mechanisms: A brief look at treatment with natural agents. Folia Microbiol. 2022;67:535–554. doi: 10.1007/s12223-022-00955-8. PubMed DOI
Artini M., Papa R., Sapienza F., Božović M., Vrenna G., Tuccio Guarna Assanti V., Sabatino M., Garzoli S., Fiscarelli E.V., Ragno R., et al. Essential Oils Biofilm Modulation Activity and Machine Learning Analysis on Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients. Microorganisms. 2022;10:887. doi: 10.3390/microorganisms10050887. PubMed DOI PMC
Liu T., Kang J., Liu L. Thymol as a Critical Component of Thymus vulgaris L Essential Oil Combats Pseudomonas aeruginosa by Intercalating DNA and Inactivating Biofilm. LWT—Food Sci. Technol. 2021;136:110354. doi: 10.1016/j.lwt.2020.110354. DOI
Azeredo J., Azevedo N.F., Briandet R., Cerca N., Coenye T., Costa A.R., Desvaux M., Di Bonaventura G., Hébraud M., Jaglic Z., et al. Critical Review on Biofilm Methods. Crit. Rev. Microbiol. 2017;43:313–351. doi: 10.1080/1040841X.2016.1208146. PubMed DOI
Liu Y., Yan Y., Yang K., Yang X., Dong P., Wu H., Luo X., Zhang Y., Zhu L. Inhibitory mechanism of Salmonella Derby biofilm formation by sub-inhibitory concentrations of clove and oregano essential oil: A global transcriptomic study. Food Control. 2023;150:109734. doi: 10.1016/j.foodcont.2023.109734. DOI
Moghadam M.J., Maktabi S., Zarei M., Mahmoodi P. Controlling Staphylococcus aureus biofilm on food contact surfaces: The efficacy of Oliveria decumbens essential oil and its implications on biofilm-related genes. J. Appl. Microbiol. 2024;135:lxae187. PubMed
Reyes-Jurado M., Munguía-Pérez R., Cid-Pérez T.S., Hernández-Carranza P., Ochoa-Velasco C.E., Avila-Sosa R. Inhibitory Effect of Mexican Oregano (Lippia berlandieri Schauer) Essential Oil on Pseudomonas aeruginosa and Salmonella Thyphimurium Biofilm Formation. Front. Sustain. Food Syst. 2020;4:36. doi: 10.3389/fsufs.2020.00036. DOI
Bautista-Silva J.P., Seibert J.B., Amparo T.R., Rodrigues I.V., Teixeira L.F.M., Souza G.H.B., Dos Santos O.D.H. Melaleuca leucadendra Essential Oil Promotes Loss of Cell Membrane and Wall Integrity and Inhibits Bacterial Growth: An In Silico and In Vitro Approach. Curr. Microbiol. 2020;77:2181–2191. doi: 10.1007/s00284-020-02024-0. PubMed DOI
Gómez-García M., Argüello H., Puente H., Mencía-Ares Ó., González S., Miranda R., Rubio P., Carvajal A. In-depth in vitro Evaluation of the Activity and Mechanisms of Action of Organic Acids and Essential Oils Against Swine Enteropathogenic Bacteria. Front. Vet. Sci. 2020;7:572947. doi: 10.3389/fvets.2020.572947. PubMed DOI PMC
Wang L., Zhang K., Zhang K., Zhang J., Fu J., Li J., Wang G., Qiu Z., Wang X., Li J. Antibacterial Activity of Cinnamomum camphora Essential Oil on Escherichia coli During Planktonic Growth and Biofilm Formation. Front. Microbiol. 2020;11:561002. doi: 10.3389/fmicb.2020.561002. PubMed DOI PMC
Dias K.J.S.O., Miranda G.M., Bessa J.R., Araújo A.C.J., Freitas P.R., Almeida R.S., Paulo C.L.R., Neto J.B.A., Coutinho H.D.M., Ribeiro-Filho J. Terpenes as bacterial efflux pump inhibitors: A systematic review. Front. Pharmacol. 2022;13:953982. doi: 10.3389/fphar.2022.953982. PubMed DOI PMC
da Silva L.Y.S., Paulo C.L.R., Moura T.F., et al. Antibacterial Activity of the Essential Oil of Piper tuberculatum Jacq. Fruits against Multidrug-Resistant Strains: Inhibition of Efflux Pumps and β-Lactamase. Plants. 2023;12:2377. doi: 10.3390/plants12122377. PubMed DOI PMC
Ghazal T.S.A., Schelz Z., Vidács L., Szemerédi N., Veres K., Spengler G., Hohmann J. Antimicrobial, Multidrug Resistance Reversal and Biofilm Formation Inhibitory Effect of Origanum majorana Extracts, Essential Oil and Monoterpenes. Plants. 2022;11:1432. doi: 10.3390/plants11111432. PubMed DOI PMC
Tomaś N., Myszka K., Wolko Ł., Nuc K., Szwengiel A., Grygier A., Majcher M. Effect of black pepper essential oil on quorum sensing and efflux pump systems in the fish-borne spoiler Pseudomonas psychrophila KM02 identified by RNA-seq, RT-qPCR and molecular docking analyses. Food Control. 2021;130:108284. doi: 10.1016/j.foodcont.2021.108284. DOI