Bacterial biofilms and their resistance mechanisms: a brief look at treatment with natural agents
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35286577
DOI
10.1007/s12223-022-00955-8
PII: 10.1007/s12223-022-00955-8
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- antiinfekční látky * MeSH
- Bacteria MeSH
- biofilmy * MeSH
- houby MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antibakteriální látky MeSH
- antiinfekční látky * MeSH
Biofilm is a complex community of microorganisms residing within a polysaccharide and/or protein matrix. Biofilm can be produced by several microorganisms, including various bacteria and fungi. Nowadays, the resistance of biofilm-growing cells to antimicrobials originated from the structural nature of biofilms, and phenotypic alteration of sessile cells is becoming a global issue. Bacterial biofilms are important in various aspects of human health, including chronic infections, dental plaque, and infection of indwelling medical devices such as catheters. They are also a major problem in other industries, including oil recovery, drinking water distribution, papermaking, metalworking, and food processing. Estimates indicate that more than 80% of infectious diseases are biofilm-derived. The aim of this study is to describe mechanisms of antibiotic resistance to provide a better perspective on how to manage it. Moreover, the current strategies for biofilm inhibition were described. Considering that plants are a valuable source of abundant natural chemicals to create prophylactic and therapeutic medicines against biofilm-based infections, significant natural compounds with anti-biofilm properties were highlighted. Finally, natural anti-biofilm compounds under clinical trial evaluation were summarized to provide a background for more extensive researches and assist in opening a new window to novel treatments.
Zobrazit více v PubMed
Abdel-Aziz SM, Aeron A (2014) Bacterial biofilm: dispersal and inhibition strategies. SAJ Biotechnol 1:1–10
Abdulbaqi HR, Himratul-Aznita WH, Baharuddin NA (2016) Evaluation of Salvadora persica L. and green tea anti-plaque effect: a randomized controlled crossover clinical trial. BMC Complement Altern Med 16:1–7 DOI
Abdullah Al-Dhabi N, Valan Arasu M, Rejiniemon TS (2015) In vitro antibacterial, antifungal, antibiofilm, antioxidant, and anticancer properties of isosteviol isolated from endangered medicinal plant Pittosporum tetraspermum. Evid Based Complemen Alternat Med 2015:1–11 DOI
Arai M, Niikawa H, Kobayashi M (2013) Marine-derived fungal sesterterpenes, ophiobolins, inhibit biofilm formation of Mycobacterium species. J Nat Med 67:271–275 PubMed DOI
Arce Miranda JE, Sotomayor CE, Albesa I, Paraje MG (2011) Oxidative and nitrosative stress in Staphylococcus aureus biofilm. FEMS Microbiol Lett 315:23–29 PubMed DOI
Armbruster CR, Parsek MR (2018) New insight into the early stages of biofilm formation. Proc Natl Acad Sci India Sect B Biol Sci 115:4317–4319 DOI
Azad MF, Schwiertz A, Jentsch HF (2016) Adjunctive use of essential oils following scaling and root planing-a randomized clinical trial. BMC Complement Altern Med 16:1–8. https://doi.org/10.1186/s12906-016-1117-x DOI
Bakkiyaraj D, Nandhini JR, Malathy B, Pandian SK (2013) The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling 29:929–937 PubMed DOI
Bogdan S, Deya C, Micheloni O, Bellotti N, Romagnoli R (2018) Natural products to control biofilm on painted surfaces. Pigm Resin Technol 47:180–187 DOI
Brackman G, Coenye T (2015) Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des 21:5–11 PubMed DOI
Budri PE, Silva NC, Bonsaglia EC, Júnior AF, Júnior JA, Doyama JT, Gonçalves JL, Santos M, Fitzgerald-Hughes D, Rall VL (2015) Effect of essential oils of Syzygium aromaticum and Cinnamomum zeylanicum and their major components on biofilm production in Staphylococcus aureus strains isolated from milk of cows with mastitis. J Dairy Sci 98:5899–5904 PubMed DOI
Cai T, Caola I, Tessarolo F, Piccoli F, D’Elia C, Caciagli P, Nollo G, Malossini G, Nesi G, Mazzoli S (2014) Solidago, orthosiphon, birch and cranberry extracts can decrease microbial colonization and biofilm development in indwelling urinary catheter: a microbiologic and ultrastructural pilot study. World J Urol 32:1007–1014 PubMed DOI
Castillo-Juárez I, Maeda T, Mandujano-Tinoco EA, Tomás M, Pérez-Eretza B, García-Contreras SJ, Wood TK, García-Contreras R (2015) Role of quorum sensing in bacterial infections. World J Clin Cases 3:575–598 PubMed DOI PMC
Chowdhury N, Wood TL, Martínez-Vázquez M, García-Contreras R, Wood TK (2016) DNA-crosslinker cisplatin eradicates bacterial persister cells. Biotechnol Bioeng 113:1984–1992 PubMed DOI
Christena LR, Subramaniam S, Vidhyalakshmi M, Mahadevan V, Sivasubramanian A, Nagarajan S (2015) Dual role of pinostrobin-a flavonoid nutraceutical as an efflux pump inhibitor and antibiofilm agent to mitigate food borne pathogens. RSC Adv 5:61881–61887 DOI
Correa MS, Schwambach J, Mann MB, Frazzon J, Frazzon APG (2019) Antimicrobial and antibiofilm activity of the essential oil from dried leaves of Eucalyptus staigeriana. Arq Inst Biol 86:1–8 DOI
Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112:1466–1477 PubMed DOI PMC
D’Abrosca B, Buommino E, D’Angelo G, Coretti L, Scognamiglio M, Severino V, Pacifico S, Donnarumma G, Fiorentino A (2013) Spectroscopic identification and anti-biofilm properties of polar metabolites from the medicinal plant Helichrysum italicum against Pseudomonas aeruginosa. Bioorg Med Chem 21:7038–7046 PubMed DOI
de Arruda CNF, Salles MM, Badaró MM, de Cássia OV, Macedo AP, Silva-Lovato CH, Paranhos HdFO (2017) Effect of sodium hypochlorite and Ricinus communis solutions on control of denture biofilm: a randomized crossover clinical trial. J Prosthet Dent 117:729–734 PubMed DOI
De la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock RE (2013) Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16:580–589 PubMed DOI
do Valle Gomes MZ, Nitschke M, (2012) Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Cont 25:441–447 DOI
Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890. https://doi.org/10.3201/eid0809.020063 PubMed DOI PMC
Donlan RM (2000) Role of biofilms in antimicrobial resistance. ASAIO J 46:S47–S52 PubMed DOI
Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193 PubMed DOI PMC
Drenkard E (2003) Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5:1213–1219 PubMed DOI
Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166 PubMed DOI PMC
Dusane DH, Pawar VS, Nancharaiah Y, Venugopalan VP, Kumar AR, Zinjarde SS (2011) Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling 27:645–654 PubMed DOI
Dwivedi D, Singh V (2016) Effects of the natural compounds embelin and piperine on the biofilm-producing property of Streptococcus mutans. J Tradit Complement Med 6:57–61. https://doi.org/10.1016/j.jtcme.2014.11.025 PubMed DOI
Elmasri WA, Hegazy M-EF, Aziz M, Koksal E, Amor W, Mechref Y, Hamood AN, Cordes DB, Paré PW (2014) Biofilm blocking sesquiterpenes from Teucrium polium. Phytochemistry 103:107–113 PubMed DOI
Espina L, Pagán R, López D, García-Gonzalo D (2015) Individual constituents from essential oils inhibit biofilm mass production by multi-drug resistant Staphylococcus aureus. Molecules 20:11357–11372 PubMed DOI PMC
Evans D, Allison D, Brown M, Gilbert P (1991) Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rate. J Antimicrob Chemother 27:177–184 PubMed DOI
Favre-Godal Q, Dorsaz S, Queiroz EF, Marcourt L, Ebrahimi SN, Allard P-M, Voinesco F, Hamburger M, Gupta MP, Gindro K (2015) Anti-Candida cassane-type diterpenoids from the root bark of Swartzia simplex. J Nat Prod 78:2994–3004 PubMed DOI
Filogônio Cde F, Soares RV, Horta MC, Penido CV, Cruz Rde A (2011) Effect of vegetable oil (Brazil nut oil) and mineral oil (liquid petrolatum) on dental biofilm control. Braz Oral Res 25:556–561. https://doi.org/10.1590/s1806-83242011000600014 PubMed DOI
Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633 PubMed DOI
Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131 PubMed DOI
Foo LY, Lu Y, Howell AB, Vorsa N (2000) A-type proanthocyanidin trimers from cranberry that inhibit adherence of uropathogenic P-fimbriated Escherichia coli. J Nat Prod 63:1225–1228 PubMed DOI
Gakhar L, Bartlett JA, Penterman J, Mizrachi D, Singh PK, Mallampalli RK, Ramaswamy S, McCray PB Jr (2010) PLUNC is a novel airway surfactant protein with anti-biofilm activity. PLoS ONE 5:1–12 DOI
Goes P, Dutra CS, Lisboa MR, Gondim DV, Leitão R, Brito GA, Rego RO (2016) Clinical efficacy of a 1% Matricaria chamomile L. mouthwash and 0.12% chlorhexidine for gingivitis control in patients undergoing orthodontic treatment with fixed appliances. J Oral Sci 58:569–574 PubMed DOI
Goldman G, Starosvetsky J, Armon R (2009) Inhibition of biofilm formation on UF membrane by use of specific bacteriophages. J Membrane Sci 342:145–152 DOI
Gopu V, Shetty PH (2016) Cyanidin inhibits quorum signalling pathway of a food borne opportunistic pathogen. J Food Sci Technol 53:968–976. https://doi.org/10.1007/s13197-015-2031-9 PubMed DOI PMC
Goswami S, Sahareen T, Singh M, Kumar S (2015) Role of biogenic silver nanoparticles in disruption of cell–cell adhesion in Staphylococcus aureus and Escherichia coli biofilm. J Ind Eng Chem 26:73–80 DOI
Guendouze A, Plener L, Bzdrenga J, Jacquet P, Rémy B, Elias M, Lavigne J-P, Daudé D, Chabrière E (2017) Effect of quorum quenching lactonase in clinical isolates of Pseudomonas aeruginosa and comparison with quorum sensing inhibitors. Front Microbiol 8:1–10 DOI
Gurunathan S, Han JW, Kwon D-N, Kim J-H (2014) Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett 9:1–17 DOI
Gusarov I, Nudler E (2005) NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. P Natl Acad Sci USA 102:13855–13860 DOI
Haque S, Yadav DK, Bisht SC, Yadav N, Singh V, Dubey KK, Jawed A, Wahid M, Dar SA (2019) Quorum sensing pathways in Gram-positive and -negative bacteria: potential of their interruption in abating drug resistance. J Chemother 31:161–187 PubMed DOI
Harper DR, Parracho HM, Walker J, Sharp R, Hughes G, Werthén M, Lehman S, Morales S (2014) Bacteriophages and Biofilms Antibiot 3:270–284
Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401 PubMed DOI PMC
Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332 PubMed DOI
Hoiby N, Doring G, Schiotz P (1986) The role of immune complexes in the pathogenesis of bacterial infections. Annu Rev Microbiol 40:29–29 PubMed DOI
https://clinicalTrials.gov/ . A database of privately and publicly funded clinical studies conducted around the world.
Huang R, Li M, Gregory RL (2011) Bacterial Interactions in Dental Biofilm Virulence 2:435–444. https://doi.org/10.4161/viru.2.5.16140 PubMed DOI
Huigens RW 3rd, Ma L, Gambino C, Moeller PD, Basso A, Cavanagh J, Wozniak DJ, Melander C (2008) Control of bacterial biofilms with marine alkaloid derivatives. Mol Biosyst 4:614–621. https://doi.org/10.1039/b719989a PubMed DOI
Hwang JK, Chung JY, Baek NI, Park JH (2004) Isopanduratin A from Kaempferia pandurata as an active antibacterial agent against cariogenic Streptococcus mutans. Int J Antimicrob Agents 23:377–381. https://doi.org/10.1016/j.ijantimicag.2003.08.011 PubMed DOI
Irie Y, Parsek MR (2008) Quorum sensing and microbial biofilms. In: Romeo T (ed) Bacterial biofilms. Springer, Berlin, Heidelberg, pp 67–84 DOI
Jakobsen TH, van Gennip M, Phipps RK, Shanmugham MS, Christensen LD, Alhede M, Skindersoe ME, Rasmussen TB, Friedrich K, Uthe F (2012) Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 56:2314–2325 PubMed DOI PMC
Jakubovics NS (2015) Saliva as the sole nutritional source in the development of multispecies communities in dental plaque. Microbiol Spectr 3:263–277 DOI
Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81:7–11 PubMed DOI
Jensen PØ, Bjarnsholt T, Phipps R, Rasmussen TB, Calum H, Christoffersen L, Moser C, Williams P, Pressler T, Givskov M (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiol 153:1329–1338 DOI
Jeon JG, Pandit S, Xiao J, Gregoire S, Falsetta ML, Klein MI, Koo H (2011) Influences of trans-trans farnesol, a membrane-targeting sesquiterpenoid, on Streptococcus mutans physiology and survival within mixed-species oral biofilms. Int J Oral Sci 3:98–106 PubMed DOI PMC
Junter G-A, Thebault P, Lebrun L (2016) Polysaccharide-Based Antibiofilm Surfaces Acta Biomater 30:13–25 PubMed DOI
Kalmokoff M, Austin J, Wan XD, Sanders G, Banerjee S, Farber J (2001) Adsorption, attachment and biofilm formation among isolates of Listeria monocytogenes using model conditions. J Appl Microbiol 91:725–734 PubMed DOI
Kang S, Kim J, Hur JK, Lee S-S (2017) CRISPR-based genome editing of clinically important Escherichia coli SE15 isolated from indwelling urinary catheters of patients. J Med Microbiol 66:18–25 PubMed DOI
Kaplan JB (2009) Therapeutic potential of biofilm-dispersing enzymes. Int J Artif Organs 32:545–554 PubMed DOI
Katsura H, Tsukiyama R-I, Suzuki A, Kobayashi M (2001) In vitro antimicrobial activities of bakuchiol against oral microorganisms. Antimicrob Agents Chemother 45:3009–3013 PubMed DOI PMC
Kaur P, Peterson E (2018) Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol 9:1–21
Kelly-Quintos C, Cavacini LA, Posner MR, Goldmann D, Pier GB (2006) Characterization of the opsonic and protective activity against Staphylococcus aureus of fully human monoclonal antibodies specific for the bacterial surface polysaccharide poly-N-acetylglucosamine. Infect Immun 74:2742–2750 PubMed DOI PMC
Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13–18 PubMed DOI
Khan MSA, Ahmad I (2012) Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J Antimicrob Chemother 67:618–621 PubMed DOI
Khan R, Zakir M, Khanam Z, Shakil S, Khan A (2010) Novel compound from Trachyspermum ammi (Ajowan caraway) seeds with antibiofilm and antiadherence activities against Streptococcus mutans: a potential chemotherapeutic agent against dental caries. J App Microbiol 109:2151–2159 DOI
Khatoon Z, McTiernan CD, Suuronen EJ, Mah T-F, Alarcon EI (2018) Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4:1–36 DOI
Kim D, Hwang G, Liu Y, Wang Y, Singh AP, Vorsa N, Koo H (2015) Cranberry flavonoids modulate cariogenic properties of mixed-species biofilm through exopolysaccharides-matrix disruption. PLoS ONE 10:1–13 DOI
Kot B, Wicha J, Piechota M, Wolska K, Gruzewska A (2015) Antibiofilm activity of trans-cinnamaldehyde, p-coumaric, and ferulic acids on uropathogenic Escherichia coli. Turk J Med Sci 45:919–924 PubMed DOI
Kwan BW, Chowdhury N, Wood TK (2015) Combatting bacterial infections by killing persister cells with mitomycin C. Environ Microbiol 17:4406–4414 PubMed DOI
Lebeaux D, Ghigo J-M, Beloin C (2014) Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 78:510–543 PubMed DOI PMC
Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochemistry (mosc) 70:267–274 DOI
Lewis R, Clooney AG, Stockdale SR, Buttimer C, Draper LA, Ross RP, Hill C (2020) Isolation of a novel jumbo bacteriophage effective against Klebsiella aerogenes. Front Med 7:1–18 DOI
Limsuwan S, Trip EN, Kouwen TR, Piersma S, Hiranrat A, Mahabusarakam W, Voravuthikunchai SP, van Dijl JM, Kayser O (2009) Rhodomyrtone: a new candidate as natural antibacterial drug from Rhodomyrtus tomentosa. Phytomedicine 16:645–651 PubMed DOI
Liu X-T, Pan Q, Shi Y, Williams ID, Sung HH-Y, Zhang Q, Liang J-Y, Ip NY, Min Z-D (2006) ent-rosane and labdane diterpenoids from Sagittaria sagittifolia and their antibacterial activity against three oral pathogens. J Nat Prod 69:255–260 PubMed DOI
Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114 PubMed DOI PMC
Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y, Cheng Q, Zhu J, Li M (2019) Developing natural products as potential anti-biofilm agents. Chin Med 14:1–17 DOI
Macfarlane S, Dillon J (2007) Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol 102:1187–1196 PubMed DOI
Magesh H, Kumar A, Alam A, Priyam SU, Sumantran VN, Vaidyanathan R (2013) Identification of natural compounds which inhibit biofilm formation in clinical isolates of Klebsiella pneumoniae. Indian J Exp Biol 51:764–772 PubMed
Mah T-F (2012) Biofilm-Specific Antibiotic Resistance Future Microbiol 7:1061–1072 PubMed
Mah T-FC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39 PubMed DOI
Manju S, Malaikozhundan B, Vijayakumar S, Shanthi S, Jaishabanu A, Ekambaram P, Vaseeharan B (2016) Antibacterial, antibiofilm and cytotoxic effects of Nigella sativa essential oil coated gold nanoparticles. Microb Pathog 91:129–135 PubMed DOI
Meireles A, Borges A, Giaouris E, Simões M (2016) The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Res Int 86:140–146 DOI
Mittapally S, Taranum R, Parveen S (2018) Metal ions as antibacterial agents. J Drug Deliv Ther 8:411–419 DOI
Miyaue S, Suzuki E, Komiyama Y, Kondo Y, Morikawa M, Maeda S (2018) Bacterial memory of persisters: bacterial persister cells can retain their phenotype for days or weeks after withdrawal from colony–biofilm culture. Front Microbiol 9:1–6 DOI
Moon HW, Bunn TO (1993) Vaccines for preventing enterotoxigenic Escherichia coli infections in farm animals. Vaccine 11:213–220 PubMed DOI PMC
Nagata H, Inagaki Y, Yamamoto Y, Maeda K, Kataoka K, Osawa K, Shizukuishi S (2006) Inhibitory effects of macrocarpals on the biological activity of Porphyromonas gingivalis and other periodontopathic bacteria. Oral Microbiol Immuno 21:159–163 DOI
Niu C, Gilbert E (2004) Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol 70:6951–6956 PubMed DOI PMC
Nivens DE, Ohman DE, Williams J, Franklin MJ (2001) Role of alginate and its O-acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183:1047–1057 PubMed DOI PMC
Nong X-H, Zhang X-Y, Xu X-Y, Wang J, Qi S-H (2016) Nahuoic acids B-E, polyhydroxy polyketides from the marine-derived Streptomyces sp. SCSGAA 0027. J Nat Prod 79:141–148 PubMed DOI
Nourbakhsh F, Ebrahimzadeh Namvar A, Momtaz H (2016) Characterization of staphylococcal cassette chromosome mec elements in biofilm-producing Staphylococcus aureus, isolated from hospital infections in Isfahan. Int J Med Lab 3:33–42
Nourbakhsh F, Namvar AE (2016) Detection of genes involved in biofilm formation in Staphylococcus aureus isolates. GMS Hyg Infect Control 11:1–5. https://doi.org/10.3205/dgkh000267 DOI
Okuda K, Hanada N, Usui Y, Takeuchi H, Koba H, Nakao R, Watanabe H, Senpuku H (2010) Inhibition of Streptococcus mutans adherence and biofilm formation using analogues of the SspB peptide. Arch Oral Biol 55:754–762 PubMed DOI
Páez PL, Becerra MC, Albesa I (2011) Comparison of macromolecular oxidation by reactive oxygen species in three bacterial genera exposed to different antibiotics. Cell Biochem Biophys 61:467–472 PubMed DOI
Paraje M (2011) Antimicrobial resistance in biofilms. In: Méndez-Vilas A (ed), Science against microbial pathogens: communicating current research technological advances. Formatex Research Center, pp 736–744.
Paraszkiewicz K, Moryl M, Płaza G, Bhagat D, K. Satpute S, Bernat P, (2019) Surfactants of microbial origin as antibiofilm agents. Int J Environ Health Res 31:401–420 PubMed DOI
Park KM, You JS, Lee HY, Baek NI, Hwang JK (2003) Kuwanon G: an antibacterial agent from the root bark of Morus alba against oral pathogens. J Ethnopharmacol 84:181–185. https://doi.org/10.1016/s0378-8741(02)00318-5 PubMed DOI
Patel R (2005) Biofilms and antimicrobial resistance. Clin Orthop Relat Res 437:41–47 DOI
Peulen T-O, Wilkinson KJ (2011) Diffusion of nanoparticles in a biofilm. Environ Sci Technol 45:3367–3373 PubMed DOI
Potera C (1996) Biofilms invade microbiology. Science 273:1795–1798 PubMed DOI
Prabu GR, Gnanamani A, Sadulla S (2006) Guaijaverin–a plant flavonoid as potential antiplaque agent against Streptococcus mutans. J Appl Microbiol 101:487–495. https://doi.org/10.1111/j.1365-2672.2006.02912.x PubMed DOI
Prasanna S, Doble M (2012) Medical biofilms–Its formation and prevention using organic molecules. J Indian Inst Sci 88:27–35
Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO (2015) Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 7:493–512 PubMed DOI
Raja AF, Ali F, Khan IA, Shawl AS, Arora DS, Shah BA, Taneja SC (2011) Antistaphylococcal and biofilm inhibitory activities of acetyl-11-keto-β-boswellic acid from Boswellia serrata. BMC Microbiol 11:1–9 DOI
Rajendran N, Subramaniam S, Christena LR, Muthuraman MS, Subramanian NS, Pemiah B, Sivasubramanian A (2016) Antimicrobial flavonoids isolated from Indian medicinal plant Scutellaria oblonga inhibit biofilms formed by common food pathogens. Nat Prod Res 30:2002–2006. https://doi.org/10.1080/14786419.2015.1104673
Ramasubbu N, Thomas L, Ragunath C, Kaplan J (2005) Structural analysis of dispersin B, a biofilm-releasing glycoside hydrolase from the periodontopathogen Actinobacillus actinomycetemcomitans. J Mol Biol 349:475–486 PubMed DOI
Rasamiravaka T, Labtani Q, Duez P, El Jaziri M (2015) The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int 2015:1–17 DOI
Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiol 151:1325–1340 DOI
Reid G (1999) Biofilms in infectious disease and on medical devices. Int J Antimicrob Agents 11:223–226 PubMed DOI
Römling U, Balsalobre C (2012) Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 272:541–561 PubMed DOI
Roy R, Tiwari M, Donelli G, Tiwari V (2018) Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9:522–554 PubMed DOI
Różalski M, Walencka E, Różalska B, Wysokińska H (2007) Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine 14:31–35 PubMed DOI
Rukayadi Y, Hwang JK (2006) In vitro activity of xanthorrhizol against Streptococcus mutans biofilms. Lett Appl Microbiol 42:400–404. https://doi.org/10.1111/j.1472-765X.2006.01876.x PubMed DOI
Rukayadi Y, Kim KH, Hwang JK (2008) In vitro anti-biofilm activity of macelignan isolated from Myristica fragrans Houtt. against oral primary colonizer bacteria. Phytother Res 22:308–312. https://doi.org/10.1002/ptr.2312 PubMed DOI
Rukayadi Y, Lee K-H, Hwang J-K (2009) Activity of panduratin A isolated from Kaempferia pandurata Roxb. against multi-species oral biofilms in vitro. J Oral Sci 51:87–95 PubMed DOI
Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:1–25 DOI
Sá NC, Cavalcante TTA, Araújo AX, dos Santos HS, Albuquerque MRJR, Bandeira PN, da Cunha RMS, Cavada BS, Teixeira EH (2012) Antimicrobial and antibiofilm action of casbane diterpene from Croton nepetaefolius against oral bacteria. Arch Oral Biol 57:550–555 DOI
Sabatini S, Piccioni M, Felicetti T, De Marco S, Manfroni G, Pagiotti R, Nocchetti M, Cecchetti V, Pietrella D (2017) Investigation on the effect of known potent S. aureus NorA efflux pump inhibitors on the staphylococcal biofilm formation. RSC Adv 7:37007–37014 DOI
Salles MM, Badaró MM, Arruda CN, Leite VM, Silva CH, Watanabe E, Oliveira Vde C, Paranhos Hde F (2015) Antimicrobial activity of complete denture cleanser solutions based on sodium hypochlorite and Ricinus communis-a randomized clinical study. J Appl Oral Sci 23:637–642. https://doi.org/10.1590/1678-775720150204 PubMed DOI PMC
Salta M, Wharton JA, Dennington SP, Stoodley P, Stokes KR (2013) Anti-biofilm performance of three natural products against initial bacterial attachment. Int J Mol Sci 14:21757–21780 PubMed DOI PMC
Sardesai VM (1995) Role of antioxidants in health maintenance. Nutr Clin Pract 10:19–25 PubMed DOI
Sato M, Fujiwara S, Tsuchiya H, Fujii T, Iinuma M, Tosa H, Ohkawa Y (1996) Flavones with antibacterial activity against cariogenic bacteria. J Ethnopharmacol 54:171–176. https://doi.org/10.1016/s0378-8741(96)01464-x PubMed DOI
Satthanakul P, Taweechaisupapong S, Paphangkorakit J, Pesee M, Timabut P, Khunkitti W (2015) Antimicrobial effect of lemongrass oil against oral malodour micro-organisms and the pilot study of safety and efficacy of lemongrass mouthrinse on oral malodour. J Appl Microbiol 118:11–17 PubMed DOI
Sauer FG, Barnhart M, Choudhury D, Knight SD, Waksman G, Hultgren SJ (2000) Chaperone-assisted pilus assembly and bacterial attachment. Curr Opin Struct Biol 10:548–556 PubMed DOI
Savka MA, Dailey L, Popova M, Mihaylova R, Merritt B, Masek M, Le P, Nor SR, Ahmad M, Hudson AO, Bankova V (2015) Chemical composition and disruption of quorum sensing signaling in geographically diverse United States propolis. Evid Based Complement Alternat Med 2015:1–10. https://doi.org/10.1155/2015/472593 DOI
Schroeder M, Brooks BD, Brooks AE (2017) The complex relationship between virulence and antibiotic resistance. Genes 8:1–23 DOI
Shak S, Capon DJ, Hellmiss R, Marsters SA, Baker CL (1990) Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci U S A 87:9188–9192 PubMed DOI PMC
Shakeri A, Sharifi MJ, Fazly Bazzaz BS, Emami A, Soheili V, Sahebkar A, Asili J (2018) Bioautography detection of antimicrobial compounds from the essential oil of Salvia pachystachys. Curr Bioact Comp 14:80–85 DOI
Sikdar R, Elias M (2020) Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: a review of recent advances. Expert Rev Anti Infect Ther 18:1221–1233 PubMed DOI PMC
Singh I, Gautam LK, Kaur IR (2016) Effect of oral cranberry extract (standardized proanthocyanidin-A) in patients with recurrent UTI by pathogenic E. coli: a randomized placebo-controlled clinical research study. Int Urol Nephrol 48:1379–1386 PubMed DOI
Singh S, Singh SK, Chowdhury I, Singh R (2017) Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 11:53–62. https://doi.org/10.2174/1874285801711010053 PubMed DOI PMC
Skogman ME, Kujala J, Busygin I, Leinob R, Vuorela PM, Fallarero A (2012) Evaluation of antibacterial and anti-biofilm activities of cinchona alkaloid derivatives against Staphylococcus aureus. Nat Prod Commun 7:1173–1176 PubMed
Smyth AR, Cifelli PM, Ortori CA, Righetti K, Lewis S, Erskine P, Holland ED, Givskov M, Williams P, Cámara M (2010) Garlic as an inhibitor of Pseudomonas aeruginosa quorum sensing in cystic fibrosis—a pilot randomized controlled trial. Pediatr Pulmonol 45:356–362 PubMed DOI
Soheili V, Tajani AS, Ghodsi R, Bazzaz BSF (2019) Anti-PqsR compounds as next-generation antibacterial agents against Pseudomonas aeruginosa: a review. Eur J Med Chem 172:26–35 PubMed DOI
Song X, Xia Y-X, He Z-D, Zhang H-J (2018) A review of natural products with anti-biofilm activity. Curr Org Chem 22:789–817 DOI
Srivastava A, Singh B, Deepak D, Rawat AK, Singh B (2015) Colostrum hexasaccharide, a novel Staphylococcus aureus quorum-sensing inhibitor. Antimicrob Agents Chemother 59:2169–2178 PubMed DOI PMC
Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138 PubMed DOI
Su Y, Zhi Z, Gao Q, Xie M, Yu M, Lei B, Li P, Ma PX (2017) Autoclaving-derived surface coating with in vitro and in vivo antimicrobial and antibiofilm efficacies. Adv Healthc Mater 6:1–15 DOI
Szomolay B, Klapper I, Dockery J, Stewart PS (2005) Adaptive responses to antimicrobial agents in biofilms. Environ Microbiol 7:1186–1191 PubMed DOI
Tresse O, Jouenne T, Junter G-A (1995) The role of oxygen limitation in the resistance of agar-entrapped, sessile-like Escherichia coli to aminoglycoside and β-lactam antibiotics. J Antimicrob Chemother 36:521–526 PubMed DOI
Tsuchiya H, Sato M, Iinuma M, Yokoyama J, Ohyama M, Tanaka T, Takase I, Namikawa I (1994) Inhibition of the growth of cariogenic bacteria in vitro by plant flavanones. Experientia 50:846–849. https://doi.org/10.1007/bf01956469 PubMed DOI
Tsui VW, Wong RW, Rabie AB (2008) The inhibitory effects of naringin on the growth of periodontal pathogens in vitro. Phytother Res 22:401–406. https://doi.org/10.1002/ptr.2338 PubMed DOI
Uruén C, Chopo-Escuin G, Tommassen J, Mainar-Jaime RC, Arenas J (2021) Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics 10:1–36
Vacheva A, Mustafa B, Staneva J, Marhova M, Kostadinova S, Todorova M, Ivanova R, Stoitsova S (2011) Effects of extracts from medicinal plants on biofilm formation by Escherichia coli urinary tract isolates. Biotechnol Biotechnol Equip 25:92–97 DOI
Van Acker H, Coenye T (2017) The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends Microbiol 25:456–466 PubMed DOI
Van Dijck P, Sjollema J, Cammue BP, Lagrou K, Berman J, d’Enfert C, Andes DR, Arendrup MC, Brakhage AA, Calderone R (2018) Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microb Cell 5:300–326 PubMed DOI PMC
Vasudevan R (2014) Biofilms: microbial cities of scientific significance. J Microbiol Exp 1:1–16
Verderosa AD, Totsika M, Fairfull-Smith KE (2019) Bacterial biofilm eradication agents: a current review. Front Chem 7:1–17 DOI
Vimberg V, Kuzma M, Stodulkova E, Novak P, Bednarova L, Sulc M, Gazak R (2015) Hydnocarpin-type flavonolignans: semisynthesis and inhibitory effects on Staphylococcus aureus biofilm formation. J Nat Prod 78:2095–2103 PubMed DOI
Walencka E, Rozalska S, Wysokinska H, Rozalski M, Kuzma L, Rozalska B (2007) Salvipisone and aethiopinone from Salvia sclarea hairy roots modulate staphylococcal antibiotic resistance and express anti-biofilm activity. Planta Med 73:545–551 PubMed DOI
Wang X, Yao X, Zhu Z, Tang T, Dai K, Sadovskaya I, Flahaut S, Jabbouri S (2009) Effect of berberine on Staphylococcus epidermidis biofilm formation. Int J Antimicrob Agents 34:60–66. https://doi.org/10.1016/j.ijantimicag.2008.10.033 PubMed DOI
Watmough NJ, Butland G, Cheesman MR, Moir JW, Richardson DJ, Spiro S (1999) Nitric oxide in bacteria: synthesis and consumption. Biochim Biophys Acta 1411:456–474 PubMed DOI
Wood LF, Leech AJ, Ohman DE (2006) Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of σ22 (AlgT) and the AlgW and Prc proteases. Mol Microbiol 62:412–426 PubMed DOI
Wysokińska H, Różalski M, Budzyńska A, Więckowska-Szakiel M, Sadowska B, Paszkiewicz M, Kisiel W, Różalska B (2012) Antimicrobial and anti-biofilm properties of new taxodione derivative from hairy roots of Salvia austriaca. Phytomedicine 19:1285–1287 PubMed DOI
Xie Q, Johnson BR, Wenckus CS, Fayad MI, Wu CD (2012) Efficacy of berberine, an antimicrobial plant alkaloid, as an endodontic irrigant against a mixed-culture biofilm in an in vitro tooth model. J Endod 38:1114–1117. https://doi.org/10.1016/j.joen.2012.04.023 PubMed DOI
Xing M, Shen F, Liu L, Chen Z, Guo N, Wang X, Wang W, Zhang K, Wu X, Wang X, Li Y, Sun S, Yu L (2012) Antimicrobial efficacy of the alkaloid harmaline alone and in combination with chlorhexidine digluconate against clinical isolates of Staphylococcus aureus grown in planktonic and biofilm cultures. Lett Appl Microbiol 54:475–482. https://doi.org/10.1111/j.1472-765X.2012.03233.x PubMed DOI
Yazdi MET, Darroudi M, Amiri MS, Hosseini HA, Nourbakhsh F, Mashreghi M, Farjadi M, Kouhi SMM, Mousavi SH (2020) Anticancer, antimicrobial, and dye degradation activity of biosynthesised silver nanoparticle using Artemisia kopetdaghensis. Micro Nano Lett 15:1046–1050 DOI
Zeng Z, Qian L, Cao L, Tan H, Huang Y, Xue X, Shen Y, Zhou S (2008) Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. Appl Microbiol Biotech 79:119–126 DOI
Zernotti M, Angel Villegas N, Roques Revol M, Baena-Cagnani C, Arce Miranda J, Paredes M, Albesa I, Paraje M (2010) Evidence of bacterial biofilms in nasal polyposis. J Investig Allergol Clin Immunol 20:380–385 PubMed
Zuberi A, Misba L, Khan AU (2017) CRISPR interference (CRISPRi) inhibition of luxS gene expression in E. coli: an approach to inhibit biofilm. Front Cell Infect Microbiol 7:1–7 DOI
Methods for Determination of Antimicrobial Activity of Essential Oils In Vitro-A Review