New Broth Macrodilution Volatilization Method for Antibacterial Susceptibility Testing of Volatile Agents and Evaluation of Their Toxicity Using Modified MTT Assay In Vitro
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA 20213109
Česká Zemědělská Univerzita v Praze
MEYS Grant No: LM2018100
METROFOOD-CZ research infrastructure project
PubMed
34299454
PubMed Central
PMC8305236
DOI
10.3390/molecules26144179
PII: molecules26144179
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial, cytotoxicity, macrodilution method, respiratory infections, thymohydroquinone, thymoquinone, vapor phase, volatile compound, β-thujaplicin,
- MeSH
- antibakteriální látky analýza chemie farmakologie MeSH
- aplikace inhalační MeSH
- Bacteria účinky léků MeSH
- benzochinony aplikace a dávkování farmakologie MeSH
- Haemophilus influenzae účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- monoterpeny aplikace a dávkování farmakologie MeSH
- oleje prchavé chemie farmakologie MeSH
- Staphylococcus aureus účinky léků MeSH
- Streptococcus pneumoniae účinky léků MeSH
- Streptococcus pyogenes účinky léků MeSH
- těkavé organické sloučeniny chemie farmakologie MeSH
- thymol aplikace a dávkování analogy a deriváty farmakologie MeSH
- tropolon aplikace a dávkování analogy a deriváty farmakologie MeSH
- volatilizace MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- benzochinony MeSH
- beta-thujaplicin MeSH Prohlížeč
- monoterpeny MeSH
- oleje prchavé MeSH
- těkavé organické sloučeniny MeSH
- thymohydroquinone MeSH Prohlížeč
- thymol MeSH
- thymoquinone MeSH Prohlížeč
- tropolon MeSH
In this study, a new broth macrodilution volatilization method for the simple and rapid determination of the antibacterial effect of volatile agents simultaneously in the liquid and vapor phase was designed with the aim to assess their therapeutic potential for the development of new inhalation preparations. The antibacterial activity of plant volatiles (β-thujaplicin, thymohydroquinone, thymoquinone) was evaluated against bacteria associated with respiratory infections (Haemophilus influenzae, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes) and their cytotoxicity was determined using a modified thiazolyl blue tetrazolium bromide assay against normal lung fibroblasts. Thymohydroquinone and thymoquinone possessed the highest antibacterial activity against H. influenzae, with minimum inhibitory concentrations of 4 and 8 µg/mL in the liquid and vapor phases, respectively. Although all compounds exhibited cytotoxic effects on lung cells, therapeutic indices (TIs) suggested their potential use in the treatment of respiratory infections, which was especially evident for thymohydroquinone (TI > 34.13). The results demonstrate the applicability of the broth macrodilution volatilization assay, which combines the principles of broth microdilution volatilization and standard broth macrodilution methods. This assay enables rapid, simple, cost- and labor-effective screening of volatile compounds and overcomes the limitations of assays currently used for screening of antimicrobial activity in the vapor phase.
Zobrazit více v PubMed
Brooks W.A. Bacterial pneumonia. In: Ryan E.T., Hill D.R., Solomon T., Aronson N.E., Endy T.P., editors. Hunter’s Tropical Medicine and Emerging Infectious Diseases. 10th ed. Elsevier; Amsterdam, The Netherlands: 2020. pp. 446–453.
The Top 10 Causes of Death. [(accessed on 19 March 2021)]; Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
Zafar A., Hasan R., Nizamuddin S., Mahmood N., Mukhtar S., Ali F., Morrissey I., Barker K., Torumkuney D. Antibiotic susceptibility in Streptococcus pneumoniae, Haemophilus influenzae and Streptococcus pyogenes in Pakistan: A review of results from the Survey of Antibiotic Resistance (SOAR) 2002-15. J. Antimicrob. Chemother. 2016;71(Suppl. 1):103–109. doi: 10.1093/jac/dkw076. PubMed DOI PMC
Manohar P., Loh B., Nachimuthu R., Hua X.T., Welburn S.C., Leptihn S. Secondary bacterial infections in patients with viral pneumonia. Front. Med. 2020;7:720. doi: 10.3389/fmed.2020.00420. PubMed DOI PMC
Borghardt J.M., Kloft C., Sharma A. Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic processes. Can. Respir. J. 2018;2018:2732017. doi: 10.1155/2018/2732017. PubMed DOI PMC
Sorino C., Negri S., Spanevello A., Visca D., Scichilone N. Inhalation therapy devices for the treatment of obstructive lung diseases: The history of inhalers towards the ideal inhaler. Eur. J. Intern. Med. 2020;75:15–18. doi: 10.1016/j.ejim.2020.02.023. PubMed DOI
Cock I.E., van Vuuren S.F. The traditional use of southern African medicinal plants for the treatment of bacterial respiratory diseases: A review of the ethnobotany and scientific evaluations. J. Ethnopharmacol. 2020;263:113204. doi: 10.1016/j.jep.2020.113204. PubMed DOI PMC
Jain H., Bairagi A., Srivastava S., Singh S.B., Mehra N.K. Recent advances in the development of microparticles for pulmonary administration. Drug Discov. Today. 2020;25:1865–1872. doi: 10.1016/j.drudis.2020.07.018. PubMed DOI
Ibrahim M., Verma R., Garcia-Contreras L. Inhalation drug delivery devices: Technology update. Med. Devices. 2015;8:131–139. doi: 10.2147/MDER.S48888. PubMed DOI PMC
Klepser M.E. Role of nebulized infections antibiotics for the treatment of respiratory. Curr. Opin. Infect. Dis. 2004;17:109–112. doi: 10.1097/00001432-200404000-00007. PubMed DOI
Kokoska L., Kloucek P., Leuner O., Novy P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr. Med. Chem. 2019;26:1–38. doi: 10.2174/0929867325666180831144344. PubMed DOI
Cos P., Vlietinck A.J., Vanden Berghe D., Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006;106:290–302. doi: 10.1016/j.jep.2006.04.003. PubMed DOI
Mutlu-Ingok A., Devecioglu D., Dikmetas D.N., Karbancioglu-Guler F., Capanoglu E. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules. 2020;25:4711. doi: 10.3390/molecules25204711. PubMed DOI PMC
Taborsky J., Kunt M., Kloucek P., Lachman J., Zeleny V., Kokoska L. Identification of potential sources of thymoquinone and related compounds in Asteraceae, Cupressaceae, Lamiaceae, and Ranunculaceae families. Cent. Eur. J. Chem. 2012;10:1899–1906. doi: 10.2478/s11532-012-0114-2. DOI
Fotopoulou T., Ciric A., Kritsi E., Calhelha R., Ferreira I.C.F.R., Sokovic M., Zoumpoulakis P., Koufaki M. Antimicrobial/antibiofilm activity and cytotoxic studies of beta-thujaplicin derivatives. Arch. Pharm. 2016;349:698–709. doi: 10.1002/ardp.201600095. PubMed DOI
Abdelazeem A.H., Mohamed Y.M.A., Gouda A.M., Omar H.A., Al Robaian M.M. Novel thymohydroquinone derivatives as potential anticancer agents: Design, synthesis, and biological screening. Aust. J. Chem. 2016;69:1277–1284. doi: 10.1071/CH16102. DOI
Domon H., Hiyoshi T., Maekawa T., Yonezawa D., Tamura H., Kawabata S., Yanagihara K., Kimura O., Kunitomo E., Terao Y. Antibacterial activity of hinokitiol against both antibiotic-resistant and -susceptible pathogenic bacteria that predominate in the oral cavity and upper airways. Microbiol. Immunol. 2019;63:213–222. doi: 10.1111/1348-0421.12688. PubMed DOI
Reyes-Jurado F., Navarro-Cruz A.R., Ochoa-Velasco C.E., Palou E., Lopez-Malo A., Avila-Sosa R. Essential oils in vapor phase as alternative antimicrobials: A review. Crit. Rev. Food Sci. Nutr. 2020;60:1641–1650. doi: 10.1080/10408398.2019.1586641. PubMed DOI
Leigh-de Rapper S., van Vuuren S.F. Odoriferous therapy: A review identifying essential oils against pathogens of the respiratory tract. Chem. Biodivers. 2020;17:e2000062. doi: 10.1002/cbdv.202000062. PubMed DOI
Jaradat N.A., Al Zabadi H., Rahhal B., Hussein A.M., Mahmoud J.S., Mansour B., Khasati A.I., Issa A. The effect of inhalation of Citrus sinensis flowers and Mentha spicata leave essential oils on lung function and exercise performance: A quasi-experimental uncontrolled before-and-after study. J. Int. Soc. Sports Nutr. 2016;13:36. doi: 10.1186/s12970-016-0146-7. PubMed DOI PMC
Houdkova M., Rondevaldova J., Doskocil I., Kokoska L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia. 2017;118:56–62. doi: 10.1016/j.fitote.2017.02.008. PubMed DOI
Kiani S., Minaei S., Ghasemi-Varnamkhasti M. Application of electronic nose systems for assessing quality of medicinal and aromatic plant products: A review. J. Appl. Res. Med. Aromat. Plants. 2016;3:1–9. doi: 10.1016/j.jarmap.2015.12.002. DOI
BeruBe K., Aufderheide M., Breheny D., Clothier R., Combes R., Duffin R., Forbes B., Gaca M., Gray A., Hall I., et al. In vitro models of inhalation toxicity and disease. Altern. Lab. Anim. 2009;37:89–141. PubMed
Reyes-Jurado F., Franco-Vega A., Ramirez-Corona N., Palou E., Lopez-Malo A. Essential oils: Antimicrobial activities, extraction methods and their modeling. Food Eng. Rev. 2015;7:275–297. doi: 10.1007/s12393-014-9099-2. DOI
Novy P., Kloucek P., Rondevaldova J., Havlik J., Kourimska L., Kokoska L. Thymoquinone vapor significantly affects the results of Staphylococcus aureus sensitivity tests using the standard broth microdilution method. Fitoterapia. 2014;94:102–107. doi: 10.1016/j.fitote.2014.01.024. PubMed DOI
Houdkova M., Albarico G., Doskocil I., Tauchen J., Urbanova K., Tulin E.E., Kokoska L. Vapors of volatile plant-derived products significantly affect the results of antimicrobial, antioxidative and cytotoxicity microplate-based assays. Molecules. 2020;25:6004. doi: 10.3390/molecules25246004. PubMed DOI PMC
Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Disk Susceptibility Tests. 11th ed. CLSI; Wayne, PA, USA: 2012. p. 32. Approved Standard, CLSI Document M02-A11.
European Committee on Antimicrobial Susceptibility Testing Antimicrobial Susceptibility Testing EUCAST Disk Diffusion Method, Version 9. [(accessed on 22 May 2021)]; Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2021_manuals/Manual_v_9.0_EUCAST_Disk_Test_2021.pdf.
Clinical and Laboratory Standards Institute (CLSI) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approves Standard. 10th ed. CLSI; Wayne, PA, USA: 2015. p. 35. CLSI document M07-A10.
National Committee for Clinical Laboratory Standards (NCCLS) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Growth Aerobically; Approved Standard. 6th ed. NCCLS; Wayne, PA, USA: 2003. NCCLS document M7-A6.
Food and Drug Administration (FDA) Guidance for industry and FDA. Class II Special Controls Guidance Document: Antimicrobial Susceptibility Test (AST) Systems. Center for Devices and Radiological Health, FDA; Rockville, MD, USA: 2009.
International Organization for Standardization (ISO) Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Devices, Part 1. Broth Micro-Dilution Reference Method for Testing the In Vitro Activity of Antimicrobial Agents against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases. 2nd ed. ISO; Geneva, Switzerland: 2019. ISO/DIS 20776-1.
Houdkova M., Kokoska L. Volatile antimicrobial agents and in vitro methods for evaluating their activity in the vapour phase: A review. Planta Med. 2020;86:822–857. doi: 10.1055/a-1158-4529. PubMed DOI
Houdkova M., Urbanova K., Doskocil I., Rondevaldova J., Novy P., Nguon S., Chrun R., Kokoska L. In vitro growth-inhibitory effect of Cambodian essential oils against pneumonia causing bacteria in liquid and vapour phase and their toxicity to lung fibroblasts. S. Afr. J. Bot. 2018;118:85–97. doi: 10.1016/j.sajb.2018.06.005. DOI
Houdkova M., Doskocil I., Urbanova K., Tulin E.K.C.B., Rondevaldova J., Tulin A.B., Kudera T., Tulin E.E., Zeleny V., Kokoska L. Evaluation of antipneumonic effect of Philippine essential oils using broth microdilution volatilization method and their lung fibroblasts toxicity. Nat. Prod. Commun. 2018;13:1059–1066. doi: 10.1177/1934578X1801300834. DOI
Morita Y., Matsumura E., Tsujibo H., Yasuda M., Sakagami Y., Okabe T., Ishida N., Inamori Y. Biological activity of alpha-thujaplicin, the minor component of Thujopsis dolabrata Sieb. et Zucc. var. hondai Makino. Biol. Pharm. Bull. 2001;24:607–611. doi: 10.1248/bpb.24.607. PubMed DOI
Inoue Y., Suzuki R., Murata I., Nomura H., Isshiki Y., Kanamoto I. Evaluation of antibacterial activity expression of the hinokitiol/cyclodextrin complex against bacteria. Acs Omega. 2020;5:27180–27187. doi: 10.1021/acsomega.0c03222. PubMed DOI PMC
Chaieb K., Kouidhi B., Jrah H., Mahdouani K., Bakhrouf A. Antibacterial activity of thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complement Altern Med. 2011;11:29. doi: 10.1186/1472-6882-11-29. PubMed DOI PMC
Halawani E. Antibacterial activity of thymoquinone and thymohydroquinone of Nigella sativa L. and their interaction with some antibiotics. Adv. Biol. Res. 2009;3:148–152.
Muthaiyan A., Biswas D., Crandall P.G., Wilkinson B.J., Ricke S.C. Application of orange essential oil as an antistaphylococcal agent in a dressing model. BMC Complement. Altern. Med. 2012;12:125. doi: 10.1186/1472-6882-12-125. PubMed DOI PMC
Valgas C., de Souza S.M., Smania E.F.A., Smania A. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007;38:369–380. doi: 10.1590/S1517-83822007000200034. DOI
Wang T.H., Hsia S.M., Wu C.H., Ko S.Y., Chen M.Y., Shih Y.H., Shieh T.M., Chuang L.C., Wu C.Y. Evaluation of the antibacterial potential of liquid and vapor phase phenolic essential oil compounds against oral microorganisms. PLoS ONE. 2016;11:e0163147. doi: 10.1371/journal.pone.0163147. PubMed DOI PMC
Inouye S., Uchida K., Takizawa T., Yamaguchi H., Abe S. Evaluation of the effect of terpenoid quinones on Trichophyton mentagrophytes by solution and vapor contact. J. Infect. Chemother. 2006;12:100–104. doi: 10.1007/s10156-005-0427-6. PubMed DOI
Espinel-Ingroff A., Canton E. Antifungal susceptibility testing of yeasts. In: Schwalbe R., Steele-Moore L., Goodwin A.C., editors. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007. pp. 173–208.
Vihanova K., Houdkova M., Promgool T., Urbanova K., Kanokmedhakul S., Kokoska L. In vitro growth-inhibitory effect of essential oils and supercritical carbon dioxide extracts from Cinnamomum spp. barks and fruits against food bacterial pathogens in liquid and vapor phase. J. Food Saf. 2021:e12900. doi: 10.1111/jfs.12900. DOI
Special Programme for Research and Training in Tropical Diseases. [(accessed on 11 March 2021)]; Available online: http://www.who.int/tdr/grants/workplans/en/cytotoxicity_invitro.pdf.
Gurung R.L., Lim S.N., Khaw A.K., Soon J.F.F., Shenoy K., Ali S.M., Jayapal M., Sethu S., Baskar R., Hande M.P. Thymoquinone induces telomere shortening, DNA damage and apoptosis in human glioblastoma cells. PLoS ONE. 2010;5:e12124. doi: 10.1371/journal.pone.0012124. PubMed DOI PMC
Ivankovic S., Stojkovic R., Jukic M., Milos M., Milos M., Jurin M. The antitumor activity of thymoquinone and thymohydroquinone in vitro and in vivo. Exp. Oncol. 2006;28:220–224. PubMed
Li L.H., Wu P., Lee J.Y., Li P.R., Hsieh W.Y., Ho C.C., Ho C.L., Chen W.J., Wang C.C., Yen M.Y., et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS ONE. 2014;9:e104203. doi: 10.1371/journal.pone.0104203. PubMed DOI PMC
Lee T.B., Seo E.J., Lee J.Y., Jun J.H. Synergistic anticancer effects of curcumin and hinokitiol on gefitinib resistant non-small cell lung cancer cells. Nat. Prod. Commun. 2018;13:1667–1671. doi: 10.1177/1934578X1801301223. DOI
Lee T.B., Jun J.H. Can hinokitiol kill cancer cells? Alternative therapeutic anticancer agent via autophagy and apoptosis. Korean J. Clin. Lab. Sci. 2019;51:221–234. doi: 10.15324/kjcls.2019.51.2.221. DOI
Allemailem K.S., Alnuqaydan A.M., Almatroudi A., Alrumaihi F., Aljaghwani A., Khalilullah H., Younus H., Khan A., Khan M.A. Safety and therapeutic efficacy of thymoquinone-loaded liposomes against drug-sensitive and drug-resistant Acinetobacter baumannii. Pharmaceutics. 2021;13:677. doi: 10.3390/pharmaceutics13050677. PubMed DOI PMC
Tesarova H., Svobodova B., Kokoska L., Marsik P., Pribylova M., Landa P., Vadlejch J. Determination of oxygen radical absorbance capacity of black cumin (Nigella sativa) seed quinone compounds. Nat. Prod. Commun. 2011;6:213–216. doi: 10.1177/1934578X1100600214. PubMed DOI
NIST WebBook Chemie NIST Standard Reference Database Number 69. [(accessed on 29 September 2020)];2017 Available online: http://webbook.nist.gov/chemistry/
Castillo A.M., Patiny L., Wist J. Fast and accurate algorithm for the simulation of NMR spectra of large spin systems. J. Magn. Reson. 2011;209:123–130. doi: 10.1016/j.jmr.2010.12.008. PubMed DOI
Steinbeck C., Krause S., Kuhn S. NMRShiftDB-Constructing a free chemical information system with open-source components. J. Chem. Inform. Comput. Sci. 2003;43:1733–1739. doi: 10.1021/ci0341363. PubMed DOI
Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing. CLSI; Wayne, PA, USA: 2015. 25th Informational Supplement M100-S25.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:56–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI
Kokjohn K., Bradley M., Griffiths B., Ghannoum M. Evaluation of in vitro activity of ciclopirox olamine, butenafine HCl and econazole nitrate against dermatophytes, yeasts and bacteria. Int. J. Dermatol. 2003;42:11–17. doi: 10.1046/j.1365-4362.42.s1.4.x. PubMed DOI
Trevor A.J., Katzung B.G., Kruidering-Hall M. Katzung and Trevor’s Pharmacology Examination and Board Review. 11th ed. McGraw-Hill Education; New York, NY, USA: 2015. p. 20.
Methods for Determination of Antimicrobial Activity of Essential Oils In Vitro-A Review
Pharmacology of Natural Volatiles and Essential Oils in Food, Therapy, and Disease Prophylaxis