Vapors of Volatile Plant-Derived Products Significantly Affect the Results of Antimicrobial, Antioxidative and Cytotoxicity Microplate-Based Assays

. 2020 Dec 18 ; 25 (24) : . [epub] 20201218

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33353127

Grantová podpora
IGA 20205001 Česká Zemědělská Univerzita v Praze
IGA 20205002 Česká Zemědělská Univerzita v Praze
CZ.02.1.01/0.0/0.0/16_019/0000845 European Regional Development Fund

Volatile plant-derived products were observed to exhibit broad spectrum of biological effects. However, due to their volatility, results of conventional microplate-based bioassays can be significantly affected by the vapors. With aim to demonstrate this phenomenon, antimicrobial, antioxidant, and cytotoxic activities of three essential oils (Alpinia elegans, Cinnamomum iners, and Xanthostemon verdugonianus), one supercritical CO2 extract (Nigella sativa), and four plant-derived compounds (capsaicin, caryophyllene oxide, 8-hydroxyquinoline, and thymoquinone) were evaluated in series of experiments including both ethylene vinyl acetate (EVA) Capmat sealed and nonsealed microplates. The results clearly illustrate that vapor transition to adjoining wells causes false-positive results of bioassays performed in nonsealed microtiter plates. The microplate layout and a duration of the assay were demonstrated as the key aspects defining level of the results affection by the vapors of volatile agents. Additionally, we reported biological activities and chemical composition of essential oils from A. elegans seeds and X. verdugonianus leaves, which were, according to our best knowledge, analyzed for the first time. Considering our findings, certain modifications of conventional microplate-based assays are necessary (e.g., using EVA Capmat as vapor barrier) to obtain reliable results when biological properties of volatile agents are evaluated.

Zobrazit více v PubMed

Bennett J.W., Inamdar A.A. Are some fungal volatile organic compounds (VOCs) mycotoxins? Toxins. 2015;7:3785–3804. doi: 10.3390/toxins7093785. PubMed DOI PMC

Altındal D., Altındal N. Plant volatile compounds in growth. In: Choudhary D.K., Sharma A.K., Agarwal P., Varma A., Tuteja N., editors. Volatiles and Food Security. Springer Nature; Singapore: 2017. pp. 1–13. DOI

Margetts J. Aroma chemicals V: Natural aroma chemicals. In: Rowe D.J., editor. Chemistry and Technology of Flavors and Fragrances. 1st ed. Blackwell Publishing Ltd.; Oxford, UK: 2005. pp. 169–198.

Kumari S., Pundhir S., Priya P., Jeena G., Punetha A., Chawla K., Jafaree Z.F., Mondal S., Yadav G. EssOilDB: A database of essential oils reflecting terpene composition and variability in the plant kingdom. Database. 2014;2014:1–12. doi: 10.1093/database/bau120. PubMed DOI PMC

Damasceno C.S.B., Higaki N.T.F., Dias J.D.G., Miguel M.D., Miguel O.G. Chemical composition and biological activities of essential oils in the family Lauraceae: A systematic review of the literature. Planta Med. 2019;85:1054–1072. doi: 10.1055/a-0943-1908. PubMed DOI

Farias D.P., Neri-Numa I.A., de Araujo F.F., Pastore G.M. A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chem. 2020;306:125630. doi: 10.1016/j.foodchem.2019.125630. PubMed DOI

Gilli C., He Z., But P.P., Schinnerl J., Valant V.K.M., Greger H. Chemodiversity and biological activity of the genus Alpinia (Zingiberaceae) Planta Med. 2011;77:PG71. doi: 10.1055/s-0031-1282555. DOI

Baptista-Silva S., Borges S., Ramos O.L., Pintado M., Sarmento B. The progress of essential oils as potential therapeutic agents: A review. J. Essent. Oil Res. 2020;32:279–295. doi: 10.1080/10412905.2020.1746698. DOI

Islam M.T., Khan M., Mishra S.K. An updated literature-based review: Phytochemistry, pharmacology and therapeutic promises of Nigella sativa L. Orient. Pharm. Exp. Med. 2019;19:115–129. doi: 10.1007/s13596-019-00363-3. DOI

Ghahramanloo K.H., Kamalidehghan B., Javar H.A., Widodo R.T., Majidzadeh K., Noordin M.I. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction. Drug Des. Dev. Ther. 2017;11:2221–2226. doi: 10.2147/DDDT.S87251. PubMed DOI PMC

Shaaban H.A.E., El-Ghorab A.H., Shibamoto T. Bioactivity of essential oils and their volatile aroma components: Review. J. Essent. Oil Res. 2012;24:203–212. doi: 10.1080/10412905.2012.659528. DOI

Kokoska L., Kloucek P., Leuner O., Novy P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr. Med. Chem. 2019;26:1–38. doi: 10.2174/0929867325666180831144344. PubMed DOI

Guzman G.Q., Dacanay A.T.L., Andaya B.A., Alejandro G.J.D. Ethnopharmacological studies on the uses of Euphorbia hirta in the treatment of dengue in selected indigenous communities in Pangasinan (Philippines) J. Intercult. Ethnopharmacol. 2016;5:239–243. doi: 10.5455/jice.20160330124637. PubMed DOI PMC

Jachak S.M., Saklani A. Challenges and opportunities in drug discovery from plants. Curr. Sci. 2007;92:1251–1257.

Kavanagh A., Ramu S., Gong Y., Cooper M.A., Blaskovich M.A.T. Effects of microplate type and broth additives on microdilution MIC susceptibility assays. Antimicrob. Agents Chemother. 2019;63:e01760-18. doi: 10.1128/AAC.01760-18. PubMed DOI PMC

Casey J.T., O’Cleirigh C., Walsh P.K., O’Shea D.G. Development of a robust microtiter plate-based assay method for assessment of bioactivity. J. Microbiol. Methods. 2004;58:327–334. doi: 10.1016/j.mimet.2004.04.017. PubMed DOI

Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016;6:71–79. doi: 10.1016/j.jpha.2015.11.005. PubMed DOI PMC

Bobo-Garcia G., Davidov-Pardo G., Arroqui C., Virseda P., Marin-Arroyo M.R., Navarro M. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J. Sci. Food Agric. 2015;95:204–209. doi: 10.1002/jsfa.6706. PubMed DOI

Martin A., Clynes M. Comparison of 5 microplate colorimetric assays for in vitro cytotoxicity testing and cell proliferation assays. Cytotechnology. 1993;11:49–58. doi: 10.1007/BF00749057. PubMed DOI

Thielmann J., Muranyi P., Kazman P. Screening essential oils for their antimicrobial activities against the foodborne pathogenic bacteria Escherichia coli and Staphylococcus aureus. Heliyon. 2019;5:e01860. doi: 10.1016/j.heliyon.2019.e01860. PubMed DOI PMC

Lin C.W., Yu C.W., Wu S.C., Yih K.H. DPPH free-radical scavenging activity, total phenolic contents and chemical composition analysis of forty-two kinds of essential oils. J. Food Drug Anal. 2009;17:386–395. doi: 10.38212/2224-6614.2594. DOI

Al-Tamimi M.A., Rastall B., Abu-Reidah I.M. Chemical composition, cytotoxic, apoptotic and antioxidant activities of main commercial essential oils in Palestine: A comparative study. Medicines. 2016;3:27. doi: 10.3390/medicines3040027. PubMed DOI PMC

Houdkova M., Kokoska L. Volatile antimicrobial agents and in vitro methods for evaluating their activity in the vapour phase: A review. Planta Med. 2020;86:822–857. doi: 10.1055/a-1158-4529. PubMed DOI

Reyes-Jurado F., Franco-Vega A., Ramirez-Corona N., Palou E., Lopez-Malo A. Essential oils: Antimicrobial activities, extraction methods and their modeling. Food Eng. Rev. 2015;7:275–297. doi: 10.1007/s12393-014-9099-2. DOI

Kalemba D., Kunicka A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003;10:813–829. doi: 10.2174/0929867033457719. PubMed DOI

Fisher K., Phillips C. Potential antimicrobial uses of essential oils in food: Is citrus the answer? Trends Food Sci. Technol. 2008;19:156–164. doi: 10.1016/j.tifs.2007.11.006. DOI

Novy P., Kloucek P., Rondevaldova J., Havlik J., Kourimska L., Kokoska L. Thymoquinone vapour significantly affects the results of Staphylococcus aureus sensitivity tests using the standard broth microdilution method. Fitoterapia. 2014;94:102–105. doi: 10.1016/j.fitote.2014.01.024. PubMed DOI

Rondevaldova J., Novy P., Urban J., Kokoska L. Determination of anti-staphylococcal activity of thymoquinone in combinations with antibiotics by checkerboard method using EVA capmat (TM) as a vapor barrier. Arab. J. Chem. 2017;10:566–572. doi: 10.1016/j.arabjc.2015.04.021. DOI

Houdkova M., Rondevaldova J., Doskocil I., Kokoska L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia. 2017;118:56–62. doi: 10.1016/j.fitote.2017.02.008. PubMed DOI

Karki N., Aggarwal S., Laine R.A., Greenway F., Losso J.N. Cytotoxicity of juglone and thymoquinone against pancreatic cancer cells. Chem. Biol. Interact. 2020;327:109142. doi: 10.1016/j.cbi.2020.109142. PubMed DOI PMC

Chraibi M., Farah A., Elamin O., Iraqui H.I., Fikri-Benbrahim K. Characterization, antioxidant, antimycobacterial, antimicrobial effcts of Moroccan rosemary essential oil, and its synergistic antimicrobial potential with carvacrol. J. Adv. Pharm. Technol. Res. 2020;11:25–29. doi: 10.4103/japtr.JAPTR_74_19. PubMed DOI PMC

NIST WebBook Chemie NIST Standard Reference Database Number 69. [(accessed on 29 September 2020)];2017 Available online: http://webbook.nist.gov/chemistry/

Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th ed. Allured Publ. Corp; Carol Stream, IL, USA: 2007.

Thellen C., Blaise C., Roy Y., Hickey C. Round Robin testing with the Selenastrum capricornutum microplate toxicity assay. Hydrobiologia. 1989;188:259–268. doi: 10.1007/BF00027791. DOI

Feyaerts A.F., Mathe L., Luyten W., Tournu H., Van Dyck K., Broekx L., Van Dijck P. Assay and recommendations for the detection of vapour-phase-mediated antimicrobial activities. Flavour Fragr. J. 2017;32:347–353. doi: 10.1002/ffj.3400. DOI

Van Vuuren S.F., Kamatou G.P.P., Viljoen A.M. Volatile composition and antimicrobial activity of twenty commercial frankincense essential oil samples. S. Afr. J. Bot. 2010;76:686–691. doi: 10.1016/j.sajb.2010.06.001. DOI

Piras A., Rosa A., Marongiu B., Porcedda S., Falconieri D., Dessi M.A., Ozcelik B., Koca U. Chemical composition and in vitro bioactivity of the volatile and fixed oils of Nigella sativa L. extracted by supercritical carbon dioxide. Ind. Crops Prod. 2013;46:317–323. doi: 10.1016/j.indcrop.2013.02.013. DOI

Houdkova M., Doskocil I., Urbanova K., Tulin E.K.C.B., Rondevaldova J., Tulin A.B., Kudera T., Tulin E.E., Zeleny V., Kokoska L. Evaluation of antipneumonic effect of Philippine essential oils using broth microdilution volatilization method and their lung fibroblasts toxicity. Nat. Prod. Commun. 2018;13:1059–1066. doi: 10.1177/1934578X1801300834. DOI

Mustaffa F., Indurkar J., Ismail S., Shah M., Mansor S.M. An antimicrobial compound isolated from Cinnamomum iners leaves with activity against methicillin-resistant Staphylococcus aureus. Molecules. 2011;16:3037–3047. doi: 10.3390/molecules16043037. PubMed DOI PMC

Visutthi M. Anti-staphylococcal screening of selected Thai medicinal plants from Nakhon Ratchasima province. Suranaree J. Sci. Technol. 2016;23:109–114.

Wang Z.C., Wei B.Y., Pei F.N., Yang T., Tang J., Yang S., Yu L.F., Yang C.G., Yang F. Capsaicin derivatives with nitrothiophene substituents: Design, synthesis and antibacterial activity against multidrug-resistant S. aureus. Eur. J. Med. Chem. 2020;198:112352. doi: 10.1016/j.ejmech.2020.112352. PubMed DOI

Schmidt E., Bail S., Friedl S.M., Jirovetz L., Buchbauer G., Wanner J., Denkova Z., Slavchev A., Stoyanova A., Geissler M. Antimicrobial activities of single aroma compounds. Nat. Prod. Commun. 2010;5:1365–1368. doi: 10.1177/1934578X1000500906. PubMed DOI

Srisung S., Suksrichavalit T., Prachayasittikul S., Ruchirawat S., Prachayasittikul V. Antimicrobial activity of 8-hydroxyquinoline and transition metal complexes. Int. J. Pharmacol. 2013;9:170–175. doi: 10.3923/ijp.2013.170.175. DOI

Hariharan P., Paul-Satyaseela M., Gnanamani A. In vitro profiling of antimethicillin-resistant Staphylococcus aureus activity of thymoquinone against selected type and clinical strains. Lett. Appl. Microbiol. 2016;62:283–289. doi: 10.1111/lam.12544. PubMed DOI

Phutdhawong W., Kawaree R., Sanjaiya S., Sengpracha W., Buddhasukh D. Microwave-assisted isolation of essential oil of Cinnamomum iners Reinw. ex Bl: Comparison with conventional hydrodistillation. Molecules. 2007;12:868–877. doi: 10.3390/12040868. PubMed DOI PMC

Naive M.A.K., Dalisay J.A.G.P., Maglangit E.P.T., Cafe G.C., Nuneza O.M. Free radical scavenging effects of the Philippine endemic medicinal plant Alpinia elegans (Zingiberaceae) Gard. Bull. Singap. 2019;71:435–444. doi: 10.26492/gbs71(2).2019-12. DOI

Solati Z., Baharin B.S., Bagheri H. Antioxidant property, thymoquinone content and chemical characteristics of different extracts from Nigella sativa L. seeds. J. Am. Oil Chem. Soc. 2014;91:295–300. doi: 10.1007/s11746-013-2362-5. DOI

Karakaya S., Yilmaz S.V., Ozdemir O., Koca M., Pinar N.M., Demirci B., Yildirim K., Sytar O., Turkez H., Baser K.H.C. A caryophyllene oxide and other potential anticholinesterase and anticancer agent in Salvia verticillata subsp. amasiaca (Freyn & Bornm.) Bornm. (Lamiaceae) J. Essent. Oil Res. 2020 doi: 10.1080/10412905.2020.1813212. DOI

Nascimento P.L.A., Nascimento T.C.E.S., Ramos S.M., Silva G.R., Gomes J.E.G., Falcao R.E.A., Moreira K.A., Porto A.L.F., Silva T.M.S. Quantification, antioxidant and antimicrobial activity of phenolics isolated from different extracts of Capsicum frutescens (Pimenta Malagueta) Molecules. 2014;19:5434–5447. doi: 10.3390/molecules19045434. PubMed DOI PMC

Cherdtrakulkiat R., Boonpangrak S., Sinthupoom N., Prachayasittikul S., Ruchirawat S., Prachayasittikul V. Derivatives (halogen, nitro and amino) of 8-hydroxyquinoline with highly potent antimicrobial and antioxidant activities. Biochem. Biophys. Rep. 2016;6:135–141. doi: 10.1016/j.bbrep.2016.03.014. PubMed DOI PMC

Yildiz S., Turan S., Kiralan M., Ramadan M.F. Antioxidant properties of thymol, carvacrol, and thymoquinone and its efficiencies on the stabilization of refined and stripped corn oils. J. Food Meas. Charact. 2020 doi: 10.1007/s11694-020-00665-0. DOI

Mustafa F., Indurkar J., Ismail S., Mordi M.N., Ramanathan S., Mansor S.M. Antioxidant capacity and toxicity screening of Cinnamomum iners standardized leaves methanolic extract. Int. J. Pharmacol. 2010;6:888–895. doi: 10.3923/ijp.2010.888.895. PubMed DOI PMC

Baharetha H.M., Nassar Z.D., Aisha A.F., Ahamed M.B.K., Al-Suede F.S.R., Kadir M.O.A., Ismail Z., Majid A.M.S.A. Proapoptotic and antimetastatic properties of supercritical CO2 extract of Nigella sativa Linn. against breast cancer cells. J. Med. Food. 2013;16:1121–1130. doi: 10.1089/jmf.2012.2624. PubMed DOI PMC

Richeux F., Cascante M., Ennamany R., Saboureau D., Creppy E.E. Cytotoxicity and genotoxicity of capsaicin in human neuroblastoma cells SHSY-5Y. Arch. Toxicol. 1999;33:403–409. doi: 10.1007/s002040050680. PubMed DOI

Ambroz M., Bousova I., Skarka A., Hanusova V., Kralova V., Matouskova P., Szotakova B., Skalova L. The influence of sesquiterpenes from Myrica rubra on the antiproliferative and pro-oxidative effects of doxorubicin and its accumulation in cancer cells. Molecules. 2015;20:15343–15358. doi: 10.3390/molecules200815343. PubMed DOI PMC

Reis D.C., Pinto M.C.X., Souza-Fagundez E.M., Rocha L.F., Pereira V.R.A., Melo C.M.L., Beraldo H. Investigation on the pharmacological profile of antimony(III) complexes with hydroxyquinoline derivatives: Anti-trypanosomal activity and cytotoxicity against human leukemia cell lines. Biometals. 2011;24:595–601. doi: 10.1007/s10534-011-9407-8. PubMed DOI

Norsharina I., Maznah I., Aied A.A., Ghanya A.N. Thymoquinone rich fraction from Nigella sativa and thymoquinone are cytotoxic towards colon and leukemic carcinoma cell lines. J. Med. Plant Res. 2011;5:3359–3366.

Son L.C., Dai D.N., Thai T.H., Huyen D.D., Thang T.D., Ogunwande I.A. The leaf essential oils of four Vietnamese species of Cinnamomum (Lauraceae) J. Essent. Oil Res. 2013;25:267–271. doi: 10.1080/10412905.2013.775673. DOI

Venkatachallam S.K.T., Pattekhan H., Divakar S., Kadimi U.S. Chemical composition of Nigella sativa L. seed extracts obtained by supercritical carbon dioxide. J. Food Sci. Technol. 2010;47:598–605. doi: 10.1007/s13197-010-0109-y. PubMed DOI PMC

Machmudah S., Shiramizu Y., Goto M., Sasaki M., Hirose T. Extraction of Nigella sativa L. using supercritical CO2: A study of antioxidant activity of the extract. Sep. Sci. Technol. 2005;40:1267–1275. doi: 10.1081/SS-200053005. DOI

Tissot E., Rochat S., Debonneville C., Chaintreau A. Rapid GC-FID quantification technique without authentic samples using predicted response factors. Flavour Fragr. J. 2012;27:290–296. doi: 10.1002/ffj.3098. DOI

European Directorate for the Quality of Medicines and Healthcare (EDQM) European Pharmacopoeia. 8th ed. EDQM; Strasbourg, France: 2014. Essential oils in herbal drugs (Monograph 2. 8.12.) pp. 273–274.

Clinical and Laboratory Standards Institute (CLSI) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard. 9th ed. CLSI; Wayne, PA, USA: 2012.

Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing. CLSI; Wayne, PA, USA: 2015. 25th Informational Supplement M100-S25.

Sharma O.P., Bhat T.K. DPPH antioxidant assay revisited. Food Chem. 2009;113:1202–1205. doi: 10.1016/j.foodchem.2008.08.008. DOI

Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:56–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI

Special Programme for Research and Training in Tropical Diseases. [(accessed on 17 July 2020)]; Available online: http://www.who.int/tdr/grants/workplans/en/cytotoxicity_invitro.pdf/

Cachet T., Brevard H., Chaintreau A., Demyttenaere J., French L., Gassenmeier K., Joulain D., Koenig T., Leijs H., Liddle P., et al. IOFI recommended practice for the use of predicted relative-response factors for the rapid quantification of volatile flavouring compounds by GC-FID. Flavour Fragr. J. 2016;31:191–194. doi: 10.1002/ffj.3311. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...