Vapors of Volatile Plant-Derived Products Significantly Affect the Results of Antimicrobial, Antioxidative and Cytotoxicity Microplate-Based Assays
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA 20205001
Česká Zemědělská Univerzita v Praze
IGA 20205002
Česká Zemědělská Univerzita v Praze
CZ.02.1.01/0.0/0.0/16_019/0000845
European Regional Development Fund
PubMed
33353127
PubMed Central
PMC7766725
DOI
10.3390/molecules25246004
PII: molecules25246004
Knihovny.cz E-zdroje
- Klíčová slova
- DPPH, MTT, bioassay, broth microdilution, essential oil, microtiter plate, plant compounds, supercritical CO2 extract, volatilization,
- MeSH
- antiinfekční látky chemie izolace a purifikace farmakologie MeSH
- antioxidancia chemie izolace a purifikace farmakologie MeSH
- bifenylové sloučeniny antagonisté a inhibitory MeSH
- biologické přípravky chemie izolace a purifikace farmakologie MeSH
- Candida albicans účinky léků MeSH
- galgán chemie MeSH
- mikrobiální testy citlivosti MeSH
- Myrtaceae chemie MeSH
- Nigella chemie MeSH
- oleje prchavé chemie izolace a purifikace farmakologie MeSH
- pikráty antagonisté a inhibitory MeSH
- rostlinné extrakty chemie izolace a purifikace farmakologie MeSH
- skořicovník chemie MeSH
- Staphylococcus aureus účinky léků MeSH
- těkavé organické sloučeniny chemie izolace a purifikace farmakologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1,1-diphenyl-2-picrylhydrazyl MeSH Prohlížeč
- antiinfekční látky MeSH
- antioxidancia MeSH
- bifenylové sloučeniny MeSH
- biologické přípravky MeSH
- oleje prchavé MeSH
- pikráty MeSH
- rostlinné extrakty MeSH
- těkavé organické sloučeniny MeSH
Volatile plant-derived products were observed to exhibit broad spectrum of biological effects. However, due to their volatility, results of conventional microplate-based bioassays can be significantly affected by the vapors. With aim to demonstrate this phenomenon, antimicrobial, antioxidant, and cytotoxic activities of three essential oils (Alpinia elegans, Cinnamomum iners, and Xanthostemon verdugonianus), one supercritical CO2 extract (Nigella sativa), and four plant-derived compounds (capsaicin, caryophyllene oxide, 8-hydroxyquinoline, and thymoquinone) were evaluated in series of experiments including both ethylene vinyl acetate (EVA) Capmat sealed and nonsealed microplates. The results clearly illustrate that vapor transition to adjoining wells causes false-positive results of bioassays performed in nonsealed microtiter plates. The microplate layout and a duration of the assay were demonstrated as the key aspects defining level of the results affection by the vapors of volatile agents. Additionally, we reported biological activities and chemical composition of essential oils from A. elegans seeds and X. verdugonianus leaves, which were, according to our best knowledge, analyzed for the first time. Considering our findings, certain modifications of conventional microplate-based assays are necessary (e.g., using EVA Capmat as vapor barrier) to obtain reliable results when biological properties of volatile agents are evaluated.
Zobrazit více v PubMed
Bennett J.W., Inamdar A.A. Are some fungal volatile organic compounds (VOCs) mycotoxins? Toxins. 2015;7:3785–3804. doi: 10.3390/toxins7093785. PubMed DOI PMC
Altındal D., Altındal N. Plant volatile compounds in growth. In: Choudhary D.K., Sharma A.K., Agarwal P., Varma A., Tuteja N., editors. Volatiles and Food Security. Springer Nature; Singapore: 2017. pp. 1–13. DOI
Margetts J. Aroma chemicals V: Natural aroma chemicals. In: Rowe D.J., editor. Chemistry and Technology of Flavors and Fragrances. 1st ed. Blackwell Publishing Ltd.; Oxford, UK: 2005. pp. 169–198.
Kumari S., Pundhir S., Priya P., Jeena G., Punetha A., Chawla K., Jafaree Z.F., Mondal S., Yadav G. EssOilDB: A database of essential oils reflecting terpene composition and variability in the plant kingdom. Database. 2014;2014:1–12. doi: 10.1093/database/bau120. PubMed DOI PMC
Damasceno C.S.B., Higaki N.T.F., Dias J.D.G., Miguel M.D., Miguel O.G. Chemical composition and biological activities of essential oils in the family Lauraceae: A systematic review of the literature. Planta Med. 2019;85:1054–1072. doi: 10.1055/a-0943-1908. PubMed DOI
Farias D.P., Neri-Numa I.A., de Araujo F.F., Pastore G.M. A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chem. 2020;306:125630. doi: 10.1016/j.foodchem.2019.125630. PubMed DOI
Gilli C., He Z., But P.P., Schinnerl J., Valant V.K.M., Greger H. Chemodiversity and biological activity of the genus Alpinia (Zingiberaceae) Planta Med. 2011;77:PG71. doi: 10.1055/s-0031-1282555. DOI
Baptista-Silva S., Borges S., Ramos O.L., Pintado M., Sarmento B. The progress of essential oils as potential therapeutic agents: A review. J. Essent. Oil Res. 2020;32:279–295. doi: 10.1080/10412905.2020.1746698. DOI
Islam M.T., Khan M., Mishra S.K. An updated literature-based review: Phytochemistry, pharmacology and therapeutic promises of Nigella sativa L. Orient. Pharm. Exp. Med. 2019;19:115–129. doi: 10.1007/s13596-019-00363-3. DOI
Ghahramanloo K.H., Kamalidehghan B., Javar H.A., Widodo R.T., Majidzadeh K., Noordin M.I. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction. Drug Des. Dev. Ther. 2017;11:2221–2226. doi: 10.2147/DDDT.S87251. PubMed DOI PMC
Shaaban H.A.E., El-Ghorab A.H., Shibamoto T. Bioactivity of essential oils and their volatile aroma components: Review. J. Essent. Oil Res. 2012;24:203–212. doi: 10.1080/10412905.2012.659528. DOI
Kokoska L., Kloucek P., Leuner O., Novy P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr. Med. Chem. 2019;26:1–38. doi: 10.2174/0929867325666180831144344. PubMed DOI
Guzman G.Q., Dacanay A.T.L., Andaya B.A., Alejandro G.J.D. Ethnopharmacological studies on the uses of Euphorbia hirta in the treatment of dengue in selected indigenous communities in Pangasinan (Philippines) J. Intercult. Ethnopharmacol. 2016;5:239–243. doi: 10.5455/jice.20160330124637. PubMed DOI PMC
Jachak S.M., Saklani A. Challenges and opportunities in drug discovery from plants. Curr. Sci. 2007;92:1251–1257.
Kavanagh A., Ramu S., Gong Y., Cooper M.A., Blaskovich M.A.T. Effects of microplate type and broth additives on microdilution MIC susceptibility assays. Antimicrob. Agents Chemother. 2019;63:e01760-18. doi: 10.1128/AAC.01760-18. PubMed DOI PMC
Casey J.T., O’Cleirigh C., Walsh P.K., O’Shea D.G. Development of a robust microtiter plate-based assay method for assessment of bioactivity. J. Microbiol. Methods. 2004;58:327–334. doi: 10.1016/j.mimet.2004.04.017. PubMed DOI
Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016;6:71–79. doi: 10.1016/j.jpha.2015.11.005. PubMed DOI PMC
Bobo-Garcia G., Davidov-Pardo G., Arroqui C., Virseda P., Marin-Arroyo M.R., Navarro M. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J. Sci. Food Agric. 2015;95:204–209. doi: 10.1002/jsfa.6706. PubMed DOI
Martin A., Clynes M. Comparison of 5 microplate colorimetric assays for in vitro cytotoxicity testing and cell proliferation assays. Cytotechnology. 1993;11:49–58. doi: 10.1007/BF00749057. PubMed DOI
Thielmann J., Muranyi P., Kazman P. Screening essential oils for their antimicrobial activities against the foodborne pathogenic bacteria Escherichia coli and Staphylococcus aureus. Heliyon. 2019;5:e01860. doi: 10.1016/j.heliyon.2019.e01860. PubMed DOI PMC
Lin C.W., Yu C.W., Wu S.C., Yih K.H. DPPH free-radical scavenging activity, total phenolic contents and chemical composition analysis of forty-two kinds of essential oils. J. Food Drug Anal. 2009;17:386–395. doi: 10.38212/2224-6614.2594. DOI
Al-Tamimi M.A., Rastall B., Abu-Reidah I.M. Chemical composition, cytotoxic, apoptotic and antioxidant activities of main commercial essential oils in Palestine: A comparative study. Medicines. 2016;3:27. doi: 10.3390/medicines3040027. PubMed DOI PMC
Houdkova M., Kokoska L. Volatile antimicrobial agents and in vitro methods for evaluating their activity in the vapour phase: A review. Planta Med. 2020;86:822–857. doi: 10.1055/a-1158-4529. PubMed DOI
Reyes-Jurado F., Franco-Vega A., Ramirez-Corona N., Palou E., Lopez-Malo A. Essential oils: Antimicrobial activities, extraction methods and their modeling. Food Eng. Rev. 2015;7:275–297. doi: 10.1007/s12393-014-9099-2. DOI
Kalemba D., Kunicka A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003;10:813–829. doi: 10.2174/0929867033457719. PubMed DOI
Fisher K., Phillips C. Potential antimicrobial uses of essential oils in food: Is citrus the answer? Trends Food Sci. Technol. 2008;19:156–164. doi: 10.1016/j.tifs.2007.11.006. DOI
Novy P., Kloucek P., Rondevaldova J., Havlik J., Kourimska L., Kokoska L. Thymoquinone vapour significantly affects the results of Staphylococcus aureus sensitivity tests using the standard broth microdilution method. Fitoterapia. 2014;94:102–105. doi: 10.1016/j.fitote.2014.01.024. PubMed DOI
Rondevaldova J., Novy P., Urban J., Kokoska L. Determination of anti-staphylococcal activity of thymoquinone in combinations with antibiotics by checkerboard method using EVA capmat (TM) as a vapor barrier. Arab. J. Chem. 2017;10:566–572. doi: 10.1016/j.arabjc.2015.04.021. DOI
Houdkova M., Rondevaldova J., Doskocil I., Kokoska L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia. 2017;118:56–62. doi: 10.1016/j.fitote.2017.02.008. PubMed DOI
Karki N., Aggarwal S., Laine R.A., Greenway F., Losso J.N. Cytotoxicity of juglone and thymoquinone against pancreatic cancer cells. Chem. Biol. Interact. 2020;327:109142. doi: 10.1016/j.cbi.2020.109142. PubMed DOI PMC
Chraibi M., Farah A., Elamin O., Iraqui H.I., Fikri-Benbrahim K. Characterization, antioxidant, antimycobacterial, antimicrobial effcts of Moroccan rosemary essential oil, and its synergistic antimicrobial potential with carvacrol. J. Adv. Pharm. Technol. Res. 2020;11:25–29. doi: 10.4103/japtr.JAPTR_74_19. PubMed DOI PMC
NIST WebBook Chemie NIST Standard Reference Database Number 69. [(accessed on 29 September 2020)];2017 Available online: http://webbook.nist.gov/chemistry/
Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th ed. Allured Publ. Corp; Carol Stream, IL, USA: 2007.
Thellen C., Blaise C., Roy Y., Hickey C. Round Robin testing with the Selenastrum capricornutum microplate toxicity assay. Hydrobiologia. 1989;188:259–268. doi: 10.1007/BF00027791. DOI
Feyaerts A.F., Mathe L., Luyten W., Tournu H., Van Dyck K., Broekx L., Van Dijck P. Assay and recommendations for the detection of vapour-phase-mediated antimicrobial activities. Flavour Fragr. J. 2017;32:347–353. doi: 10.1002/ffj.3400. DOI
Van Vuuren S.F., Kamatou G.P.P., Viljoen A.M. Volatile composition and antimicrobial activity of twenty commercial frankincense essential oil samples. S. Afr. J. Bot. 2010;76:686–691. doi: 10.1016/j.sajb.2010.06.001. DOI
Piras A., Rosa A., Marongiu B., Porcedda S., Falconieri D., Dessi M.A., Ozcelik B., Koca U. Chemical composition and in vitro bioactivity of the volatile and fixed oils of Nigella sativa L. extracted by supercritical carbon dioxide. Ind. Crops Prod. 2013;46:317–323. doi: 10.1016/j.indcrop.2013.02.013. DOI
Houdkova M., Doskocil I., Urbanova K., Tulin E.K.C.B., Rondevaldova J., Tulin A.B., Kudera T., Tulin E.E., Zeleny V., Kokoska L. Evaluation of antipneumonic effect of Philippine essential oils using broth microdilution volatilization method and their lung fibroblasts toxicity. Nat. Prod. Commun. 2018;13:1059–1066. doi: 10.1177/1934578X1801300834. DOI
Mustaffa F., Indurkar J., Ismail S., Shah M., Mansor S.M. An antimicrobial compound isolated from Cinnamomum iners leaves with activity against methicillin-resistant Staphylococcus aureus. Molecules. 2011;16:3037–3047. doi: 10.3390/molecules16043037. PubMed DOI PMC
Visutthi M. Anti-staphylococcal screening of selected Thai medicinal plants from Nakhon Ratchasima province. Suranaree J. Sci. Technol. 2016;23:109–114.
Wang Z.C., Wei B.Y., Pei F.N., Yang T., Tang J., Yang S., Yu L.F., Yang C.G., Yang F. Capsaicin derivatives with nitrothiophene substituents: Design, synthesis and antibacterial activity against multidrug-resistant S. aureus. Eur. J. Med. Chem. 2020;198:112352. doi: 10.1016/j.ejmech.2020.112352. PubMed DOI
Schmidt E., Bail S., Friedl S.M., Jirovetz L., Buchbauer G., Wanner J., Denkova Z., Slavchev A., Stoyanova A., Geissler M. Antimicrobial activities of single aroma compounds. Nat. Prod. Commun. 2010;5:1365–1368. doi: 10.1177/1934578X1000500906. PubMed DOI
Srisung S., Suksrichavalit T., Prachayasittikul S., Ruchirawat S., Prachayasittikul V. Antimicrobial activity of 8-hydroxyquinoline and transition metal complexes. Int. J. Pharmacol. 2013;9:170–175. doi: 10.3923/ijp.2013.170.175. DOI
Hariharan P., Paul-Satyaseela M., Gnanamani A. In vitro profiling of antimethicillin-resistant Staphylococcus aureus activity of thymoquinone against selected type and clinical strains. Lett. Appl. Microbiol. 2016;62:283–289. doi: 10.1111/lam.12544. PubMed DOI
Phutdhawong W., Kawaree R., Sanjaiya S., Sengpracha W., Buddhasukh D. Microwave-assisted isolation of essential oil of Cinnamomum iners Reinw. ex Bl: Comparison with conventional hydrodistillation. Molecules. 2007;12:868–877. doi: 10.3390/12040868. PubMed DOI PMC
Naive M.A.K., Dalisay J.A.G.P., Maglangit E.P.T., Cafe G.C., Nuneza O.M. Free radical scavenging effects of the Philippine endemic medicinal plant Alpinia elegans (Zingiberaceae) Gard. Bull. Singap. 2019;71:435–444. doi: 10.26492/gbs71(2).2019-12. DOI
Solati Z., Baharin B.S., Bagheri H. Antioxidant property, thymoquinone content and chemical characteristics of different extracts from Nigella sativa L. seeds. J. Am. Oil Chem. Soc. 2014;91:295–300. doi: 10.1007/s11746-013-2362-5. DOI
Karakaya S., Yilmaz S.V., Ozdemir O., Koca M., Pinar N.M., Demirci B., Yildirim K., Sytar O., Turkez H., Baser K.H.C. A caryophyllene oxide and other potential anticholinesterase and anticancer agent in Salvia verticillata subsp. amasiaca (Freyn & Bornm.) Bornm. (Lamiaceae) J. Essent. Oil Res. 2020 doi: 10.1080/10412905.2020.1813212. DOI
Nascimento P.L.A., Nascimento T.C.E.S., Ramos S.M., Silva G.R., Gomes J.E.G., Falcao R.E.A., Moreira K.A., Porto A.L.F., Silva T.M.S. Quantification, antioxidant and antimicrobial activity of phenolics isolated from different extracts of Capsicum frutescens (Pimenta Malagueta) Molecules. 2014;19:5434–5447. doi: 10.3390/molecules19045434. PubMed DOI PMC
Cherdtrakulkiat R., Boonpangrak S., Sinthupoom N., Prachayasittikul S., Ruchirawat S., Prachayasittikul V. Derivatives (halogen, nitro and amino) of 8-hydroxyquinoline with highly potent antimicrobial and antioxidant activities. Biochem. Biophys. Rep. 2016;6:135–141. doi: 10.1016/j.bbrep.2016.03.014. PubMed DOI PMC
Yildiz S., Turan S., Kiralan M., Ramadan M.F. Antioxidant properties of thymol, carvacrol, and thymoquinone and its efficiencies on the stabilization of refined and stripped corn oils. J. Food Meas. Charact. 2020 doi: 10.1007/s11694-020-00665-0. DOI
Mustafa F., Indurkar J., Ismail S., Mordi M.N., Ramanathan S., Mansor S.M. Antioxidant capacity and toxicity screening of Cinnamomum iners standardized leaves methanolic extract. Int. J. Pharmacol. 2010;6:888–895. doi: 10.3923/ijp.2010.888.895. PubMed DOI PMC
Baharetha H.M., Nassar Z.D., Aisha A.F., Ahamed M.B.K., Al-Suede F.S.R., Kadir M.O.A., Ismail Z., Majid A.M.S.A. Proapoptotic and antimetastatic properties of supercritical CO2 extract of Nigella sativa Linn. against breast cancer cells. J. Med. Food. 2013;16:1121–1130. doi: 10.1089/jmf.2012.2624. PubMed DOI PMC
Richeux F., Cascante M., Ennamany R., Saboureau D., Creppy E.E. Cytotoxicity and genotoxicity of capsaicin in human neuroblastoma cells SHSY-5Y. Arch. Toxicol. 1999;33:403–409. doi: 10.1007/s002040050680. PubMed DOI
Ambroz M., Bousova I., Skarka A., Hanusova V., Kralova V., Matouskova P., Szotakova B., Skalova L. The influence of sesquiterpenes from Myrica rubra on the antiproliferative and pro-oxidative effects of doxorubicin and its accumulation in cancer cells. Molecules. 2015;20:15343–15358. doi: 10.3390/molecules200815343. PubMed DOI PMC
Reis D.C., Pinto M.C.X., Souza-Fagundez E.M., Rocha L.F., Pereira V.R.A., Melo C.M.L., Beraldo H. Investigation on the pharmacological profile of antimony(III) complexes with hydroxyquinoline derivatives: Anti-trypanosomal activity and cytotoxicity against human leukemia cell lines. Biometals. 2011;24:595–601. doi: 10.1007/s10534-011-9407-8. PubMed DOI
Norsharina I., Maznah I., Aied A.A., Ghanya A.N. Thymoquinone rich fraction from Nigella sativa and thymoquinone are cytotoxic towards colon and leukemic carcinoma cell lines. J. Med. Plant Res. 2011;5:3359–3366.
Son L.C., Dai D.N., Thai T.H., Huyen D.D., Thang T.D., Ogunwande I.A. The leaf essential oils of four Vietnamese species of Cinnamomum (Lauraceae) J. Essent. Oil Res. 2013;25:267–271. doi: 10.1080/10412905.2013.775673. DOI
Venkatachallam S.K.T., Pattekhan H., Divakar S., Kadimi U.S. Chemical composition of Nigella sativa L. seed extracts obtained by supercritical carbon dioxide. J. Food Sci. Technol. 2010;47:598–605. doi: 10.1007/s13197-010-0109-y. PubMed DOI PMC
Machmudah S., Shiramizu Y., Goto M., Sasaki M., Hirose T. Extraction of Nigella sativa L. using supercritical CO2: A study of antioxidant activity of the extract. Sep. Sci. Technol. 2005;40:1267–1275. doi: 10.1081/SS-200053005. DOI
Tissot E., Rochat S., Debonneville C., Chaintreau A. Rapid GC-FID quantification technique without authentic samples using predicted response factors. Flavour Fragr. J. 2012;27:290–296. doi: 10.1002/ffj.3098. DOI
European Directorate for the Quality of Medicines and Healthcare (EDQM) European Pharmacopoeia. 8th ed. EDQM; Strasbourg, France: 2014. Essential oils in herbal drugs (Monograph 2. 8.12.) pp. 273–274.
Clinical and Laboratory Standards Institute (CLSI) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard. 9th ed. CLSI; Wayne, PA, USA: 2012.
Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing. CLSI; Wayne, PA, USA: 2015. 25th Informational Supplement M100-S25.
Sharma O.P., Bhat T.K. DPPH antioxidant assay revisited. Food Chem. 2009;113:1202–1205. doi: 10.1016/j.foodchem.2008.08.008. DOI
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:56–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI
Special Programme for Research and Training in Tropical Diseases. [(accessed on 17 July 2020)]; Available online: http://www.who.int/tdr/grants/workplans/en/cytotoxicity_invitro.pdf/
Cachet T., Brevard H., Chaintreau A., Demyttenaere J., French L., Gassenmeier K., Joulain D., Koenig T., Leijs H., Liddle P., et al. IOFI recommended practice for the use of predicted relative-response factors for the rapid quantification of volatile flavouring compounds by GC-FID. Flavour Fragr. J. 2016;31:191–194. doi: 10.1002/ffj.3311. DOI