The Influence of Sesquiterpenes from Myrica rubra on the Antiproliferative and Pro-Oxidative Effects of Doxorubicin and Its Accumulation in Cancer Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26307963
PubMed Central
PMC6331978
DOI
10.3390/molecules200815343
PII: molecules200815343
Knihovny.cz E-zdroje
- Klíčová slova
- Myrica rubra, antiproliferative effect, cytotoxicity, drugs combinations, terpenes,
- MeSH
- antitumorózní látky farmakologie MeSH
- Caco-2 buňky MeSH
- doxorubicin farmakologie toxicita MeSH
- hepatocyty účinky léků MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- Myrica chemie MeSH
- nádorové buněčné linie MeSH
- oxidace-redukce účinky léků MeSH
- primární buněčná kultura MeSH
- seskviterpeny farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antitumorózní látky MeSH
- doxorubicin MeSH
- seskviterpeny MeSH
The sesquiterpenes β-caryophyllene, β-caryophyllene oxide (CAO), α-humulene (HUM), trans-nerolidol (NER), and valencene (VAL) are substantial components of the essential oil from Myrica rubra leaves which has exhibited significant antiproliferative effects in several intestinal cancer cell lines, with CaCo-2 cells being the most sensitive. The present study was designed to evaluate the effects of these sesquiterpenes on the efficacy and toxicity of the anticancer drug doxorubicin (DOX) in CaCo-2 cancer cells and in primary culture of rat hepatocytes. Our results showed that HUM, NER, VAL and CAO inhibited proliferation of CaCo-2 cancer cells but they did not affect the viability of hepatocytes. CAO, NER and VAL synergistically potentiated the efficacy of DOX in cancer cells killing. All sesquiterpenes exhibited the ability to selectively increase DOX accumulation in cancer cells and did not affect DOX concentration in hepatocytes. Additionally, CAO and VAL were able to increase the pro-oxidative effect of DOX in CaCo-2 cells. Moreover, CAO mildly ameliorated DOX toxicity in hepatocytes. Based on all results, CAO seems to be the most promising compound for further testing.
Zobrazit více v PubMed
Merfort I. Perspectives on Sesquiterpene Lactones in Inflammation and Cancer. Curr. Drug Targets. 2011;12:1560–1573. doi: 10.2174/138945011798109437. PubMed DOI
Salminen A., Lehtonen M., Suuronen T., Kaarniranta K., Huuskonen J. Terpenoids: Natural inhibitors of NF-kappa B signaling with anti-inflammatory and anticancer potential. Cell. Mol. Life Sci. 2008;65:2979–2999. doi: 10.1007/s00018-008-8103-5. PubMed DOI PMC
Bartikova H., Hanusova V., Skalova L., Ambroz M., Bousova I. Antioxidant, Pro-Oxidant and Other Biological Activities of Sesquiterpenes. Curr. Top. Med. Chem. 2014;14:2478–2494. doi: 10.2174/1568026614666141203120833. PubMed DOI
Pajak B., Orzechowski A., Gajkowska B. Molecular basis of parthenolide-dependent proapoptotic activity in cancer cells. Folia Histochem. Cytobiol. 2008;46:129–135. doi: 10.2478/v10042-008-0019-2. PubMed DOI
Bhalla Y., Gupta V.K., Jaitak V. Anticancer activity of essential oils: A review. J. Sci. Food Agric. 2013;93:3643–3653. doi: 10.1002/jsfa.6267. PubMed DOI
Huang M., Lu J.J., Huang M.Q., Bao J.L., Chen X.P., Wang Y.T. Terpenoids: Natural products for cancer therapy. Expert Opin. Investig. Drugs. 2012;21:1801–1818. doi: 10.1517/13543784.2012.727395. PubMed DOI
Legault J., Pichette A. Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryophyllene and paclitaxel. J. Pharm. Pharmacol. 2007;59:1643–1647. doi: 10.1211/jpp.59.12.0005. PubMed DOI
Kim C., Cho S.K., Kim K.D., Nam D., Chung W.S., Jang H.J., Lee S.G., Shim B.S., Sethi G., Ahn K.S. β-Caryophyllene oxide potentiates TNF α-induced apoptosis and inhibits invasion through down-modulation of NF-kappa B-regulated gene products. Apoptosis. 2014;19:708–718. doi: 10.1007/s10495-013-0957-9. PubMed DOI
Abdul A.B., Abdelwahab S.I., Jalinas J.B., Al-Zubairi A.S., Taha M.M.E. Combination of Zerumbone and Cisplatin to Treat Cervical Intraepithelial Neoplasia in Female BALB/c Mice. Int. J. Gynecol. Cancer. 2009;19:1004–1010. doi: 10.1111/IGC.0b013e3181a83b51. PubMed DOI
Xu W.S., Dang Y.Y., Chen X.P., Lu J.J., Wang Y.T. Furanodiene Presents Synergistic Anti-proliferative Activity With Paclitaxel via Altering Cell Cycle and Integrin Signaling in 95-D Lung Cancer Cells. Phytother. Res. 2014;28:296–299. doi: 10.1002/ptr.4984. PubMed DOI
Zhong Z.F., Li Y.B., Wang S.P., Tan W., Chen X.P., Chen M.W., Wang Y.T. Furanodiene enhances tamoxifen-induced growth inhibitory activity of ERa-positive breast cancer cells in a PPAR gamma independent manner. J. Cell. Biochem. 2012;113:2643–2651. doi: 10.1002/jcb.24139. PubMed DOI
Adorjan B., Buchbauer G. Biological properties of essential oils: An updated review. Flavour Fragr. J. 2010;25:407–426. doi: 10.1002/ffj.2024. DOI
Bansal A., Moriarity D.M., Takaku S., Setzer W.N. Chemical composition and cytotoxic activity of the leaf essential oil of Ocotea tonduzii from Monteverde, Costa Rica. Nat. Prod. Commun. 2007;2:781–784.
Erdogan A., Ozkan A. Effects of Thymus revolutus Celak essential oil and its two major components on Hep G2 cells membrane. Biologia. 2013;68:105–111. doi: 10.2478/s11756-012-0144-4. DOI
Raut J.S., Karuppayil S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod. 2014;62:250–264. doi: 10.1016/j.indcrop.2014.05.055. DOI
Langhansova L., Hanusova V., Rezek J., Stohanslova B., Ambroz M., Kralova V., Vanek T., Lou J.D., Yun Z.L., Yang J., et al. Essential oil from Myrica rubra leaves inhibits cancer cell proliferation and induces apoptosis in several human intestinal lines. Ind. Crops Prod. 2014;59:20–26. doi: 10.1016/j.indcrop.2014.04.018. DOI
Kang W., Li Y., Xu Y., Jiang W., Tao Y. Characterization of Aroma Compounds in Chinese Bayberry (Myrica rubra Sieb. et Zucc.) by Gas Chromatography Mass Spectrometry (GC-MS) and Olfactometry (GC-O) J. Food Sci. 2012;77:C1030–C1035. doi: 10.1111/j.1750-3841.2012.02747.x. PubMed DOI
Hanusova V., Bousova I., Skalova L. Possibilities to increase the effectiveness of doxorubicin in cancer cells killing. Drug Metab. Rev. 2011;43:540–557. doi: 10.3109/03602532.2011.609174. PubMed DOI
Sun C.D., Huang H.Z., Xu C.J., Li X., Chen K.S. Biological Activities of Extracts from Chinese Bayberry (Myrica rubra Sieb. et Zucc.): A Review. Plant Foods Hum. Nutr. 2013;68:97–106. doi: 10.1007/s11130-013-0349-x. PubMed DOI
El Hadri A., del Rio M.A.G., Sanz J., Coloma A.G., Idaomar M., Ozonas B.R., Gonzalez J.B., Reus M.I.S. Cytotoxic activity of α-humulene and trans-caryophyllene from Salvia officinalis in animal and human tumor cells. Anal. Real Acad. Nac. Farm. 2010;76:343–356.
Legault J., Dahl W., Debiton E., Pichette A., Madelmont J.C. Antitumor activity of balsam fir oil: Production of reactive oxygen species induced by α-humulene as possible mechanism of action. Planta Med. 2003;69:402–407. PubMed
Sylvestre M., Pichette A., Lavoie S., Longtin A., Legault J. Composition and cytotoxic activity of the leaf essential oil of Comptonia peregrina (L.) Coulter. Phytother. Res. 2007;21:536–540. doi: 10.1002/ptr.2095. PubMed DOI
Liu K., Chen Q., Liu Y., Zhou X., Wang X. Isolation and Biological Activities of Decanal, Linalool, Valencene, and Octanal from Sweet Orange Oil. J. Food Sci. 2012;77:C1156–C1161. doi: 10.1111/j.1750-3841.2012.02924.x. PubMed DOI
Jun N.J., Mosaddik A., Moon J.Y., Jang K.C., Lee D.S., Ahn K.S., Cho S.K. Cytotoxic Activity of β-Caryophyllene Oxide Isolated from Jeju Guava (Psidium cattleianum Sabine) Leaf. Rec. Natl. Prod. 2011;5:242–246.
Park K.R., Nam D., Yun H.M., Lee S.G., Jang H.J., Sethi G., Cho S.K., Ahn K.S. β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. Cancer Lett. 2011;312:178–188. doi: 10.1016/j.canlet.2011.08.001. PubMed DOI
Di Sotto A., Maffei F., Hrelia P., Castelli F., Sarpietro M.G., Mazzanti G. Genotoxicity assessment of β-caryophyllene oxide. Regul. Toxicol. Pharmacol. 2013;66:264–268. doi: 10.1016/j.yrtph.2013.04.006. PubMed DOI
Chang H.J., Kim H.J., Chun H.S. Quantitative structure-activity relationship (QSAR) for neuroprotective activity of terpenoids. Life Sci. 2007;80:835–841. doi: 10.1016/j.lfs.2006.11.009. PubMed DOI
Krishnaiah Y.S.R., Al-Saidan S.M., Jayaram B. Effect of nerodilol, carvone and anethole on the in vitro transdermal delivery of selegiline hydrochloride. Pharmazie. 2006;61:46–53. PubMed
Saeedi M., Morteza-Semnani K. Penetration-Enhancing Effect of the Essential Oil and Methanolic Extract of Eryngium bungei on Percutaneous Absorption of Piroxicam through Rat Skin. J. Essent. Oil Bear. Plants. 2009;12:728–741. doi: 10.1080/0972060X.2009.10643782. DOI
Williams A.C., Barry B.W. Penetration enhancers. Adv. Drug Deliv. Rev. 2012;64:128–137. doi: 10.1016/j.addr.2012.09.032. PubMed DOI
Chou T.C. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method. Cancer Res. 2010;70:440–446. doi: 10.1158/0008-5472.CAN-09-1947. PubMed DOI
Mahmoud S.S., Torchilin V.P. Hormetic/Cytotoxic Effects of Nigella sativa Seed Alcoholic and Aqueous Extracts on MCF-7 Breast Cancer Cells Alone or in Combination with Doxorubicin. Cell Biochem. Biophys. 2013;66:451–460. doi: 10.1007/s12013-012-9493-4. PubMed DOI
Riganti C., Doublier S., Costamagna C., Aldieri E., Pescarmona G., Ghigo D., Bosia A. Activation of nuclear factor-kappa B pathway by Simvastatin and RhoA silencing increases doxorubicin cytotoxicity in human colon cancer HT29 cells. Mol. Pharmacol. 2008;74:476–484. doi: 10.1124/mol.108.045286. PubMed DOI
Wozniak M., Szulawska-Mroczek A., Hartman M.L., Nejc D., Czyz M. Parthenolide Complements the Cell Death-inducing Activity of Doxorubicin in Melanoma Cells. Anticancer Res. 2013;33:3205–3212. PubMed
Martin-Cordero C., Leon-Gonzalez A.J., Calderon-Montano J.M., Burgos-Moron E., Lopez-Lazaro M. Pro-Oxidant Natural Products as Anticancer Agents. Curr. Drug Targets. 2012;13:1006–1028. doi: 10.2174/138945012802009044. PubMed DOI
Trachootham D., Alexandre J., Huang P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009;8:579–591. doi: 10.1038/nrd2803. PubMed DOI
Li X., Fang P., Mai J., Choi E.T., Wang H., Yang X.F. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J. Hematol. Oncol. 2013;6:19. doi: 10.1186/1756-8722-6-19. PubMed DOI PMC
Pacifico S., D’Abrosca B., Golino A., Mastellone C., Piccolella S., Fiorentino A., Monaco P. Antioxidant evaluation of polyhydroxylated nerolidols from redroot pigweed (Amaranthus retroflexus) leaves. Lwt-Food Sci. Technol. 2008;41:1665–1671. doi: 10.1016/j.lwt.2007.10.006. DOI
Vinholes J., Goncalves P., Martel F., Coimbra M.A., Rocha S.M. Assessment of the antioxidant and antiproliferative effects of sesquiterpenic compounds in in vitro CaCo-2 cell models. Food Chem. 2014;156:204–211. doi: 10.1016/j.foodchem.2014.01.106. PubMed DOI
Wang H., Joseph J.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 1999;27:612–616. doi: 10.1016/S0891-5849(99)00107-0. PubMed DOI
Skarka A., Skarydova L., Stambergova H., Wsol V. Anthracyclines and their metabolism in human liver microsomes and the participation of the new microsomal carbonyl reductase. Chem. Biol. Interact. 2011;191:66–74. doi: 10.1016/j.cbi.2010.12.016. PubMed DOI
Antineoplastic effects of clove buds (Syzygium aromaticum L.) in the model of breast carcinoma