Induction of Programmed Cell Death in Acanthamoeba culbertsoni by the Repurposed Compound Nitroxoline
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CB21/13/00100
Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC)
TESIS2020010117
Agencia Canaria de Investigación, Innovación y Sociedad de la Información
PubMed
38136200
PubMed Central
PMC10740438
DOI
10.3390/antiox12122081
PII: antiox12122081
Knihovny.cz E-zdroje
- Klíčová slova
- Acanthamoeba, autophagy, cytoskeleton, nitroxoline, programmed cell death, proteomic analysis,
- Publikační typ
- časopisecké články MeSH
Acanthamoeba is a ubiquitous genus of amoebae that can act as opportunistic parasites in both humans and animals, causing a variety of ocular, nervous and dermal pathologies. Despite advances in Acanthamoeba therapy, the management of patients with Acanthamoeba infections remains a challenge for health services. Therefore, there is a need to search for new active substances against Acanthamoebae. In the present study, we evaluated the amoebicidal activity of nitroxoline against the trophozoite and cyst stages of six different strains of Acanthamoeba. The strain A. griffini showed the lowest IC50 value in the trophozoite stage (0.69 ± 0.01 µM), while the strain A. castellanii L-10 showed the lowest IC50 value in the cyst stage (0.11 ± 0.03 µM). In addition, nitroxoline induced in treated trophozoites of A. culbertsoni features compatibles with apoptosis and autophagy pathways, including chromatin condensation, mitochondrial malfunction, oxidative stress, changes in cell permeability and the formation of autophagic vacuoles. Furthermore, proteomic analysis of the effect of nitroxoline on trophozoites revealed that this antibiotic induced the overexpression and the downregulation of proteins involved in the apoptotic process and in metabolic and biosynthesis pathways.
Department of Parasitology Faculty of Science Charles University BIOCEV 252 50 Vestec Czech Republic
Parasitology Lab Central Military Hospital Koblenz 56072 Koblenz Germany
Zobrazit více v PubMed
Scheid P.L. Encyclopedia of Parasitology. Springer; Berlin/Heidelberg, Germany: 2016. Free-Living Amoebae as Human Pathogens: (Genus) Acanthamoeba; pp. 1078–1080.
Siddiqui R., Khan N.A. Biology and Pathogenesis of Acanthamoeba. Parasit. Vectors. 2012;5:6. doi: 10.1186/1756-3305-5-6. PubMed DOI PMC
Lorenzo-Morales J., Khan N.A., Walochnik J. An Update on Acanthamoeba Keratitis: Diagnosis, Pathogenesis and Treatment. Parasite. 2015;22:10. doi: 10.1051/parasite/2015010. PubMed DOI PMC
Khan N.A. Acanthamoeba Invasion of the Central Nervous System. Int. J. Parasitol. 2007;37:131–138. doi: 10.1016/j.ijpara.2006.11.010. PubMed DOI
Kalra S.K., Sharma P., Shyam K., Tejan N., Ghoshal U. Acanthamoeba and Its Pathogenic Role in Granulomatous Amebic Encephalitis. Exp. Parasitol. 2020;208:107788. doi: 10.1016/j.exppara.2019.107788. PubMed DOI
Lee D.C., Fiester S.E., Madeline L.A., Fulcher J.W., Ward M.E., Schammel C.M.-G., Hakimi R.K. Acanthamoeba spp. and Balamuthia mandrillaris Leading to Fatal Granulomatous Amebic Encephalitis. Forensic Sci. Med. Pathol. 2020;16:171–176. doi: 10.1007/s12024-019-00202-6. PubMed DOI
Fanselow N., Sirajuddin N., Yin X.-T., Huang A.J.W., Stuart P.M. Acanthamoeba Keratitis, Pathology, Diagnosis and Treatment. Pathogens. 2021;10:323. doi: 10.3390/pathogens10030323. PubMed DOI PMC
Maycock N.J.R., Jayaswal R. Update on Acanthamoeba Keratitis: Diagnosis, Treatment, and Outcomes. Cornea. 2016;35:713–720. doi: 10.1097/ICO.0000000000000804. PubMed DOI
Diehl M.L.N., Paes J., Rott M.B. Genotype Distribution of Acanthamoeba in Keratitis: A Systematic Review. Parasitol. Res. 2021;120:3051–3063. doi: 10.1007/s00436-021-07261-1. PubMed DOI PMC
Steinberg J.P., Galindo R.L., Kraus E.S., Ghanem K.G. Disseminated Acanthamebiasis in a Renal Transplant Recipient with Osteomyelitis and Cutaneous Lesions: Case Report and Literature Review. Clin. Infect. Dis. 2002;35:e43–e49. doi: 10.1086/341973. PubMed DOI
Torno M.S., Babapour R., Gurevitch A., Witt M.D. Cutaneous Acanthamoebiasis in AIDS. J. Am. Acad. Dermatol. 2000;42:351–354. doi: 10.1016/S0190-9622(00)90110-5. PubMed DOI
Walia R., Montoya J.G., Visvesvera G.S., Booton G.C., Doyle R.L. A Case of Successful Treatment of Cutaneous Acanthamoeba Infection in a Lung Transplant Recipient. Transpl. Infect. Dis. 2007;9:51–54. doi: 10.1111/j.1399-3062.2006.00159.x. PubMed DOI
Saberi R., Fakhar M., Makhlough A., Sedighi O., Tabaripour R., Asfaram S., Latifi A., Espahbodi F., Sharifpour A. First Evidence for Colonizing of Acanthamoeba T4 Genotype in Urinary Tracts of Patients with Recurrent Urinary Tract Infections. Acta Parasitol. 2021;66:932–937. doi: 10.1007/s11686-021-00358-8. PubMed DOI
Guimaraes A.J., Gomes K.X., Cortines J.R., Peralta J.M., Peralta R.H.S. Acanthamoeba spp. as a Universal Host for Pathogenic Microorganisms: One Bridge from Environment to Host Virulence. Microbiol. Res. 2016;193:30–38. doi: 10.1016/j.micres.2016.08.001. PubMed DOI
Mungroo M.R., Siddiqui R., Khan N.A. War of the Microbial World: Acanthamoeba spp. Interactions with Microorganisms. Folia Microbiol. 2021;66:689–699. doi: 10.1007/s12223-021-00889-7. PubMed DOI PMC
Scheid P., Zöller L., Pressmar S., Richard G., Michel R. An Extraordinary Endocytobiont in Acanthamoeba sp. Isolated from a Patient with Keratitis. Parasitol. Res. 2008;102:945–950. doi: 10.1007/s00436-007-0858-3. PubMed DOI
Scheid P. Relevance of Free-Living Amoebae as Hosts for Phylogenetically Diverse Microorganisms. Parasitol. Res. 2014;113:2407–2414. doi: 10.1007/s00436-014-3932-7. PubMed DOI
Rayamajhee B., Subedi D., Peguda H.K., Willcox M.D., Henriquez F.L., Carnt N. A Systematic Review of Intracellular Microorganisms within Acanthamoeba to Understand Potential Impact for Infection. Pathogens. 2021;10:225. doi: 10.3390/pathogens10020225. PubMed DOI PMC
Taravaud A., Fechtali-Moute Z., Loiseau P.M., Pomel S. Drugs Used for the Treatment of Cerebral and Disseminated Infections Caused by Free-Living Amoebae. Clin. Transl. Sci. 2021;14:791–805. doi: 10.1111/cts.12955. PubMed DOI PMC
Anwar A., Khan N.A., Siddiqui R. Combating Acanthamoeba spp. Cysts: What Are the Options? Parasit. Vectors. 2018;11:26. doi: 10.1186/s13071-017-2572-z. PubMed DOI PMC
Wang Y., Jiang L., Zhao Y., Ju X., Wang L., Jin L., Fine R.D., Li M. Biological Characteristics and Pathogenicity of Acanthamoeba. Front. Microbiol. 2023;14:1147077. doi: 10.3389/fmicb.2023.1147077. PubMed DOI PMC
Wolf M.A., Thielman N.M., Kraft B.D. Treatment of Acanthamoeba Encephalitis. Am. J. Med. 2022;135:e20–e21. doi: 10.1016/j.amjmed.2021.08.009. PubMed DOI
Ahmed U., Anwar A., Ong S., Anwar A., Khan N.A. Applications of Medicinal Chemistry for Drug Discovery against Acanthamoeba Infections. Med. Res. Rev. 2022;42:462–512. doi: 10.1002/med.21851. PubMed DOI
Schor S., Einav S. Combating Intracellular Pathogens with Repurposed Host-Targeted Drugs. ACS Infect. Dis. 2018;4:88–92. doi: 10.1021/acsinfecdis.7b00268. PubMed DOI PMC
Supuran C.T. Antiprotozoal Drugs: Challenges and Opportunities. Expert. Opin. Ther. Pat. 2023;33:133–136. doi: 10.1080/13543776.2023.2201432. PubMed DOI
Naber K.G., Niggemann H., Stein G., Stein G. Review of the Literature and Individual Patients’ Data Meta-Analysis on Efficacy and Tolerance of Nitroxoline in the Treatment of Uncomplicated Urinary Tract Infections. BMC Infect. Dis. 2014;14:628. doi: 10.1186/s12879-014-0628-7. PubMed DOI PMC
Kranz J., Schmidt S., Lebert C., Schneidewind L., Mandraka F., Kunze M., Helbig S., Vahlensieck W., Naber K., Schmiemann G., et al. The 2017 Update of the German Clinical Guideline on Epidemiology, Diagnostics, Therapy, Prevention, and Management of Uncomplicated Urinary Tract Infections in Adult Patients. Part II: Therapy and Prevention. Urol. Int. 2018;100:271–278. doi: 10.1159/000487645. PubMed DOI
Wagenlehner F., Kresken M., Wohlfarth E., Bahrs C., Grabein B., Strohmaier W.L., Naber K.G. Therapie Der Zystitis Mit Nitroxolin—NitroxWin. Die Urol. 2023;62:1186–1192. doi: 10.1007/s00120-023-02167-5. PubMed DOI PMC
Lin W., Sun J., Sadahira T., Xu N., Wada K., Liu C., Araki M., Xu A., Watanabe M., Nasu Y., et al. Discovery and Validation of Nitroxoline as a Novel STAT3 Inhibitor in Drug-Resistant Urothelial Bladder Cancer. Int. J. Biol. Sci. 2021;17:3255–3267. doi: 10.7150/ijbs.63125. PubMed DOI PMC
Wykowski R., Fuentefria A.M., de Andrade S.F. Antimicrobial Activity of Clioquinol and Nitroxoline: A Scoping Review. Arch. Microbiol. 2022;204:535. doi: 10.1007/s00203-022-03122-2. PubMed DOI PMC
Laurie M.T., White C.V., Retallack H., Wu W., Moser M.S., Sakanari J.A., Ang K., Wilson C., Arkin M.R., DeRisi J.L. Functional Assessment of 2,177 U.S. and International Drugs Identifies the Quinoline Nitroxoline as a Potent Amoebicidal Agent against the Pathogen Balamuthia mandrillaris. mBio. 2018;9:e02051-18. doi: 10.1128/mBio.02051-18. PubMed DOI PMC
Hoffmann A.M., Wolke M., Rybniker J., Plum G., Fuchs F. In Vitro Activity of Repurposed Nitroxoline Against Clinically Isolated Mycobacteria Including Multidrug-Resistant Mycobacterium tuberculosis. Front. Pharmacol. 2022;13:906097. doi: 10.3389/fphar.2022.906097. PubMed DOI PMC
Fuchs F., Hamprecht A. Susceptibility of Carbapenemase-Producing Enterobacterales (CPE) to Nitroxoline. J. Antimicrob. Chemother. 2019;74:2934–2937. doi: 10.1093/jac/dkz275. PubMed DOI
Fuchs F., Becerra-Aparicio F., Xanthopoulou K., Seifert H., Higgins P.G. In Vitro Activity of Nitroxoline against Carbapenem-Resistant Acinetobacter Baumannii Isolated from the Urinary Tract. J. Antimicrob. Chemother. 2022;77:1912–1915. doi: 10.1093/jac/dkac123. PubMed DOI
Abouelhassan Y., Yang Q., Yousaf H., Nguyen M.T., Rolfe M., Schultz G.S., Huigens R.W. Nitroxoline: A Broad-Spectrum Biofilm-Eradicating Agent against Pathogenic Bacteria. Int. J. Antimicrob. Agents. 2017;49:247–251. doi: 10.1016/j.ijantimicag.2016.10.017. PubMed DOI
Fuchs F., Hof H., Hofmann S., Kurzai O., Meis J.F., Hamprecht A. Antifungal Activity of Nitroxoline against Candida auris Isolates. Clin. Microbiol. Infect. 2021;27:1697.e7–1697.e10. doi: 10.1016/j.cmi.2021.06.035. PubMed DOI
Knez D., Brus B., Coquelle N., Sosič I., Šink R., Brazzolotto X., Mravljak J., Colletier J.-P., Gobec S. Structure-Based Development of Nitroxoline Derivatives as Potential Multifunctional Anti-Alzheimer Agents. Bioorganic Med. Chem. 2015;23:4442–4452. doi: 10.1016/j.bmc.2015.06.010. PubMed DOI
Ren L., Jiang M., Xue D., Wang H., Lu Z., Ding L., Xie H., Wang R., Luo W., Xu L., et al. Nitroxoline Suppresses Metastasis in Bladder Cancer via EGR1/CircNDRG1/MiR-520h/Smad7/EMT Signaling Pathway. Int. J. Biol. Sci. 2022;18:5207–5220. doi: 10.7150/ijbs.69373. PubMed DOI PMC
Zhang Q., Wang S., Yang D., Pan K., Li L., Yuan S. Preclinical Pharmacodynamic Evaluation of Antibiotic Nitroxoline for Anticancer Drug Repurposing. Oncol. Lett. 2016;11:3265–3272. doi: 10.3892/ol.2016.4380. PubMed DOI PMC
Lazovic J., Guo L., Nakashima J., Mirsadraei L., Yong W., Kim H.J., Ellingson B., Wu H., Pope W.B. Nitroxoline Induces Apoptosis and Slows Glioma Growth in Vivo. Neuro Oncol. 2015;17:53–62. doi: 10.1093/neuonc/nou139. PubMed DOI PMC
Bojkova D., Zöller N., Tietgen M., Steinhorst K., Bechtel M., Rothenburger T., Kandler J.D., Schneider J., Corman V.M., Ciesek S., et al. Repurposing of the Antibiotic Nitroxoline for the Treatment of Mpox. J. Med. Virol. 2023;95:e28652. doi: 10.1002/jmv.28652. PubMed DOI
Spottiswoode N., Pet D., Kim A., Gruenberg K., Shah M., Ramachandran A., Laurie M.T., Zia M., Fouassier C., Boutros C.L., et al. Successful Treatment of Balamuthia mandrillaris Granulomatous Amebic Encephalitis with Nitroxoline. Emerg. Infect. Dis. 2023;29:197–201. doi: 10.3201/eid2901.221531. PubMed DOI PMC
Chao-Pellicer J., Arberas-Jiménez I., Fuchs F., Sifaoui I., Piñero J.E., Lorenzo-Morales J., Scheid P. Repurposing of Nitroxoline as an Alternative Primary Amoebic Meningoencephalitis Treatment. Antibiotics. 2023;12:1280. doi: 10.3390/antibiotics12081280. PubMed DOI PMC
González-Robles A., Salazar-Villatoro L., Omaña-Molina M., Reyes-Batlle M., Martín-Navarro C.M., Lorenzo-Morales J. Morphological Features and In Vitro Cytopathic Effect of Acanthamoeba griffini Trophozoites Isolated from a Clinical Case. J. Parasitol. Res. 2014;2014:256310. doi: 10.1155/2014/256310. PubMed DOI PMC
Omaña-Molina M., González-Robles A., Iliana Salazar-Villatoro L., Lorenzo-Morales J., Cristóbal-Ramos A.R., Hernández-Ramírez V.I., Talamás-Rohana P., Méndez Cruz A.R., Martínez-Palomo A. Reevaluating the Role of Acanthamoeba Proteases in Tissue Invasion: Observation of Cytopathogenic Mechanisms on MDCK Cell Monolayers and Hamster Corneal Cells. Biomed. Res. Int. 2013;2013:461329. doi: 10.1155/2013/461329. PubMed DOI PMC
Rodríguez-Expósito R.L., Nicolás-Hernández D.S., Sifaoui I., Cuadrado C., Salazar-Villatoro L., Reyes-Batlle M., Hernández-Daranas A., Omaña-Molina M., Fernández J.J., Díaz-Marrero A.R., et al. Gongolarones as Antiamoeboid Chemical Scaffold. Biomed. Pharmacother. 2023;158:114185. doi: 10.1016/j.biopha.2022.114185. PubMed DOI
Sifaoui I., Díaz-Rodríguez P., Rodríguez-Expósito R.L., Reyes-Batlle M., López-Arencibia A., Salazar Villatoro L., Castelan-Ramírez I., Omaña-Molina M., Oliva A., Piñero J.E., et al. Pitavastatin Loaded Nanoparticles: A Suitable Ophthalmic Treatment for Acanthamoeba Keratitis Inducing Cell Death and Autophagy in Acanthamoeba polyphaga. Eur. J. Pharm. Biopharm. 2022;180:11–22. doi: 10.1016/j.ejpb.2022.09.020. PubMed DOI
Arbon D., Ženíšková K., Šubrtová K., Mach J., Štursa J., Machado M., Zahedifard F., Leštinová T., Hierro-Yap C., Neuzil J., et al. Repurposing of MitoTam: Novel Anti-Cancer Drug Candidate Exhibits Potent Activity against Major Protozoan and Fungal Pathogens. Antimicrob. Agents Chemother. 2022;66:e0072722. doi: 10.1128/aac.00727-22. PubMed DOI PMC
Hughes C.S., Moggridge S., Müller T., Sorensen P.H., Morin G.B., Krijgsveld J. Single-Pot, Solid-Phase-Enhanced Sample Preparation for Proteomics Experiments. Nat. Protoc. 2019;14:68–85. doi: 10.1038/s41596-018-0082-x. PubMed DOI
Rappsilber J., Mann M., Ishihama Y. Protocol for Micro-Purification, Enrichment, Pre-Fractionation and Storage of Peptides for Proteomics Using StageTips. Nat. Protoc. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI
Hebert A.S., Richards A.L., Bailey D.J., Ulbrich A., Coughlin E.E., Westphall M.S., Coon J.J. The One Hour Yeast Proteome. Mol. Cell. Proteom. 2014;13:339–347. doi: 10.1074/mcp.M113.034769. PubMed DOI PMC
Cox J., Mann M. MaxQuant Enables High Peptide Identification Rates, Individualized p.p.b.-Range Mass Accuracies and Proteome-Wide Protein Quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate Proteome-Wide Label-Free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol. Cell. Proteom. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus Computational Platform for Comprehensive Analysis of (Prote)Omics Data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Baig A.M., Lalani S., Khan N.A. Apoptosis in Acanthamoeba castellanii Belonging to the T4 Genotype. J. Basic Microbiol. 2017;57:574–579. doi: 10.1002/jobm.201700025. PubMed DOI
Kaczanowski S., Sajid M., Reece S.E. Evolution of Apoptosis-like Programmed Cell Death in Unicellular Protozoan Parasites. Parasit. Vectors. 2011;4:44. doi: 10.1186/1756-3305-4-44. PubMed DOI PMC
Niemann A., Takatsuki A., Elsässer H.-P. The Lysosomotropic Agent Monodansylcadaverine Also Acts as a Solvent Polarity Probe. J. Histochem. Cytochem. 2000;48:251–258. doi: 10.1177/002215540004800210. PubMed DOI
Biederbick A., Kern H.F., Elsässer H.P. Monodansylcadaverine (MDC) Is a Specific in Vivo Marker for Autophagic Vacuoles. Eur. J. Cell Biol. 1995;66:3–14. PubMed
Zorova L.D., Popkov V.A., Plotnikov E.Y., Silachev D.N., Pevzner I.B., Jankauskas S.S., Babenko V.A., Zorov S.D., Balakireva A.V., Juhaszova M., et al. Mitochondrial Membrane Potential. Anal. Biochem. 2018;552:50–59. doi: 10.1016/j.ab.2017.07.009. PubMed DOI PMC
Wijma R.A., Huttner A., Koch B.C.P., Mouton J.W., Muller A.E. Review of the Pharmacokinetic Properties of Nitrofurantoin and Nitroxoline. J. Antimicrob. Chemother. 2018;73:2916–2926. doi: 10.1093/jac/dky255. PubMed DOI
Bergogne-Berezin E., Berthelot G., Muller-Serieys C. [Present Status of Nitroxoline] Pathol. Biol. 1987;35:873–878. PubMed
Mrhar A., Kopitar Z., Kozjek F., Presl V., Karba R. Clinical Pharmacokinetics of Nitroxoline. Int. J. Clin. Pharmacol. Biopharm. 1979;17:476–481. PubMed
Sharma G., Kalra S.K., Tejan N., Ghoshal U. Nanoparticles Based Therapeutic Efficacy against Acanthamoeba: Updates and Future Prospect. Exp. Parasitol. 2020;218:108008. doi: 10.1016/j.exppara.2020.108008. PubMed DOI
Varshosaz J., Fard M.M., Mirian M., Hassanzadeh F. Targeted Nanoparticles for Co-Delivery of 5-FU and Nitroxoline, a Cathepsin B Inhibitor, in HepG2 Cells of Hepatocellular Carcinoma. Anti-Cancer Agents Med. Chem. 2020;20:346–358. doi: 10.2174/1871520619666190930124746. PubMed DOI
Shim J.S., Matsui Y., Bhat S., Nacev B.A., Xu J., Bhang H.C., Dhara S., Han K.C., Chong C.R., Pomper M.G., et al. Effect of Nitroxoline on Angiogenesis and Growth of Human Bladder Cancer. JNCI J. Natl. Cancer Inst. 2010;102:1855–1873. doi: 10.1093/jnci/djq457. PubMed DOI PMC
Chang W.-L., Hsu L.-C., Leu W.-J., Chen C.-S., Guh J.-H. Repurposing of Nitroxoline as a Potential Anticancer Agent against Human Prostate Cancer—A Crucial Role on AMPK/MTOR Signaling Pathway and the Interplay with Chk2 Activation. Oncotarget. 2015;6:39806–39820. doi: 10.18632/oncotarget.5655. PubMed DOI PMC
Thomson S., Rice C.A., Zhang T., Edrada-Ebel R., Henriquez F.L., Roberts C.W. Characterisation of Sterol Biosynthesis and Validation of 14α-Demethylase as a Drug Target in Acanthamoeba. Sci. Rep. 2017;7:8247. doi: 10.1038/s41598-017-07495-z. PubMed DOI PMC
Sobke A., Makarewicz O., Baier M., Bär C., Pfister W., Gatermann S.G., Pletz M.W., Forstner C. Empirical Treatment of Lower Urinary Tract Infections in the Face of Spreading Multidrug Resistance: In Vitro Study on the Effectiveness of Nitroxoline. Int. J. Antimicrob. Agents. 2018;51:213–220. doi: 10.1016/j.ijantimicag.2017.10.010. PubMed DOI
Veschi S., Ronci M., Lanuti P., De Lellis L., Florio R., Bologna G., Scotti L., Carletti E., Brugnoli F., Di Bella M.C., et al. Integrative Proteomic and Functional Analyses Provide Novel Insights into the Action of the Repurposed Drug Candidate Nitroxoline in AsPC-1 Cells. Sci. Rep. 2020;10:2574. doi: 10.1038/s41598-020-59492-4. PubMed DOI PMC
Sobke A., Klinger M., Hermann B., Sachse S., Nietzsche S., Makarewicz O., Keller P.M., Pfister W., Straube E. The Urinary Antibiotic 5-Nitro-8-Hydroxyquinoline (Nitroxoline) Reduces the Formation and Induces the Dispersal of Pseudomonas Aeruginosa Biofilms by Chelation of Iron and Zinc. Antimicrob. Agents Chemother. 2012;56:6021–6025. doi: 10.1128/AAC.01484-12. PubMed DOI PMC
Conte L., Zara V. The Rieske Iron-Sulfur Protein: Import and Assembly into the Cytochrome Complex of Yeast Mitochondria. Bioinorg. Chem. Appl. 2011;2011:363941. doi: 10.1155/2011/363941. PubMed DOI PMC
Kresken M., Körber-Irrgang B. In Vitro Activity of Nitroxoline against Escherichia coli Urine Isolates from Outpatient Departments in Germany. Antimicrob. Agents Chemother. 2014;58:7019–7020. doi: 10.1128/AAC.03946-14. PubMed DOI PMC
Hong Y., Kang J.-M., Joo S.-Y., Song S.-M., Lê H.G., Thái T.L., Lee J., Goo Y.-K., Chung D.-I., Sohn W.-M., et al. Molecular and Biochemical Properties of a Cysteine Protease of Acanthamoeba castellanii. Korean J. Parasitol. 2018;56:409–418. doi: 10.3347/kjp.2018.56.5.409. PubMed DOI PMC
Lee J.-Y., Song S.-M., Moon E.-K., Lee Y.-R., Jha B.K., Danne D.-B.S., Cha H.-J., Yu H.S., Kong H.-H., Chung D.-I., et al. Cysteine Protease Inhibitor (AcStefin) Is Required for Complete Cyst Formation of Acanthamoeba. Eukaryot. Cell. 2013;12:567–574. doi: 10.1128/EC.00308-12. PubMed DOI PMC
Tikhomirova T.S., Selivanova O.M., Galzitskaya O.V. α-Crystallins Are Small Heat Shock Proteins: Functional and Structural Properties. Biochemistry. 2017;82:106–121. doi: 10.1134/S0006297917020031. PubMed DOI
Yang G., Pan W., Zhang R., Pan Y., Guo Q., Song W., Zheng W., Nie X. Genome-Wide Identification and Characterization of Caffeoyl-Coenzyme A O-Methyltransferase Genes Related to the Fusarium Head Blight Response in Wheat. BMC Genom. 2021;22:504. doi: 10.1186/s12864-021-07849-y. PubMed DOI PMC
Lee H.-C., Wei Y.-H. Mitochondrial Biogenesis and Mitochondrial DNA Maintenance of Mammalian Cells under Oxidative Stress. Int. J. Biochem. Cell Biol. 2005;37:822–834. doi: 10.1016/j.biocel.2004.09.010. PubMed DOI
Amoebicidal Effect of COVID Box Molecules against Acanthamoeba: A Study of Cell Death