Validation of Broth Macrodilution Volatilization Method for Testing of Essential Oils in Liquid and Vapor Phase: Chemical Composition, Cytotoxicity, and Antibacterial Effect of Indian Medicinal Plants against Pneumonia-Causing Pathogens
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2023064
METROFOOD-CZ
IGA.20233109
Czech University of Life Sciences Prague
PubMed
37375180
PubMed Central
PMC10304056
DOI
10.3390/molecules28124625
PII: molecules28124625
Knihovny.cz E-zdroje
- Klíčová slova
- Cymbopogon citratus, Cyperus scariosus, GC/MS, MTT assay, Trachyspermum ammi, antimicrobial activity, headspace analysis, macrodilution, respiratory infections, vapor phase, volatiles,
- MeSH
- antibakteriální látky chemie MeSH
- antiinfekční látky * analýza MeSH
- léčivé rostliny * MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- oleje prchavé * farmakologie chemie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- pneumonie * MeSH
- volatilizace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- antiinfekční látky * MeSH
- oleje prchavé * MeSH
Essential oils (EOs) have great potential in inhalation therapy for the treatment of respiratory infections. However, innovative methods for evaluation of antimicrobial activity of their vapors are still needed. The current study reports validation of the broth macrodilution volatilization method for assessment of the antibacterial properties of EOs and shows the growth-inhibitory effect of Indian medicinal plants against pneumonia-causing bacteria in liquid and vapor phase. Among all samples tested, Trachyspermum ammi EO exhibits the strongest antibacterial effect against Haemophilus influenzae, with minimum inhibitory concentrations of 128 and 256 µg/mL in the liquid and vapor phases, respectively. Furthermore, Cyperus scariosus EO is found to be nontoxic to normal lung fibroblasts assessed by modified thiazolyl blue tetrazolium bromide assay. Chemical analysis performed using gas chromatography-mass spectrometry identified α-citral, cyperotundone, and thymol as the main constituents of Cymbopogon citratus, C. scariosus, and T. ammi EOs, respectively. In addition, β-cymene is identified as the major compound of T. ammi EO vapors when analyzed using solid-phase microextraction and gas-tight syringe sampling techniques. This study demonstrates the validity of the broth macrodilution volatilization method for antimicrobial screening of volatile compounds in the vapor phase and suggests the therapeutic potential of Indian medicinal plants in inhalation therapy.
Department of Applied Sciences Amity University Manth State Highway 9 Raipur 493225 India
National Center for Natural Resources Pt Ravishankar Shukla University Raipur 492010 India
Zobrazit více v PubMed
Grossman T.H., Fyfe C., O’Brien W., Hackel M., Minyard M.B., Waites K.B., Dubois J., Murphy T.M., Slee A.M., Weiss W.J., et al. Fluorocycline TP-271 is potent against complicated community-acquired bacterial pneumonia pathogens. mSphere. 2017;2:e00004-17. doi: 10.1128/mSphere.00004-17. PubMed DOI PMC
Baron S. Medical Microbiology. 4th ed. University of Texas Medical Branch at Galveston; Galveston, TX, USA: 1996. PubMed
Torres A., Cilloniz C., Niederman M.S., Menendez R., Chalmers J.D., Wunderink R.G., van der Poll T. Pneumonia. Nat. Rev. Dis. Primers. 2021;7:25. doi: 10.1038/s41572-021-00259-0. PubMed DOI
Eshwara V.K., Mukhopadhyay C., Rello J. Community-acquired bacterial pneumonia in adults: An update. Indian J. Med. Res. 2020;151:288. doi: 10.4103/ijmr.IJMR_1678_19. PubMed DOI PMC
Borghardt J.M., Kloft C., Sharma A. Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic processes. Can. Respir. J. 2018;2018:2732017. doi: 10.1155/2018/2732017. PubMed DOI PMC
Quon B.S., Goss C.H., Ramsey B.W. Inhaled antibiotics for lower airway infections. Ann. Am. Thorac. Soc. 2014;11:425–427. doi: 10.1513/AnnalsATS.201311-395FR. PubMed DOI PMC
Tiddens H.A.W.M., Bos A.C., Mouton J.W., Devadason S., Janssens H.M. Inhaled antibiotics: Dry or wet? Eur. Clin. Respir. J. 2014;44:1308–1318. doi: 10.1183/09031936.00090314. PubMed DOI
Netopilova M., Houdkova M., Urbanova K., Rondevaldova J., Damme P., Kokoska L. In vitro antimicrobial combinatory effect of Cinnamomum cassia essential oil with 8-hydroxyquinoline against Staphylococcus aureus in liquid and vapour phase. J. Appl. Microbiol. 2020;129:906–915. doi: 10.1111/jam.14683. PubMed DOI
Baser K.H.C., Buchbauer G. Handbook of Essential Oils: Science, Technology, and Applications. 3rd ed. CRC Press; Boca Raton, FL, USA: 2020.
Horvath G., Acs K. Essential oils in the treatment of respiratory tract diseases highlighting their role in bacterial infections and their anti-inflammatory action: A review. Flavour Fragr. J. 2015;30:339–340. doi: 10.1002/ffj.3252. PubMed DOI PMC
Kokoska L., Kloucek P., Leuner O., Novy P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr. Med. Chem. 2019;26:5501–5541. doi: 10.2174/0929867325666180831144344. PubMed DOI
Hashemi S.M.B., Khaneghah A.M., Sant’Ana A.S. Essential Oils in Food Processing: Chemistry, Safety and Applications. 1st ed. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2018.
Houdkova M., Rondevaldova J., Doskocil I., Kokoska L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia. 2017;118:56–62. doi: 10.1016/j.fitote.2017.02.008. PubMed DOI
Jugreet B.S., Suroowan S., Rengasamy R.R.K., Mahomoodally M.F. Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends Food Sci. Technol. 2020;101:89–105. doi: 10.1016/j.tifs.2020.04.025. DOI
Ross C.F. Comprehensive Sampling and Sample Preparation. Elsevier; Amsterdam, The Netherlands: 2012. Headspace analysis; pp. 27–50.
Schweitzer B., Balazs V.L., Molnar S., Szogi-Tatar B., Boszormenyi A., Palkovics T., Horvath G., Schneider G. Antibacterial effect of lemongrass (Cymbopogon citratus) against the aetiological agents of pitted keratolyis. Molecules. 2022;27:1423. doi: 10.3390/molecules27041423. PubMed DOI PMC
Liu L., Wang Q., Tang J., Zhang Z. Component analysis of volatile oil from fruits of Trachyspermum ammi by headspace solid-phase microextraction GC-MS. Chin. J. Pharm. Anal. 2013;33:607–610.
Upasani S.V., Beldar V.G., Tatiya A.U., Upasani M.S., Surana S.J., Patil D.S. Ethnomedicinal plants used for snakebite in India: A brief overview. Integr. Med. Res. 2017;6:114–115. doi: 10.1016/j.imr.2017.03.001. PubMed DOI PMC
Bhattacharyya R., Bhattacharya S., Chaudhuri S. Conservation and documentation of the medicinal plant resources of India. Biodivers. Conserv. 2006;15:2705–2717. doi: 10.1007/s10531-005-6974-4. DOI
Vaidya V.N., Tatiya A.U., Elango A., Kukkupuni S.K., Vishnuprasad C.N. Need for comprehensive standardization strategies for marketed Ayurveda formulations. J. Ayurveda Integr. Med. 2018;9:312–315. doi: 10.1016/j.jaim.2018.09.002. PubMed DOI PMC
Ningthoujam S.S., Talukdar A.D., Potsangbam K.S., Choudhury M.D. Traditional uses of herbal vapour therapy in Manipur, Northeast India: An ethnobotanical survey. J. Ethnopharmacol. 2013;147:136–147. doi: 10.1016/j.jep.2012.12.056. PubMed DOI
Shah G., Shri R., Panchal V., Sharma N., Singh B., Mann A.S. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass) J. Adv. Pharm. Technol. Res. 2011;2:87. doi: 10.4103/2231-4040.79796. PubMed DOI PMC
Bairwa R., Sodha R.S., Rajawat B.S. Trachyspermum ammi. Pharmacogn. Rev. 2012;6:56–60. doi: 10.4103/0973-7847.95871. PubMed DOI PMC
Singh V., Ali M., Negi A., Sultana S. Analysis and antimicrobial activity of the essential oil of Cyperus rotundus L. rhizomes. J. Med. Plants Stud. 2018;6:101–105.
Inouye S., Takizawa T., Yamaguchi H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemother. 2001;47:565–573. doi: 10.1093/jac/47.5.565. PubMed DOI
Amat S., Baines D., Alexander T.W. A Vapour phase assay for evaluating the antimicrobial activities of essential oils against bovine respiratory bacterial pathogens. Lett. Appl. Microbiol. 2017;65:489–495. doi: 10.1111/lam.12804. PubMed DOI
Houdkova M., Kokoska L. Volatile antimicrobial agents and in vitro methods for evaluating their activity in the vapour phase: A review. Planta Med. 2020;86:822–857. doi: 10.1055/a-1158-4529. PubMed DOI
Cimino C., Maurel O.M., Musumeci T., Bonaccorso A., Drago F., Souto E.M.B., Pignatello R., Carbone C. Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems. Pharmaceutics. 2021;13:327. doi: 10.3390/pharmaceutics13030327. PubMed DOI PMC
Toukourou H., Gbaguidi F., Quetin-Leclercq J. Phytochemical composition, antibacterial activity against sore throat pathogens and toxicological evaluation of Cymbopogon citratus essential oil from Benin. J. Pharmacogn. Phytochem. 2019;8:3258–3263.
Special Programme for Research and Training in Tropical Diseases. [(accessed on 21 December 2022)]. Available online: http://www.who.int/tdr/grants/workplans/en/cytotoxicity_invitro.pdf.
Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectorscopy. 4th ed. Allured Publishing Corp; Carol Stream, IL, USA: 2007.
National Institute of Standards and Technology. [(accessed on 27 March 2023)]; Available online: https://www.nist.gov/
Paul S., Dubey R.C., Maheswari D.K., Kang S.C. Trachyspermum ammi (L.) fruit essential oil influencing on membrane permeability and surface characteristics in inhibiting food-borne pathogens. Food Control. 2011;22:725–731. doi: 10.1016/j.foodcont.2010.11.003. DOI
Jebelli Javan A., Salimiraad S., Khorshidpour B. Combined effect of Trachyspermum ammi essential oil and propolis ethanolic extract on some foodborne pathogenic bacteria. Vet. Res. Forum. 2019;10:235–240. doi: 10.30466/vrf.2019.72986.1991. PubMed DOI PMC
Vitali L.A., Beghelli D., Nya P.C.B., Bistoni O., Cappellacci L., Damiano S., Lupidi G., Maggi F., Orsomando G., Papa F., et al. Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arab. J. Chem. 2016;9:775–786. doi: 10.1016/j.arabjc.2015.06.002. DOI
Gardener A.C., Trifan A., Spac A., Brebu M., Miron A., Aprotosoaie A.C. Antibacterial activity of traditional spices against lower respiratory tract pathogens: Combinatorial effects of Trachyspermum ammi essential oil with conventional antibiotics. Lett. Appl. Microbiol. 2018;67:449–457. doi: 10.1111/lam.13069. PubMed DOI
Vazirian M., Hekmati D., Ostad S., Manayi A. Toxicity evaluation of essential oil of Trachyspermum ammi in acute and sub-chronic toxicity experiments. J. Med. Plants. 2019;18:70–77.
ECHA European Chemicals Agency. [(accessed on 26 February 2023)]. Available online: https://echa.europa.eu/
Xie K., Tashkin D.P., Luo M.Z., Zhang J.Y. Chronic toxicity of inhaled thymol in lungs and respiratory tracts in mouse model. Pharmacol. Res. Perspect. 2019;7:e00516. doi: 10.1002/prp2.516. PubMed DOI PMC
Howyzeh M.S., Noori S.A.S., Shariati J.V., Niazian M. Essential oil chemotype of Iranian Ajowan (Trachyspermum ammi L.) J. Essent. Oil-Bear. Plants. 2018;21:273–276. doi: 10.1080/0972060X.2018.1433074. DOI
Modareskia M., Fattahi M., Mirjalili M.H. Thymol screening, phenolic contents, antioxidant and antibacterial activities of Iranian populations of Trachyspermum ammi (L.) Sprague (Apiaceae) Sci. Rep. 2022;12:15645. doi: 10.1038/s41598-022-19594-7. PubMed DOI PMC
Antih J., Houdkova M., Urbanova K., Kokoska L. Antibacterial activity of Thymus vulgaris L. essential oil vapours and their GC/MS analysis using solid-phase microextraction and syringe headspace sampling techniques. Molecules. 2021;26:6553. doi: 10.3390/molecules26216553. PubMed DOI PMC
Perestrelo R., Silva C.L., Rodrigues F., Caldeira M., Câmara J.S. A powerful approach to explore the potential of medicinal plants as a natural source of odor and antioxidant compounds. J. Food Sci. Technol. 2016;53:132–144. doi: 10.1007/s13197-015-2022-x. PubMed DOI PMC
Chialva F., Gabri G., Liddle P.A.P., Ulian F. Qualitative evaluation of aromatic herbs by direct headspace GC analysis. Applications of the method and comparison with the traditional analysis of essential oils. J. High. Resolut. Chromatogr. 1982;5:182–188. doi: 10.1002/jhrc.1240050403. DOI
Laird K., Phillips C. Vapour phase: A potential future use for essential oils as antimicrobials? Lett. Appl. Microbiol. 2012;54:169–174. doi: 10.1111/j.1472-765X.2011.03190.x. PubMed DOI
Manvitha K., Bidya B. Review on pharmacological activity of Cymbopogon citratus. Int. J. Herb. Med. 2014;6:5–7.
Valkova V., Duranova H., Galovicova L., Borotova P., Vukovic N.L., Vukic M., Kacaniova M. Cymbopogon citratus essential oil: Its application as an antimicrobial agent in food preservation. Agronomy. 2022;12:155. doi: 10.3390/agronomy12010155. DOI
Inouye S., Yamaguchi H., Takizawa T. Screening of the antibacterial effects of a variety of essential oils on respiratory tract pathogens, using a modified dilution assay method. J. Infect. Chemother. 2001;7:251–254. doi: 10.1007/s101560170022. PubMed DOI
Houdkova M., Albarico G., Doskocil I., Tauchen J., Urbanova K., Tulin E.E., Kokoska L. Vapors of volatile plant-derived products significantly affect the results of antimicrobial, antioxidative and cytotoxicity microplate-based assays. Molecules. 2020;25:6004. doi: 10.3390/molecules25246004. PubMed DOI PMC
Gaworski C.L., Vollmuth T.A., York R.G., Heck J.D., Aranyi C. Developmental toxicity evaluation of inhaled citral in Sprague-Dawley Rats. Food Chem. Toxicol. 1992;30:269–275. doi: 10.1016/0278-6915(92)90003-4. PubMed DOI
Lulekal E., Tesfaye S., Gebrechristos S., Dires K., Zenebe T., Zegeye N., Feleke G., Kassahun A., Shiferaw Y., Mekonnen A. Phytochemical analysis and evaluation of skin irritation, acute and sub-acute toxicity of Cymbopogon citratus essential oil in mice and rabbits. Toxicol. Rep. 2019;6:1289–1294. doi: 10.1016/j.toxrep.2019.11.002. PubMed DOI PMC
El-Kased R.F., El-Kersh D.M. GC–MS profiling of naturally extracted essential oils: Antimicrobial and beverage preservative actions. Life. 2022;12:1587. doi: 10.3390/life12101587. PubMed DOI PMC
Mohamed Hanaa A.R., Sallam Y.I., El-Leithy A.S., Aly S.E. Lemongrass (Cymbopogon citratus) essential oil as affected by drying methods. Ann. Agric. Sci. 2012;57:113–116. doi: 10.1016/j.aoas.2012.08.004. DOI
Gao S., Liu G., Li J., Chen J., Li L., Li Z., Zhang X., Zhang S., Thorne R.F., Zhang S. Antimicrobial activity of lemongrass essential oil (Cymbopogon flexuosus) and its active component citral against dual-species biofilms of Staphylococcus aureus and Candida species. Front. Cell Infect. Microbiol. 2020;10:603858. doi: 10.3389/fcimb.2020.603858. PubMed DOI PMC
Bhawna K., Sharma S.K., Singh L., Mohapatra S., Singh T. Cyperus scariosus: A potential herb. Int. Res. J. Pharm. 2013;4:17–20. doi: 10.7897/2230-8407.04604. DOI
Jha V., Patel R., Devkar S., Shaikh M.A., Rai D., Walunj S., Koli J., Jain T., Jadhav N., Shruti Narvekar S., et al. Chemical composition, bioactive potential, and thermal behaviour of Cyperus scariosus essential oil. Chem. Sci. Int. J. 2022;31:1–14. doi: 10.9734/CSJI/2022/v31i230276. DOI
Clery R.A., Cason J.R.L., Zelenay V. Constituents of cypriol oil (Cyperus scariosus R. Br.): N-containing molecules and key aroma components. J. Agric. Food Chem. 2016;64:4566–4573. doi: 10.1021/acs.jafc.6b00680. PubMed DOI
Kumar A., Niranjan A., Lehri A., Srivastava R.K., Tewari S.K. Effect of geographical climatic conditions on yield, chemical composition and carbon isotope composition of nagarmotha (Cyperus scariosus R. Br.) essential oil. J. Essent. Oil-Bear. Plants. 2016;19:368–373. doi: 10.1080/0972060X.2016.1148642. DOI
Houdkova M., Chaure A., Doskocil I., Havlik J., Kokoska L. New broth macrodilution volatilization method for antibacterial susceptibility testing of volatile agents and evaluation of their toxicity using modified MTT assay in vitro. Molecules. 2021;26:4179. doi: 10.3390/molecules26144179. PubMed DOI PMC
Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Disk Susceptibility Tests. 11th ed. CLSI; Wayne, PA, USA: 2012. p. 32. Approved Standard, CLSI Document M02-A11.
AOAC International . Official Methods of Analysis, Official Method 925.10. Association of Official Analytical Chemists; Gaithersburg, MD, USA: 2012.
European Pharmacopoeia . Published in Accordance with the Convention on the Elaboration of a European Pharmacopoeia. 7th ed. Council of Europe; Strasbourg, France: 2013. (European Treaty Series No. 50).
Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing. CLSI; Wayne, PA, USA: 2015. 25th Informational Supplement M100-S25.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:56–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI
Kokjohn K., Bradley M., Griffiths B., Ghannoum M. Evaluation of in vitro activity of ciclopirox olamine, butenafine HCl and econazole nitrate against dermatophytes, yeasts and bacteria. Int. J. Dermatol. 2003;42:11–17. doi: 10.1046/j.1365-4362.42.s1.4.x. PubMed DOI
Trevor A.J., Katzung B.G., Kruidering-Hall M. Katzung and Trevor’s Pharmacology Examination and Board Review. 11th ed. McGraw-Hill Education; New York, NY, USA: 2015. p. 20.