Validation of Broth Macrodilution Volatilization Method for Testing of Essential Oils in Liquid and Vapor Phase: Chemical Composition, Cytotoxicity, and Antibacterial Effect of Indian Medicinal Plants against Pneumonia-Causing Pathogens

. 2023 Jun 07 ; 28 (12) : . [epub] 20230607

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37375180

Grantová podpora
LM2023064 METROFOOD-CZ
IGA.20233109 Czech University of Life Sciences Prague

Essential oils (EOs) have great potential in inhalation therapy for the treatment of respiratory infections. However, innovative methods for evaluation of antimicrobial activity of their vapors are still needed. The current study reports validation of the broth macrodilution volatilization method for assessment of the antibacterial properties of EOs and shows the growth-inhibitory effect of Indian medicinal plants against pneumonia-causing bacteria in liquid and vapor phase. Among all samples tested, Trachyspermum ammi EO exhibits the strongest antibacterial effect against Haemophilus influenzae, with minimum inhibitory concentrations of 128 and 256 µg/mL in the liquid and vapor phases, respectively. Furthermore, Cyperus scariosus EO is found to be nontoxic to normal lung fibroblasts assessed by modified thiazolyl blue tetrazolium bromide assay. Chemical analysis performed using gas chromatography-mass spectrometry identified α-citral, cyperotundone, and thymol as the main constituents of Cymbopogon citratus, C. scariosus, and T. ammi EOs, respectively. In addition, β-cymene is identified as the major compound of T. ammi EO vapors when analyzed using solid-phase microextraction and gas-tight syringe sampling techniques. This study demonstrates the validity of the broth macrodilution volatilization method for antimicrobial screening of volatile compounds in the vapor phase and suggests the therapeutic potential of Indian medicinal plants in inhalation therapy.

Zobrazit více v PubMed

Grossman T.H., Fyfe C., O’Brien W., Hackel M., Minyard M.B., Waites K.B., Dubois J., Murphy T.M., Slee A.M., Weiss W.J., et al. Fluorocycline TP-271 is potent against complicated community-acquired bacterial pneumonia pathogens. mSphere. 2017;2:e00004-17. doi: 10.1128/mSphere.00004-17. PubMed DOI PMC

Baron S. Medical Microbiology. 4th ed. University of Texas Medical Branch at Galveston; Galveston, TX, USA: 1996. PubMed

Torres A., Cilloniz C., Niederman M.S., Menendez R., Chalmers J.D., Wunderink R.G., van der Poll T. Pneumonia. Nat. Rev. Dis. Primers. 2021;7:25. doi: 10.1038/s41572-021-00259-0. PubMed DOI

Eshwara V.K., Mukhopadhyay C., Rello J. Community-acquired bacterial pneumonia in adults: An update. Indian J. Med. Res. 2020;151:288. doi: 10.4103/ijmr.IJMR_1678_19. PubMed DOI PMC

Borghardt J.M., Kloft C., Sharma A. Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic processes. Can. Respir. J. 2018;2018:2732017. doi: 10.1155/2018/2732017. PubMed DOI PMC

Quon B.S., Goss C.H., Ramsey B.W. Inhaled antibiotics for lower airway infections. Ann. Am. Thorac. Soc. 2014;11:425–427. doi: 10.1513/AnnalsATS.201311-395FR. PubMed DOI PMC

Tiddens H.A.W.M., Bos A.C., Mouton J.W., Devadason S., Janssens H.M. Inhaled antibiotics: Dry or wet? Eur. Clin. Respir. J. 2014;44:1308–1318. doi: 10.1183/09031936.00090314. PubMed DOI

Netopilova M., Houdkova M., Urbanova K., Rondevaldova J., Damme P., Kokoska L. In vitro antimicrobial combinatory effect of Cinnamomum cassia essential oil with 8-hydroxyquinoline against Staphylococcus aureus in liquid and vapour phase. J. Appl. Microbiol. 2020;129:906–915. doi: 10.1111/jam.14683. PubMed DOI

Baser K.H.C., Buchbauer G. Handbook of Essential Oils: Science, Technology, and Applications. 3rd ed. CRC Press; Boca Raton, FL, USA: 2020.

Horvath G., Acs K. Essential oils in the treatment of respiratory tract diseases highlighting their role in bacterial infections and their anti-inflammatory action: A review. Flavour Fragr. J. 2015;30:339–340. doi: 10.1002/ffj.3252. PubMed DOI PMC

Kokoska L., Kloucek P., Leuner O., Novy P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr. Med. Chem. 2019;26:5501–5541. doi: 10.2174/0929867325666180831144344. PubMed DOI

Hashemi S.M.B., Khaneghah A.M., Sant’Ana A.S. Essential Oils in Food Processing: Chemistry, Safety and Applications. 1st ed. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2018.

Houdkova M., Rondevaldova J., Doskocil I., Kokoska L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia. 2017;118:56–62. doi: 10.1016/j.fitote.2017.02.008. PubMed DOI

Jugreet B.S., Suroowan S., Rengasamy R.R.K., Mahomoodally M.F. Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends Food Sci. Technol. 2020;101:89–105. doi: 10.1016/j.tifs.2020.04.025. DOI

Ross C.F. Comprehensive Sampling and Sample Preparation. Elsevier; Amsterdam, The Netherlands: 2012. Headspace analysis; pp. 27–50.

Schweitzer B., Balazs V.L., Molnar S., Szogi-Tatar B., Boszormenyi A., Palkovics T., Horvath G., Schneider G. Antibacterial effect of lemongrass (Cymbopogon citratus) against the aetiological agents of pitted keratolyis. Molecules. 2022;27:1423. doi: 10.3390/molecules27041423. PubMed DOI PMC

Liu L., Wang Q., Tang J., Zhang Z. Component analysis of volatile oil from fruits of Trachyspermum ammi by headspace solid-phase microextraction GC-MS. Chin. J. Pharm. Anal. 2013;33:607–610.

Upasani S.V., Beldar V.G., Tatiya A.U., Upasani M.S., Surana S.J., Patil D.S. Ethnomedicinal plants used for snakebite in India: A brief overview. Integr. Med. Res. 2017;6:114–115. doi: 10.1016/j.imr.2017.03.001. PubMed DOI PMC

Bhattacharyya R., Bhattacharya S., Chaudhuri S. Conservation and documentation of the medicinal plant resources of India. Biodivers. Conserv. 2006;15:2705–2717. doi: 10.1007/s10531-005-6974-4. DOI

Vaidya V.N., Tatiya A.U., Elango A., Kukkupuni S.K., Vishnuprasad C.N. Need for comprehensive standardization strategies for marketed Ayurveda formulations. J. Ayurveda Integr. Med. 2018;9:312–315. doi: 10.1016/j.jaim.2018.09.002. PubMed DOI PMC

Ningthoujam S.S., Talukdar A.D., Potsangbam K.S., Choudhury M.D. Traditional uses of herbal vapour therapy in Manipur, Northeast India: An ethnobotanical survey. J. Ethnopharmacol. 2013;147:136–147. doi: 10.1016/j.jep.2012.12.056. PubMed DOI

Shah G., Shri R., Panchal V., Sharma N., Singh B., Mann A.S. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass) J. Adv. Pharm. Technol. Res. 2011;2:87. doi: 10.4103/2231-4040.79796. PubMed DOI PMC

Bairwa R., Sodha R.S., Rajawat B.S. Trachyspermum ammi. Pharmacogn. Rev. 2012;6:56–60. doi: 10.4103/0973-7847.95871. PubMed DOI PMC

Singh V., Ali M., Negi A., Sultana S. Analysis and antimicrobial activity of the essential oil of Cyperus rotundus L. rhizomes. J. Med. Plants Stud. 2018;6:101–105.

Inouye S., Takizawa T., Yamaguchi H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemother. 2001;47:565–573. doi: 10.1093/jac/47.5.565. PubMed DOI

Amat S., Baines D., Alexander T.W. A Vapour phase assay for evaluating the antimicrobial activities of essential oils against bovine respiratory bacterial pathogens. Lett. Appl. Microbiol. 2017;65:489–495. doi: 10.1111/lam.12804. PubMed DOI

Houdkova M., Kokoska L. Volatile antimicrobial agents and in vitro methods for evaluating their activity in the vapour phase: A review. Planta Med. 2020;86:822–857. doi: 10.1055/a-1158-4529. PubMed DOI

Cimino C., Maurel O.M., Musumeci T., Bonaccorso A., Drago F., Souto E.M.B., Pignatello R., Carbone C. Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems. Pharmaceutics. 2021;13:327. doi: 10.3390/pharmaceutics13030327. PubMed DOI PMC

Toukourou H., Gbaguidi F., Quetin-Leclercq J. Phytochemical composition, antibacterial activity against sore throat pathogens and toxicological evaluation of Cymbopogon citratus essential oil from Benin. J. Pharmacogn. Phytochem. 2019;8:3258–3263.

Special Programme for Research and Training in Tropical Diseases. [(accessed on 21 December 2022)]. Available online: http://www.who.int/tdr/grants/workplans/en/cytotoxicity_invitro.pdf.

Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectorscopy. 4th ed. Allured Publishing Corp; Carol Stream, IL, USA: 2007.

National Institute of Standards and Technology. [(accessed on 27 March 2023)]; Available online: https://www.nist.gov/

Paul S., Dubey R.C., Maheswari D.K., Kang S.C. Trachyspermum ammi (L.) fruit essential oil influencing on membrane permeability and surface characteristics in inhibiting food-borne pathogens. Food Control. 2011;22:725–731. doi: 10.1016/j.foodcont.2010.11.003. DOI

Jebelli Javan A., Salimiraad S., Khorshidpour B. Combined effect of Trachyspermum ammi essential oil and propolis ethanolic extract on some foodborne pathogenic bacteria. Vet. Res. Forum. 2019;10:235–240. doi: 10.30466/vrf.2019.72986.1991. PubMed DOI PMC

Vitali L.A., Beghelli D., Nya P.C.B., Bistoni O., Cappellacci L., Damiano S., Lupidi G., Maggi F., Orsomando G., Papa F., et al. Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arab. J. Chem. 2016;9:775–786. doi: 10.1016/j.arabjc.2015.06.002. DOI

Gardener A.C., Trifan A., Spac A., Brebu M., Miron A., Aprotosoaie A.C. Antibacterial activity of traditional spices against lower respiratory tract pathogens: Combinatorial effects of Trachyspermum ammi essential oil with conventional antibiotics. Lett. Appl. Microbiol. 2018;67:449–457. doi: 10.1111/lam.13069. PubMed DOI

Vazirian M., Hekmati D., Ostad S., Manayi A. Toxicity evaluation of essential oil of Trachyspermum ammi in acute and sub-chronic toxicity experiments. J. Med. Plants. 2019;18:70–77.

ECHA European Chemicals Agency. [(accessed on 26 February 2023)]. Available online: https://echa.europa.eu/

Xie K., Tashkin D.P., Luo M.Z., Zhang J.Y. Chronic toxicity of inhaled thymol in lungs and respiratory tracts in mouse model. Pharmacol. Res. Perspect. 2019;7:e00516. doi: 10.1002/prp2.516. PubMed DOI PMC

Howyzeh M.S., Noori S.A.S., Shariati J.V., Niazian M. Essential oil chemotype of Iranian Ajowan (Trachyspermum ammi L.) J. Essent. Oil-Bear. Plants. 2018;21:273–276. doi: 10.1080/0972060X.2018.1433074. DOI

Modareskia M., Fattahi M., Mirjalili M.H. Thymol screening, phenolic contents, antioxidant and antibacterial activities of Iranian populations of Trachyspermum ammi (L.) Sprague (Apiaceae) Sci. Rep. 2022;12:15645. doi: 10.1038/s41598-022-19594-7. PubMed DOI PMC

Antih J., Houdkova M., Urbanova K., Kokoska L. Antibacterial activity of Thymus vulgaris L. essential oil vapours and their GC/MS analysis using solid-phase microextraction and syringe headspace sampling techniques. Molecules. 2021;26:6553. doi: 10.3390/molecules26216553. PubMed DOI PMC

Perestrelo R., Silva C.L., Rodrigues F., Caldeira M., Câmara J.S. A powerful approach to explore the potential of medicinal plants as a natural source of odor and antioxidant compounds. J. Food Sci. Technol. 2016;53:132–144. doi: 10.1007/s13197-015-2022-x. PubMed DOI PMC

Chialva F., Gabri G., Liddle P.A.P., Ulian F. Qualitative evaluation of aromatic herbs by direct headspace GC analysis. Applications of the method and comparison with the traditional analysis of essential oils. J. High. Resolut. Chromatogr. 1982;5:182–188. doi: 10.1002/jhrc.1240050403. DOI

Laird K., Phillips C. Vapour phase: A potential future use for essential oils as antimicrobials? Lett. Appl. Microbiol. 2012;54:169–174. doi: 10.1111/j.1472-765X.2011.03190.x. PubMed DOI

Manvitha K., Bidya B. Review on pharmacological activity of Cymbopogon citratus. Int. J. Herb. Med. 2014;6:5–7.

Valkova V., Duranova H., Galovicova L., Borotova P., Vukovic N.L., Vukic M., Kacaniova M. Cymbopogon citratus essential oil: Its application as an antimicrobial agent in food preservation. Agronomy. 2022;12:155. doi: 10.3390/agronomy12010155. DOI

Inouye S., Yamaguchi H., Takizawa T. Screening of the antibacterial effects of a variety of essential oils on respiratory tract pathogens, using a modified dilution assay method. J. Infect. Chemother. 2001;7:251–254. doi: 10.1007/s101560170022. PubMed DOI

Houdkova M., Albarico G., Doskocil I., Tauchen J., Urbanova K., Tulin E.E., Kokoska L. Vapors of volatile plant-derived products significantly affect the results of antimicrobial, antioxidative and cytotoxicity microplate-based assays. Molecules. 2020;25:6004. doi: 10.3390/molecules25246004. PubMed DOI PMC

Gaworski C.L., Vollmuth T.A., York R.G., Heck J.D., Aranyi C. Developmental toxicity evaluation of inhaled citral in Sprague-Dawley Rats. Food Chem. Toxicol. 1992;30:269–275. doi: 10.1016/0278-6915(92)90003-4. PubMed DOI

Lulekal E., Tesfaye S., Gebrechristos S., Dires K., Zenebe T., Zegeye N., Feleke G., Kassahun A., Shiferaw Y., Mekonnen A. Phytochemical analysis and evaluation of skin irritation, acute and sub-acute toxicity of Cymbopogon citratus essential oil in mice and rabbits. Toxicol. Rep. 2019;6:1289–1294. doi: 10.1016/j.toxrep.2019.11.002. PubMed DOI PMC

El-Kased R.F., El-Kersh D.M. GC–MS profiling of naturally extracted essential oils: Antimicrobial and beverage preservative actions. Life. 2022;12:1587. doi: 10.3390/life12101587. PubMed DOI PMC

Mohamed Hanaa A.R., Sallam Y.I., El-Leithy A.S., Aly S.E. Lemongrass (Cymbopogon citratus) essential oil as affected by drying methods. Ann. Agric. Sci. 2012;57:113–116. doi: 10.1016/j.aoas.2012.08.004. DOI

Gao S., Liu G., Li J., Chen J., Li L., Li Z., Zhang X., Zhang S., Thorne R.F., Zhang S. Antimicrobial activity of lemongrass essential oil (Cymbopogon flexuosus) and its active component citral against dual-species biofilms of Staphylococcus aureus and Candida species. Front. Cell Infect. Microbiol. 2020;10:603858. doi: 10.3389/fcimb.2020.603858. PubMed DOI PMC

Bhawna K., Sharma S.K., Singh L., Mohapatra S., Singh T. Cyperus scariosus: A potential herb. Int. Res. J. Pharm. 2013;4:17–20. doi: 10.7897/2230-8407.04604. DOI

Jha V., Patel R., Devkar S., Shaikh M.A., Rai D., Walunj S., Koli J., Jain T., Jadhav N., Shruti Narvekar S., et al. Chemical composition, bioactive potential, and thermal behaviour of Cyperus scariosus essential oil. Chem. Sci. Int. J. 2022;31:1–14. doi: 10.9734/CSJI/2022/v31i230276. DOI

Clery R.A., Cason J.R.L., Zelenay V. Constituents of cypriol oil (Cyperus scariosus R. Br.): N-containing molecules and key aroma components. J. Agric. Food Chem. 2016;64:4566–4573. doi: 10.1021/acs.jafc.6b00680. PubMed DOI

Kumar A., Niranjan A., Lehri A., Srivastava R.K., Tewari S.K. Effect of geographical climatic conditions on yield, chemical composition and carbon isotope composition of nagarmotha (Cyperus scariosus R. Br.) essential oil. J. Essent. Oil-Bear. Plants. 2016;19:368–373. doi: 10.1080/0972060X.2016.1148642. DOI

Houdkova M., Chaure A., Doskocil I., Havlik J., Kokoska L. New broth macrodilution volatilization method for antibacterial susceptibility testing of volatile agents and evaluation of their toxicity using modified MTT assay in vitro. Molecules. 2021;26:4179. doi: 10.3390/molecules26144179. PubMed DOI PMC

Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Disk Susceptibility Tests. 11th ed. CLSI; Wayne, PA, USA: 2012. p. 32. Approved Standard, CLSI Document M02-A11.

AOAC International . Official Methods of Analysis, Official Method 925.10. Association of Official Analytical Chemists; Gaithersburg, MD, USA: 2012.

European Pharmacopoeia . Published in Accordance with the Convention on the Elaboration of a European Pharmacopoeia. 7th ed. Council of Europe; Strasbourg, France: 2013. (European Treaty Series No. 50).

Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing. CLSI; Wayne, PA, USA: 2015. 25th Informational Supplement M100-S25.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:56–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI

Kokjohn K., Bradley M., Griffiths B., Ghannoum M. Evaluation of in vitro activity of ciclopirox olamine, butenafine HCl and econazole nitrate against dermatophytes, yeasts and bacteria. Int. J. Dermatol. 2003;42:11–17. doi: 10.1046/j.1365-4362.42.s1.4.x. PubMed DOI

Trevor A.J., Katzung B.G., Kruidering-Hall M. Katzung and Trevor’s Pharmacology Examination and Board Review. 11th ed. McGraw-Hill Education; New York, NY, USA: 2015. p. 20.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...