Antibacterial Activity of Thymus vulgaris L. Essential Oil Vapours and Their GC/MS Analysis Using Solid-Phase Microextraction and Syringe Headspace Sampling Techniques
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA 20213109
Česká Zemědělská Univerzita v Praze
LM2018100
METROFOOD-CZ
PubMed
34770961
PubMed Central
PMC8588168
DOI
10.3390/molecules26216553
PII: molecules26216553
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial activity, broth microdilution, headspace analysis, respiratory infections, thyme, vapour phase,
- MeSH
- antibakteriální látky chemie izolace a purifikace farmakologie MeSH
- Haemophilus influenzae účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- mikroextrakce na pevné fázi * MeSH
- oleje prchavé chemie izolace a purifikace farmakologie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- Staphylococcus aureus účinky léků MeSH
- Streptococcus pyogenes účinky léků MeSH
- Thymus (rostlina) chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- oleje prchavé MeSH
While the inhalation of Thymus vulgaris L. essential oil (EO) is commonly approved for the treatment of mild respiratory infections, there is still a lack of data regarding the antimicrobial activity and chemical composition of its vapours. The antibacterial activity of the three T. vulgaris EOs against respiratory pathogens, including Haemophilus influenzae, Staphylococcus aureus, and Streptococcus pyogenes, was assessed in both liquid and vapour phases using the broth microdilution volatilisation (BMV) method. With the aim of optimising a protocol for the characterisation of EO vapours, their chemical profiles were determined using two headspace sampling techniques coupled with GC/MS: solid-phase microextraction (HS-SPME) and syringe headspace sampling technique (HS-GTS). All EO sample vapours exhibited antibacterial activity with minimum inhibitory concentrations (MIC) ranging from 512 to 1024 μg/mL. According to the sampling technique used, results showed a different distribution of volatile compounds. Notably, thymol was found in lower amounts in the headspace-peak percentage areas below 5.27% (HS-SPME) and 0.60% (HS-GTS)-than in EOs (max. 48.65%), suggesting that its antimicrobial effect is higher in vapour. Furthermore, both headspace sampling techniques were proved to be complementary for the analysis of EO vapours, whereas HS-SPME yielded more accurate qualitative results and HS-GTS proved a better technique for quantitative analysis.
Zobrazit více v PubMed
Nguyen T.K.P., Tran T.H., Roberts C.L., Graham S.M., Marais B.J. Child pneumonia—Focus on the Western Pacific Region. Paediatr. Respir. Rev. 2017;21:102–110. doi: 10.1016/j.prrv.2016.07.004. PubMed DOI PMC
Pneumonia: The Forgotten Killer of Children. [(accessed on 5 January 2021)]. Available online: https://apps.who.int/iris/handle/10665/43640.
Baron S. Medical Microbiology. 4th ed. University of Texas Medical Branch at Galveston; Galveston, TX, USA: 1996. PubMed
Houdkova M., Urbanova K., Doskocil I., Rondevaldova J., Novy P., Nguon S., Chrun R., Kokoska L. In vitro growth-inhibitory effect of Cambodian essential oils against pneumonia causing bacteria in liquid and vapour phase and their toxicity to lung fibroblasts. S. Afr. J. Bot. 2018;118:85–97. doi: 10.1016/j.sajb.2018.06.005. DOI
World Health Organization—Forum of International Respiratory Societies . The Global Impact of Respiratory Disease. 2nd ed. WHO; Geneva, Switzerland: 2017.
Wang X., Li Y., O’Brien K.L., Madhi S.A., Widdowson M.-A., Byass P., Omer S.B., Abbas Q., Ali A., Amu A., et al. Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: A systematic review and modelling study. Lancet Glob. Health. 2020;8:497–510. doi: 10.1016/S2214-109X(19)30545-5. PubMed DOI PMC
Kokoska L., Kloucek P., Leuner O., Novy P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr. Med. Chem. 2019;26:5501–5541. doi: 10.2174/0929867325666180831144344. PubMed DOI
Borghardt J.M., Kloft C., Sharma A. Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic processes. Can. Respir. J. 2018;2018:2732017. doi: 10.1155/2018/2732017. PubMed DOI PMC
Döring G., Hoiby N. Consensus study group early intervention and prevention of lung disease in cystic fibrosis: A European consensus. J. Cyst. Fibros. 2004;3:67–91. doi: 10.1016/j.jcf.2004.03.008. PubMed DOI
de Pablo E., Fernández-García R., Ballesteros M.P., Torrado J.J., Serrano D.R. Nebulised antibiotherapy: Conventional versus nanotechnology-based approaches, is targeting at a nano scale a difficult subject? Ann. Transl. Med. 2017;5:448. doi: 10.21037/atm.2017.09.17. PubMed DOI PMC
Schreiber M.P., Shorr A.F. Inhaled antibiotics for the treatment of pneumonia. Curr. Opin. Pulm. Med. 2019;25:289–293. doi: 10.1097/MCP.0000000000000557. PubMed DOI
Ehrmann S., Chastre J., Diot P., Lu Q. Nebulized antibiotics in mechanically ventilated patients: A challenge for translational research from technology to clinical care. Ann. Intensive Care. 2017;7:78. doi: 10.1186/s13613-017-0301-6. PubMed DOI PMC
Tiddens H.A.W.M., Bos A.C., Mouton J.W., Devadason S., Janssens H.M. Inhaled antibiotics: Dry or wet? Eur. Clin. Respir. J. 2014;44:1308–1318. doi: 10.1183/09031936.00090314. PubMed DOI
de Jongh F.H.C., Rinkel M.J.G., Hoeijmakers H.W.M. Aerosol deposition in the upper airways of a child. J. Aerosol Med. 2006;19:279–289. doi: 10.1089/jam.2006.19.279. PubMed DOI
Laube B.L., Jashnani R., Dalby R.N., Zeitlin P.L. Targeting aerosol deposition in patients with cystic fibrosis: Effects of alterations in particle size and inspiratory flow rate. Chest. 2000;118:1069–1076. doi: 10.1378/chest.118.4.1069. PubMed DOI
Heinrich M. Fundamentals of Pharmacognosy and Phytotherapy. 2nd ed. Elsevier; Edinburgh, UK: 2012.
Netopilova M., Houdkova M., Urbanova K., Rondevaldova J., Damme P., Kokoska L. In vitro antimicrobial combinatory effect of Cinnamomum cassia essential oil with 8-hydroxyquinoline against Staphylococcus aureus in liquid and vapour phase. J. Appl. Microbiol. 2020;129:906–915. doi: 10.1111/jam.14683. PubMed DOI
Başer K.H.C., Buchbauer G. Handbook of Essential Oils: Science, Technology, and Applications. 3rd ed. CRC Press; Boca Raton, FL, USA: 2020.
Ghahremani-Chabok A., Bagheri-Nesami M., Shorofi S.A., Mousavinasab S.N., Gholipour-Baradari A., Saeedi M. The effects of Thymus vulgaris inhalation therapy on airway status and oxygen saturation of patients under mechanical ventilation: A randomized clinical trial. Adv. Integr. Med. 2020;8:92–100. doi: 10.1016/j.aimed.2020.08.007. DOI
Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008;46:446–475. doi: 10.1016/j.fct.2007.09.106. PubMed DOI
Pisoschi A., Pop A., Cecilia G., Turcuş V., Olah N.-K., Mathe E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 2017;143:922–935. doi: 10.1016/j.ejmech.2017.11.095. PubMed DOI
Tongnuanchan P., Benjakul S. Essential oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci. 2014;79:R1231–R1249. doi: 10.1111/1750-3841.12492. PubMed DOI
HMPC Monographs: Overview of Recommendations for the Uses of Herbal Medicinal Products in the Paediatric Population. [(accessed on 6 January 2021)]. Available online: https://www.ema.europa.eu/en/documents/other/hmpc-monographs-overview-recommendations-uses-herbal-medicinal-products-paediatric-population_en.pdf.
Assessment Report on Thymus vulgaris L., Thymus zygis L., Aetheroleum. [(accessed on 6 January 2021)]. Available online: https://www.ema.europa.eu/en/documents/herbal-report/draft-assessment-report-thymus-vulgaris-l-thymus-zygis-l-aetheroleum-revision-1_en.pdf.
Nikolić M., Glamočlija J., Ferreira I.C.F.R., Calhelha R.C., Fernandes Â., Marković T., Marković D., Giweli A., Soković M. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind. Crop. Prod. 2014;52:183–190. doi: 10.1016/j.indcrop.2013.10.006. DOI
Pina-Vaz C., Rodrigues A.G., Pinto E., Costa-de-Oliveira S., Tavares C., Salgueiro L., Cavaleiro C., Gonçalves M., de Oliveira M. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad. Dermatol. Venereol. 2004;18:73–78. doi: 10.1111/j.1468-3083.2004.00886.x. PubMed DOI
Fani M., Kohanteb J. In vitro antimicrobial activity of Thymus vulgaris essential oil against major oral pathogens. J. Evid. Based Complement. Altern. Med. 2017;22:660–666. doi: 10.1177/2156587217700772. PubMed DOI PMC
Inouye S., Takizawa T., Yamaguchi H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemother. 2001;47:565–573. doi: 10.1093/jac/47.5.565. PubMed DOI
Tullio V., Nostro A., Mandras N., Dugo P., Banche G., Cannatelli M.A., Cuffini A.M., Alonzo V., Carlone N.A. Antifungal activity of essential oils against filamentous fungi determined by broth microdilution and vapour contact methods. J. Appl. Microbiol. 2007;102:1544–1550. doi: 10.1111/j.1365-2672.2006.03191.x. PubMed DOI
M100Ed30|Performance Standards for Antimicrobial Susceptibility Testing, 30th ed. [(accessed on 2 February 2021)]. Available online: https://clsi.org/standards/products/microbiology/documents/m100/
Borugă O., Jianu C., Mişcă C., Goleţ I., Gruia A., Horhat F. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life. 2014;7:56–60. PubMed PMC
Ács K., Balázs V.L., Kocsis B., Bencsik T., Böszörményi A., Horváth G. Antibacterial activity evaluation of selected essential oils in liquid and vapor phase on respiratory tract pathogens. BMC Complement. Altern. Med. 2018;18:227. doi: 10.1186/s12906-018-2291-9. PubMed DOI PMC
Bueno J. Models of evaluation of antimicrobial activity of essential oils in vapour phase: A promising use in healthcare decontamination. Nat. Volatiles Essent. Oils. 2015;2:16–29.
Edwards-Jones V., Buck R., Shawcross S.G., Dawson M.M., Dunn K. The effect of essential oils on methicillin-resistant Staphylococcus aureus using a dressing model. Burns. 2004;30:772–777. doi: 10.1016/j.burns.2004.06.006. PubMed DOI
Houdkova M., Rondevaldova J., Doskocil I., Kokoska L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia. 2017;118:56–62. doi: 10.1016/j.fitote.2017.02.008. PubMed DOI
Nedorostova L., Kloucek P., Kokoska L., Stolcova M., Pulkrabek J. Antimicrobial properties of selected essential oils in vapour phase against foodborne bacteria. Food Control. 2009;20:157–160. doi: 10.1016/j.foodcont.2008.03.007. DOI
López P., Sánchez C., Batlle R., Nerín C. Solid- and vapor-phase antimicrobial activities of six essential oils: Susceptibility of selected foodborne bacterial and fungal strains. J. Agric. Food Chem. 2005;53:6939–6946. doi: 10.1021/jf050709v. PubMed DOI
Laird K., Phillips C. Vapour Phase: A potential future use for essential oils as antimicrobials?: Essential oil vapours and their antimicrobial activity. Lett. Appl. Microbiol. 2012;54:169–174. doi: 10.1111/j.1472-765X.2011.03190.x. PubMed DOI
Zhang W., Liang X. Headspace gas chromatography-mass spectrometry for volatile components analysis in Ipomoea cairica (L.) sweet leaves: Natural deep eutectic solvents as green extraction and dilution matrix. Foods. 2019;8:205. doi: 10.3390/foods8060205. PubMed DOI PMC
Ross C.F. Comprehensive Sampling and Sample Preparation. Elsevier; Amsterdam, The Netherlands: 2012. Headspace analysis; pp. 27–50.
Lugo-Estrada L., Galindo-Rodríguez S.A., Pérez-López L.A., de Torres N.W., Álvarez-Román R. Headspace–Solid-phase microextraction gas chromatography method to quantify Thymus vulgaris essential oil in polymeric nanoparticles. Pharmacogn. Mag. 2019;15:473
López P., Sánchez C., Batlle R., Nerín C. Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms. J. Agric. Food Chem. 2007;55:4348–4356. doi: 10.1021/jf063295u. PubMed DOI
Reyes-Jurado F., Navarro-Cruz A.R., Ochoa-Velasco C.E., Palou E., López-Malo A., Ávila-Sosa R. Essential oils in vapor phase as alternative antimicrobials: A review. Food Sci. Nutr. 2020;60:1641–1650. doi: 10.1080/10408398.2019.1586641. PubMed DOI
Snow N.H., Bullock G.P. Novel techniques for enhancing sensitivity in static headspace extraction-gas chromatography. J. Chromatogr. A. 2010;1217:2726–2735. doi: 10.1016/j.chroma.2010.01.005. PubMed DOI
Bicchi C. Encyclopedia of Separation Science. Elsevier; Amsterdam, The Netherlands: 2000. Essential oils|gas chromatography; pp. 2744–2755.
Murray R.A. Limitations to the use of solid-phase microextraction for quantitation of mixtures of volatile organic sulfur compounds. Anal. Chem. 2001;73:1646–1649. doi: 10.1021/ac001176m. PubMed DOI
Regti A., Kassimi A.E., Laamari M.R., Haddad M.E. Competitive adsorption and optimization of binary mixture of textile dyes: A factorial design analysis. J. Assoc. Arab Univ. Basic Appl. Sci. 2017;24:1–9. doi: 10.1016/j.jaubas.2016.07.005. DOI
Kolb B., Ettre L.S. Static Headspace-Gas Chromatography: Theory and Practice. 2nd ed. Wiley; Hoboken, NJ, USA: 2006.
Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectorscopy. 4th ed. Allured Publishing Corp; Carol Stream, IL, USA: 2007.
National Institute of Standards and Technology. [(accessed on 15 December 2020)]; Available online: https://www.nist.gov/
Satyal P., Murray B., McFeeters R., Setzer W. Essential oil characterization of Thymus vulgaris from various geographical locations. Foods. 2016;5:70. doi: 10.3390/foods5040070. PubMed DOI PMC
Houdkova M., Kokoska L. Volatile antimicrobial agents and In vitro methods for evaluating their activity in the vapour phase: A review. Planta Med. 2020;86:822–857. doi: 10.1055/a-1158-4529. PubMed DOI
Smith-Palmer A., Stewart J., Fyfe L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett. Appl. Microbiol. 1998;26:118–122. doi: 10.1046/j.1472-765X.1998.00303.x. PubMed DOI
Mann C.M., Cox S.D., Markham J.L. The outer membrane of Pseudomonas aeruginosa NCTC 6749 contributes to its tolerance to the essential oil of Melaleuca alternifolia (tea tree oil) Lett. Appl. Microbiol. 2000;30:294–297. doi: 10.1046/j.1472-765x.2000.00712.x. PubMed DOI
Reyes-Jurado F., Cervantes-Rincón T., Bach H., López-Malo A., Palou E. Antimicrobial activity of Mexican oregano (Lippia berlandieri), Thyme (Thymus vulgaris), and Mustard (Brassica nigra) essential oils in gaseous phase. Ind. Crops Prod. 2019;131:90–95. doi: 10.1016/j.indcrop.2019.01.036. DOI
Nezhadali A., Nabavi M., Rajabian Noghundar M., Akbarpour M., Pourali P., Amini F. Chemical variation of leaf essential oil at different stages of plant growth and in vitro antibacterial activity of Thymus vulgaris Lamiaceae, from Iran. Beni-Suef Univ. J. Basic Appl. Sci. 2014;3:87–92. doi: 10.1016/j.bjbas.2014.05.001. DOI
Kloucek P., Smid J., Frankova A., Kokoska L., Valterová I., Pavela R. Fast screening method for assessment of antimicrobial activity of essential oils in vapor phase. Food Res. Int. 2012;47:161–165. doi: 10.1016/j.foodres.2011.04.044. DOI
Muthaiyan A., Biswas D., Crandall P.G., Wilkinson B.J., Ricke S.C. Application of orange essential oil as an antistaphylococcal agent in a dressing model. BMC Complement. Altern. Med. 2012;12:125. doi: 10.1186/1472-6882-12-125. PubMed DOI PMC
Wiegand I., Hilpert K., Hancock R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008;3:163–175. doi: 10.1038/nprot.2007.521. PubMed DOI
Mottaleb M.A., Meziani M.J., Rafiq Islam M. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. Wiley; Hoboken, NJ, USA: 2006. Solid-phase microextraction (SPME) and its application to natural products; pp. 105–127.
Seo H.S., Beuchat L.R., Kim H., Ryu J.H. Development of an experimental apparatus and protocol for determining antimicrobial activities of gaseous plant essential oils. Int. J. Food Microbiol. 2015;215:95–100. doi: 10.1016/j.ijfoodmicro.2015.08.021. PubMed DOI
Jorgensen J.H., Turnidge J.D. Susceptibility test methods: Dilution and disk diffusion methods. In: Jorgensen J.H., Carroll K.C., Funke G., Pfaller M.A., Landry M.L., Richter S.S., Warnock D.W., editors. Manual of Clinical Microbiology. ASM Press; Washington, DC, USA: 2015. pp. 1253–1273.
Feyaerts A.F., Mathé L., Luyten W., Tournu H., Dyck K.V., Broekx L., Dijck P.V. Assay and recommendations for the detection of vapour-phase-mediated antimicrobial activities. Flavour Fragr. J. 2017;32:347–353. doi: 10.1002/ffj.3400. DOI
Amat S., Baines D., Alexander T.W. A vapour phase assay for evaluating the antimicrobial activities of essential oils against bovine respiratory bacterial pathogens. Lett. Appl. Microbiol. 2017;65:489–495. doi: 10.1111/lam.12804. PubMed DOI
Casey J.T., O’Cleirigh C., Walsh P.K., O’Shea D.G. Development of a robust microtiter plate-based assay method for assessment of bioactivity. J. Microbiol. Methods. 2004;58:327–334. doi: 10.1016/j.mimet.2004.04.017. PubMed DOI
Fisher K., Phillips C. Potential antimicrobial uses of essential oils in food: Is citrus the answer? Trends Food Sci. Technol. 2008;19:156–164. doi: 10.1016/j.tifs.2007.11.006. DOI
Kalemba D., Kunicka A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003;10:813–829. doi: 10.2174/0929867033457719. PubMed DOI
Orchard A., van Vuuren S. Commercial essential oils as potential antimicrobials to treat skin diseases. Evid. Based Complement. Alternat. Med. 2017;2017:4517971. doi: 10.1155/2017/4517971. PubMed DOI PMC
Reyes-Jurado F., Franco-Vega A., Ramírez-Corona N., Palou E., López-Malo A. Essential oils: Antimicrobial activities, extraction methods, and their modeling. Food Eng. Rev. 2015;7:275–297. doi: 10.1007/s12393-014-9099-2. DOI
Leyva-López N., Gutiérrez-Grijalva E.P., Vazquez-Olivo G., Heredia J.B. Heredia Essential oils of oregano: Biological activity beyond their antimicrobial properties. Molecules. 2017;22:989. doi: 10.3390/molecules22060989. PubMed DOI PMC
Schmidt E., Wanner J., Höferl M., Jirovetz L., Buchbauer G., Gochev V., Girova T., Stoyanova A., Geissler M. Chemical composition, olfactory analysis and antibacterial activity of Thymus vulgaris chemotypes geraniol, 4-Thujanol/Terpinen-4-ol, thymol and linalool cultivated in southern France. Nat. Prod. Commun. 2012;7:1934578X1200700833. doi: 10.1177/1934578X1200700833. PubMed DOI
Grosso C., Figueiredo A.C., Burillo J., Mainar A.M., Urieta J.S., Barroso J.G., Coelho J.A., Palavra A.M.F. Composition and antioxidant activity of Thymus vulgaris volatiles: Comparison between supercritical fluid extraction and hydrodistillation. J. Sep. Sci. 2010;33:2211–2218. doi: 10.1002/jssc.201000192. PubMed DOI
Figueiredo A.C., Barroso J.G., Pedro L.G., Scheffer J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008;23:213–226. doi: 10.1002/ffj.1875. DOI
Hudaib M., Speroni E., Di Pietra A.M., Cavrini V. GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J. Pharm. Biomed. 2002;29:691–700. doi: 10.1016/S0731-7085(02)00119-X. PubMed DOI
Fan S., Chang J., Zong Y., Hu G., Jia J. GC/MS Analysis of the composition of the essential oil from Dendranthema indicum vararomaticum using three extraction methods and two columns. Molecules. 2018;23:576. doi: 10.3390/molecules23030576. PubMed DOI PMC
Netopilova M., Houdkova M., Urbanova K., Rondevaldova J., Kokoska L. Validation of qualitative broth volatilization checkerboard method for testing of essential oils: Dual-column GC–FID/MS analysis and in vitro combinatory antimicrobial effect of Origanum vulgare and Thymus vulgaris against Staphylococcus aureus in liquid and vapor phases. Plants. 2021;10:393. PubMed PMC
Adam M., Dobiáš P., Pavlíková P., Ventura K. Comparison of solid-phase and single-drop microextractions for headspace analysis of herbal essential oils. Open Chem. 2009;7:303–311. doi: 10.2478/s11532-009-0048-5. DOI
Soleimani M., Daryasari A.P., Ghorbani A., Hejri O.M., Mazaheri R. Analysis of the volatile compounds in Thymus vulgaris L. using improved HS-SPME-GC/MS and comparison with conventional methods. J. Essent. Oil-Bear. Plants. 2014;17:1233–1240. doi: 10.1080/0972060X.2014.958548. DOI
Nezhadali A., Akbarpour M., Shirvan B.Z., Mousavi M. Comparison of volatile organic compounds of Thymus vulgaris using hydrodistillation and headspace solid phase microextraction gas chromatography mass spectrometry. J. Chin. Chem. Soc. 2010;57:40–43. doi: 10.1002/jccs.201000007. DOI
Leggio A., Leotta V., Belsito E.L., Di Gioia M.L., Romio E., Santoro I., Taverna D., Sindona G., Liguori A. Aromatherapy: Composition of the gaseous phase at equilibrium with liquid bergamot essential oil. Chem. Cent. J. 2017;11:111. doi: 10.1186/s13065-017-0340-y. PubMed DOI PMC
Coleman W.M., Lawrence B.M. A Comparison of selected analytical approaches to the analysis of an essential oil. Flavour Fragr. J. 1997;12:1–8. doi: 10.1002/(SICI)1099-1026(199701)12:1<1::AID-FFJ603>3.0.CO;2-L. DOI
Cui S., Tan S., Ouyang G., Jiang S., Pawliszyn J. Headspace solid-phase microextraction gas chromatography–mass spectrometry analysis of Eupatorium odoratum extract as an oviposition Repellent. J. Chromatogr. B. 2009;877:1901–1906. doi: 10.1016/j.jchromb.2009.05.022. PubMed DOI
Chialva F., Gabri G., Liddle P.A.P., Ulian F. Qualitative evaluation of aromatic herbs by direct headspace GC analysis. Applications of the method and comparison with the traditional analysis of essential oils. J. High. Resolut. Chromatogr. 1982;5:182–188. doi: 10.1002/jhrc.1240050403. DOI
Wang T.-H., Hsia S.-M., Wu C.-H., Ko S.-Y., Chen M.Y., Shih Y.-H., Shieh T.-M., Chuang L.-C., Wu C.-Y. Evaluation of the antibacterial potential of liquid and vapor phase phenolic essential oil compounds against oral microorganisms. PLoS ONE. 2016;11:e0163147. doi: 10.1371/journal.pone.0163147. PubMed DOI PMC
EDQM (Council of Europe) European Pharmacopoeia. 10th ed. EDQM; Strasbourg, France: 2019.
Thymi Aetheroleum. [(accessed on 16 February 2021)]. Available online: https://www.ema.europa.eu/en/medicines/herbal/thymi-aetheroleum.