Systematic analysis of antimicrobial activity, phytochemistry, and in silico molecular interaction of selected essential oils and their formulations from different Indian spices against foodborne bacteria

. 2023 Dec ; 9 (12) : e22480. [epub] 20231117

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38107328
Odkazy

PubMed 38107328
PubMed Central PMC10724571
DOI 10.1016/j.heliyon.2023.e22480
PII: S2405-8440(23)09688-3
Knihovny.cz E-zdroje

Essential oils (EOs) from Indian spices like Elettaria cardamomum (L.) Maton (small green cardamom), Syzygium aromaticum (L.) Merr. & L.M. Perry (clove), Cinnamomum zeylanicum Blume (cinnamon quills), and Cinnamomum tamala (Buch.-Ham.) T. Nees & C. H. Eberm (Indian bay leaves) exhibit a broad spectrum range of biological activity including antibacterial and antifungal activity. Yet, there is a lack of data regarding the antimicrobial activity of their formulations. Also, the link between the antimicrobial effect of individual EO with their chemical composition and molecular interaction with bacterial pathogens has not been systematically explored. Therefore, the objectives of the current study were to evaluate the antimicrobial activity and phytochemical characterization of EOs and to bridge the gap between them through in-silico molecular interactions. The antibacterial activity of EOs of four different spices and their formulations against foodborne pathogens such as Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa was evaluated using the disc volatilization method. The chemical profile of the individual EO was determined through GC-MS analysis and molecular interactions of identified major components with bacterial proteins were carried out through molecular docking studies. All EOs and their formulations exhibited antibacterial activity ranging from 5.92 to 24.55 mm and 11-23.52 mm, respectively. Among all EOs, cinnamon and formulation C (cardamom: cinnamon- 2:1) exhibited the highest antibacterial activity. The composition of the EOs included sesquiterpenes, monoterpenoids, monoterpenes, and, phenylpropanoids such as (E)-cinnamaldehyde, δ-cadinene, α-copaene, eugenol, caryophyllene, eugenol acetate, methyl eugenol, menthadiene, eucalyptol, α-terpinyl acetate, and sabinene. Furthermore, docking study revealed that the abundant compounds from cinnamon EO mainly α-copaene and δ-cadinene had a high binding affinity towards the bacterial essential proteins which increases the bacterial susceptibility towards cinnamon EO. The selected EOs and their formulations were systematically analysed and they were effective against foodborne pathogens. The current findings suggest the application of these EOs against food pathogens with further research.

Zobrazit více v PubMed

Cui H., Zhang C., Li C., Lin L. Antimicrobial mechanism of clove oil on Listeria monocytogenes. Food Control. 2018;94:140–146. doi: 10.1016/j.foodcont.2018.07.007. DOI

Hu W., Li C., Dai J., Cui H., Lin L. Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA) Ind. Crops Prod. 2019;130:34–41. doi: 10.1016/j.indcrop.2018.12.078. DOI

Lee H., Yoon Y. Etiological agents implicated in foodborne illness world wide. Food Sci. Anim. Resour. 2021;41:1–7. doi: 10.5851/kosfa.2020.e75. PubMed DOI PMC

Buchholz U., Bernard H., Werber D., Böhmer M.M., Remschmidt C., Wilking H., Deleré Y., an der Heiden M., Adlhoch C., Dreesman J., Ehlers J., Ethelberg S., Faber M., Frank C., Fricke G., Greiner M., Höhle M., Ivarsson S., Jark U., Kirchner M., Koch J., Krause G., Luber P., Rosner B., Stark K., Kühne M. German outbreak of Escherichia coli O104:H4 associated with sprouts. N. Engl. J. Med. 2011;365:1763–1770. doi: 10.1056/NEJMoa1106482. PubMed DOI

Cassini L.D., Högberg D., Plachouras A., Quattrocchi A., Hoxha G.S., Simonsen M., Colomb-Cotinat M.E., Kretzschmar B., Devleesschauwer M., Cecchini D.A., Ouakrim T.C., Oliveira M.J., Struelens C., Suetens D.L., Monnet R., Strauss K., Mertens T., Struyf B., Catry K., Latour I.N., Ivanov E.G., Dobreva A.T., Andraševic S., Soprek A., Budimir N., Paphitou H., Žemlicková S.S., Olsen U.W., Sönksen P., Märtin M., Ivanova O., Lyytikäinen J., Jalava B., Coignard T., Eckmanns M.A., Sin S., Haller G.L., Daikos A., Gikas S., Tsiodras F., Kontopidou Á., Tóth Á., Hajdu Ó., Guólaugsson K.G., Kristinsson S., Murchan K., Burns P., Pezzotti C., Gagliotti U., Dumpis A., Liuimiene M., Perrin M.A., Borg S.C., de Greeff J.C., Monen M.B., Koek P., Elstrøm D., Zabicka A., Deptula W., Hryniewicz M., Caniça P.J., Nogueira P.A., Fernandes V., Manageiro G.A., Popescu R.I., Serban E., Schréterová S., Litvová M., Štefkovicová J., Kolman I., Klavs A., Korošec B., Aracil A., Asensio M., Pérez-Vázquez H., Billström S., Larsson J.S., Reilly A., Johnson S., Hopkins Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect. Dis. 2019;19:56–66. doi: 10.1016/S1473-3099(18)30605-4. PubMed DOI PMC

Savini F., Romano A., Giacometti F., Indio V., Pitti M., Decastelli L., Devalle P.L., Gorrasi I.S.R., Miaglia S., Serraino A. Investigation of a Staphylococcus aureus sequence type 72 food poisoning outbreak associated with food-handler contamination in Italy. Zoonoses Public Health. 2023;70:411–419. doi: 10.1111/zph.13046. PubMed DOI

Helmy I.I.K. Kashoma Yosra A., Isaac P. vol. 1. Burleigh Dodds Science Publishing; USA: 2016. The emergence of antibiotic resistance in poultry farms Gireesh Rajashekara, the Ohio State University. (Achiev. Sustain. Prod. Poult. Meat).

Murray C.J.L., Ikuta K.S., Sharara F., Swetschinski L., Aguilar G.R., Gray A., Han C., Bisignano C., Rao P., Wool E., Johnson S.C., Browne A.J., Chipeta M.G., Fell F., Hackett S., Haines-Woodhouse G., Hamadani B.H.K., Kumaran E.A.P., McManigal B., Achalapong S., Agarwal R., Akech S., Albertson S., Amuasi J., Andrews J., Aravkin A., Ashley E., Babin F.-X., Bailey F., Baker S., Basnyat B., Bekker A., Bender R., Berkley J.A., Bethou A., Bielicki J., Boonkasidecha S., Bukosia J., Carvalheiro C., Castañeda-Orjuela C., Chansamouth V., Chaurasia S., Chiurchiù S., Chowdhury F., Donatien R.C., Cook A.J., Cooper B., Cressey T.R., Criollo-Mora E., Cunningham M., Darboe S., Day N.P.J., Luca M.D., Dokova K., Dramowski A., Dunachie S.J., Bich T.D., Eckmanns T., Eibach D., Emami A., Feasey N., Fisher-Pearson N., Forrest K., Garcia C., Garrett D., Gastmeier P., Giref A.Z., Greer R.C., Gupta V., Haller S., Haselbeck A., Hay S.I., Holm M., Hopkins S., Hsia Y., Iregbu K.C., Jacobs J., Jarovsky D., Javanmardi F., Jenney A.W.J., Khorana M., Khusuwan S., Kissoon N., Kobeissi E., Kostyanev T., Krapp F., Krumkamp R., Kumar A., Kyu H.H., Lim C., Lim K., Limmathurotsakul D., Loftus M.J., Lunn M., Ma J., Manoharan A., Marks F., May J., Mayxay M., Mturi N., Munera-Huertas T., Musicha P., Musila L.A., Mussi-Pinhata M.M., Naidu R.N., Nakamura T., Nanavati R., Nangia S., Newton P., Ngoun C., Novotney A., Nwakanma D., Obiero C.W., Ochoa T.J., Olivas-Martinez A., Olliaro P., Ooko E., Ortiz-Brizuela E., Ounchanum P., Pak G.D., Paredes J.L., Peleg A.Y., Perrone C., Phe T., Phommasone K., Plakkal N., Ponce-de-Leon A., Raad M., Ramdin T., Rattanavong S., Riddell A., Roberts T., Robotham J.V., Roca A., Rosenthal V.D., Rudd K.E., Russell N., Sader H.S., Saengchan W., Schnall J., Scott J.A.G., Seekaew S., Sharland M., Shivamallappa M., Sifuentes-Osornio J., Simpson A.J., Steenkeste N., Stewardson A.J., Stoeva T., Tasak N., Thaiprakong A., Thwaites G., Tigoi C., Turner C., Turner P., van Doorn H.R., Velaphi S., Vongpradith A., Vongsouvath M., Vu H., Walsh T., Walson J.L., Waner S., Wangrangsimakul T., Wannapinij P., Wozniak T., Sharma T.E.M.W.Y., Yu K.C., Zheng P., Sartorius B., Lopez A.D., Stergachis A., Moore C., Dolecek C., Naghavi M. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–655. doi: 10.1016/S0140-6736(21)02724-0. PubMed DOI PMC

O'Neill J. Government of the United Kingdom; 2016. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations.https://apo.org.au/node/63983

Bautista-Baños S., Hernández-Lauzardo A.N., Velázquez-del Valle M.G., Hernández-López M., Ait Barka E., Bosquez-Molina E., Wilson C.L. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protect. 2006;25:108–118. doi: 10.1016/j.cropro.2005.03.010. DOI

Kuhn D., Ziem R., Scheibel T., Buhl B., Vettorello G., Pacheco L.A., Heidrich D., Kauffmann C., de Freitas E.M., Ethur E.M., Hoehne L. Antibiofilm activity of the essential oil of Campomanesia aurea O. Berg against microorganisms causing food borne diseases. LWT. 2019;108:247–252. doi: 10.1016/j.lwt.2019.03.079. DOI

Mendoza-Yepes M.J., Sanchez-Hidalgo L.E., Maertens G., Marin-Iniesta F. Inhibition of Listeria monocytogenes and other bacteria by a plant essential oil (dmc) in Spanish soft cheese. J. Food Saf. 1997;17:47–55. doi: 10.1111/j.1745-4565.1997.tb00175.x. DOI

Cutter C.N. Antimicrobial effect of herb extracts against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella typhimurium associated with beef†. J. Food Prot. 2000;63:601–607. doi: 10.4315/0362-028X-63.5.601. PubMed DOI

Cui H., Zhang X., Zhou H., Zhao C., Lin L. Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Bot. Stud. 2015;56:16. doi: 10.1186/s40529-015-0096-4. PubMed DOI PMC

Hu J., Zhang Y., Xiao Z., Wang X. Preparation and properties of cinnamon-thyme-ginger composite essential oil nanocapsules. Ind. Crops Prod. 2018;122:85–92. doi: 10.1016/j.indcrop.2018.05.058. DOI

Wang Y., Xia Y., Zhang P., Ye L., Wu L., He S. Physical characterization and pork packaging application of chitosan films incorporated with combined essential oils of cinnamon and ginger. Food Bioprocess Technol. 2016;3:503–511. doi: 10.1007/s11947-016-1833-8. DOI

Nzeako B.C., Al-Kharousi Z.S.N., Al-Mahrooqui Z. Antimicrobial activities of clove and thyme extracts. Sultan Qaboos Univ. Med. J. 2006;6:33–39. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074903/ PubMed PMC

Anam M., Tuseef M., Gull T., Saleem A., Jamil A., Khan M.Y., Ashraf J.Z. Addition of sweet potato powder and olive oil as fat replacer in chicken sausages coated with carom essential oil. RADS J. Food Biosci. 2023;2:19–27. https://jfbs.juw.edu.pk/index.php/jfbs/article/view/16

Gomes A.F., Ganzera M., Schwaiger S., Stuppner H., Halabalaki M., Almeida M.P., Leite M.F., Amaral J.G., David J.M. Simultaneous determination of iridoids, phenylpropanoids and flavonoids in Lippia alba extracts by micellar electrokinetic capillary chromatography. Microchem. J. 2018;138:494–500. doi: 10.1016/j.microc.2018.02.003. DOI

Guimarães A., Vinhas A.C., Gomes A., Souza L., Krepsky P. Quím. Nova.; 2020. ESSENTIAL OIL of Curcuma longa L. RHIZOMES CHEMICAL COMPOSITION, YIELD VARIATION and STABILITY. DOI

Adams R.P. Allured Publishing Co. Carol Stream; Illinois: 2007. Identification of Essential Oil Components by Gas Chromatography/mass- Spectrometry.

Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC

Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., Li Q., Shoemaker B.A., Thiessen P.A., Yu B., Zaslavsky L., Zhang J., Bolton E.E. PubChem 2023 update. Nucleic Acids Res. 2023;51:D1373–D1380. doi: 10.1093/nar/gkac956. PubMed DOI PMC

Liu Y., Yang X., Gan J., Chen S., Xiao Z.-X., Cao Y. CB-Dock2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022;50:W159–W164. doi: 10.1093/nar/gkac394. PubMed DOI PMC

Yang X., Liu Y., Gan J., Xiao Z.-X., Cao Y. FitDock: protein–ligand docking by template fitting, Brief. Bioinform. 2022;23 doi: 10.1093/bib/bbac087. bbac087. PubMed DOI

Antih J., Houdkova M., Urbanova K., Kokoska L. Antibacterial activity of Thymus vulgaris L. Essential oil vapours and their GC/MS analysis using solid-phase microextraction and syringe headspace sampling techniques. Molecules. 2021;26:6553. doi: 10.3390/molecules26216553. PubMed DOI PMC

Deans S.G., Ritchie G. Antibacterial properties of plant essential oils. Int. J. Food Microbiol. 1987;5:165–180. doi: 10.1016/0168-1605(87)90034-1. DOI

Ayoola G., Lawore F., Adelowotan T., Aibinu I., Adenipekun E., Coker H., Odugbemi T. Chemical analysis and antimicrobial activity of the essential oil of Syzigium aromaticum (clove) Afr. J. Microbiol. Res. 2007;2

Sharma S., Singh S., Bond J., Rustagi A. Evaluation of antibacterial properties of essential oils from clove and eucalyptus. Asian J. Pharm. Clin. Res. 2014;7

Pattnaik D., Padhan D., Jana G. Evaluation of Cinnamon oil, Peppermint oil, Cardamom oil and Orange oil as antimicrobial agent. J. Pharm. Res. 2010;3

Gupta C., Garg A.P., Uniyal R.C., Kumari A. Comparative analysis of the antimicrobial activity of cinnamon oil and cinnamon extract on some food-borne microbes. Afr. J. Microbiol. Res. 2008;2

Bassolé I.H.N., Juliani H.R. Essential oils in combination and their antimicrobial properties. Molecules. 2012;17:3989–4006. doi: 10.3390/molecules17043989. PubMed DOI PMC

Ghabraie M., Vu K.D., Tata L., Salmieri S., Lacroix M. Antimicrobial effect of essential oils in combinations against five bacteria and their effect on sensorial quality of ground meat. LWT - Food Sci. Technol. 2016;66:332–339. doi: 10.1016/j.lwt.2015.10.055. DOI

Ouedrhiri W., Mounyr B., Harki E.H., Moja S., Greche H. Synergistic antimicrobial activity of two binary combinations of marjoram, lavender, and wild thyme essential oils. Int. J. Food Prop. 2017;20:3149–3158. doi: 10.1080/10942912.2017.1280504. DOI

Rana V.S., Devi ChB., Verdeguer M., Blázquez M.A. Variation of terpenoids constituents in natural population of Cinnamomum tamala (L.) leaves. J. Essent. Oil Res. 2009;21:531–534. doi: 10.1080/10412905.2009.9700237. DOI

Jena S., Ray A., Sahoo A., Champati B.B., Padhiari B.M., Dash B., Nayak S., Panda P.C. Chemical composition and antioxidant activities of essential oil from leaf and stem of Elettaria cardamomum from eastern India. J. Essent. Oil Bear. Plants. 2021;24:538–546. doi: 10.1080/0972060X.2021.1937335. DOI

Li Y., Kong D., Wu H. Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Ind. Crops Prod. 2013;41:269–278. doi: 10.1016/j.indcrop.2012.04.056. DOI

Xu J.-G., Liu T., Hu Q.-P., Cao X.-M. Chemical composition, antibacterial properties and mechanism of action of essential oil from clove buds against Staphylococcus aureus. Mol. Basel Switz. 2016;21:1194. doi: 10.3390/molecules21091194. PubMed DOI PMC

Sharma V., Rao L.J.M. An overview on chemical composition, bioactivity and processing of leaves of Cinnamomum tamala. Crit. Rev. Food Sci. Nutr. 2014;54:433–448. doi: 10.1080/10408398.2011.587615. PubMed DOI

Lin C.-W., Yu C.-W., Wu S.-C., Yih K.-H. DPPH free-radical scavenging activity, total phenolic contents and chemical composition analysis of forty-two kinds of essential oils. J. Food Drug Anal. 2020;17 doi: 10.38212/2224-6614.2594. DOI

Tomaino A., Cimino F., Zimbalatti V., Venuti V., Sulfaro V., De Pasquale A., Saija A. Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chem. 2005;89:549–554. doi: 10.1016/j.foodchem.2004.03.011. DOI

Patra B., Schluttenhofer C., Wu Y., Pattanaik S., Yuan L. Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim. Biophys. Acta BBA - Gene Regul. Mech. 2013;1829:1236–1247. doi: 10.1016/j.bbagrm.2013.09.006. PubMed DOI

Broun P., Liu Y., Queen E., Schwarz Y., Abenes M.L., Leibman M. Importance of transcription factors in the regulation of plant secondary metabolism and their relevance to the control of terpenoid accumulation. Phytochem. Rev. 2006;5:27–38. doi: 10.1007/s11101-006-9000-x. DOI

Türkmen M., Kara M., Maral H., Soylu S. Determination of chemical component of essential oil of Origanum dubium plants grown at different altitudes and antifungal activity against Sclerotinia sclerotiorum. J. Food Process. Preserv. 2022;46 doi: 10.1111/jfpp.15787. DOI

Ye H., Shen S., Xu J., Lin S., Yuan Y., Jones G.S. Synergistic interactions of cinnamaldehyde in combination with carvacrol against food-borne bacteria. Food Control. 2013;34:619–623. doi: 10.1016/j.foodcont.2013.05.032. DOI

Vasconcelos N.G., Croda J., Simionatto S. Antibacterial mechanisms of cinnamon and its constituents: a review. Microb. Pathog. 2018;120:198–203. doi: 10.1016/j.micpath.2018.04.036. PubMed DOI

Ho J.M., Bakkalbasi E., Söll D., Miller C.A. Drugging tRNA aminoacylation. RNA Biol. 2018;15:667–677. doi: 10.1080/15476286.2018.1429879. PubMed DOI PMC

Kitamura Y., Ebihara A., Agari Y., Shinkai A., Hirotsu K., Kuramitsu S. Structure of d-alanine-d-alanine ligase from Thermus thermophilus HB8: cumulative conformational change and enzyme–ligand interactions. Acta Crystallogr. D Biol. Crystallogr. 2009;65:1098–1106. doi: 10.1107/S0907444909029710. PubMed DOI PMC

Moo C.-L., Yang S.-K., Osman M.-A., Yuswan M.H., Loh J.-Y., Lim W.-M., Lim S.-H.-E., Lai K.-S. Antibacterial activity and mode of action of β-caryophyllene on Bacillus cereus. Pol. J. Microbiol. 2020;69:1–6. doi: 10.33073/pjm-2020-007. PubMed DOI PMC

Basu J., Chattopadhyay R., Kundu M., Chakrabarti P. Purification and partial characterization of a penicillin-binding protein from Mycobacterium smegmatis. J. Bacteriol. 1992;174:4829–4832. doi: 10.1128/jb.174.14.4829-4832.1992. PubMed DOI PMC

Zhang Z.-H. Oil yield, components and antimicrobial activity of volatile oils of Cinnamomi Cortex from different growth environments and growth years. Chin. Tradit. Herb. Drugs. 2019:2990–2996. doi: 10.7501/j.issn.0253-2670.2019.12.036. DOI

Pisano M.B., Kumar A., Medda R., Gatto G., Pal R., Fais A., Era B., Cosentino S., Uriarte E., Santana L., Pintus F., Matos M.J. Antibacterial activity and molecular docking studies of a selected series of hydroxy-3-arylcoumarins. Molecules. 2019;24:2815. doi: 10.3390/molecules24152815. PubMed DOI PMC

Donadio G., Mensitieri F., Santoro V., Parisi V., Bellone M.L., De Tommasi N., Izzo V., Dal Piaz F. Interactions with microbial proteins driving the antibacterial activity of flavonoids. Pharmaceutics. 2021;13:660. doi: 10.3390/pharmaceutics13050660. PubMed DOI PMC

Davis A.M., Teague S.J. Hydrogen bonding, hydrophobic interactions, and failure of the rigid receptor hypothesis. Angew. Chem. Int. Ed. 1999;38:736–749. doi: 10.1002/(SICI)1521-3773(19990315)38:6<736::AID-ANIE736>3.0.CO;2-R. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...