Large Gliadin Peptides Detected in the Pancreas of NOD and Healthy Mice following Oral Administration
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
27795959
PubMed Central
PMC5067331
DOI
10.1155/2016/2424306
Knihovny.cz E-resources
- MeSH
- Administration, Oral MeSH
- Insulin-Secreting Cells immunology metabolism MeSH
- Chromatography, Liquid MeSH
- Diabetes Mellitus, Type 1 immunology MeSH
- Electrophoresis, Polyacrylamide Gel MeSH
- Gliadin immunology pharmacokinetics MeSH
- Mass Spectrometry MeSH
- Insulin metabolism MeSH
- Mice, Inbred BALB C MeSH
- Mice, Inbred C57BL MeSH
- Mice, Inbred NOD MeSH
- Pancreas, Exocrine metabolism MeSH
- Pancreas metabolism MeSH
- Peptide Fragments pharmacokinetics MeSH
- Permeability MeSH
- Insulin Secretion MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization MeSH
- Intestinal Mucosa metabolism MeSH
- Inflammation MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Gliadin MeSH
- Insulin MeSH
- Peptide Fragments MeSH
Gluten promotes type 1 diabetes in nonobese diabetic (NOD) mice and likely also in humans. In NOD mice and in non-diabetes-prone mice, it induces inflammation in the pancreatic lymph nodes, suggesting that gluten can initiate inflammation locally. Further, gliadin fragments stimulate insulin secretion from beta cells directly. We hypothesized that gluten fragments may cross the intestinal barrier to be distributed to organs other than the gut. If present in pancreas, gliadin could interact directly with the immune system and the beta cells to initiate diabetes development. We orally and intravenously administered 33-mer and 19-mer gliadin peptide to NOD, BALB/c, and C57BL/6 mice and found that the peptides readily crossed the intestinal barrier in all strains. Several degradation products were found in the pancreas by mass spectroscopy. Notably, the exocrine pancreas incorporated large amounts of radioactive label shortly after administration of the peptides. The study demonstrates that, even in normal animals, large gliadin fragments can reach the pancreas. If applicable to humans, the increased gut permeability in prediabetes and type 1 diabetes patients could expose beta cells directly to gliadin fragments. Here they could initiate inflammation and induce beta cell stress and thus contribute to the development of type 1 diabetes.
Clinical Biochemistry Immunology and Genetics Statens Serum Institut Copenhagen S Denmark
Enzyme Purification and Characterization Novozymes A S Bagsværd Denmark
The Bartholin Institute Rigshospitalet Copenhagen N Denmark
The Hevesy Laboratory DTU Nutech Technical University of Denmark Roskilde Denmark
See more in PubMed
Funda D. P., Kaas A., Bock T., Tlaskalová-Hogenová H., Buschard K. Gluten-free diet prevents diabetes in NOD mice. Diabetes/Metabolism Research and Reviews. 1999;15(5):323–327. doi: 10.1002/(sici)1520-7560(199909/10)15:5<323::aid-dmrr53>3.0.co;2-p. PubMed DOI
Elliott R. B., Martin J. M. Dietary protein: a trigger of insulin-dependent diabetes in the BB rat? Diabetologia. 1984;26(4):297–299. doi: 10.1007/BF00283653. PubMed DOI
Chmiel R., Beyerlein A., Knopff A., Hummel S., Ziegler A.-G., Winkler C. Early infant feeding and risk of developing islet autoimmunity and type 1 diabetes. Acta Diabetologica. 2014;52(3):621–624. doi: 10.1007/s00592-014-0628-5. PubMed DOI
Norris J. M., Barriga K., Klingensmith G., et al. Timing of initial cereal exposure in infancy and risk of islet autoimmunity. The Journal of the American Medical Association. 2003;290(13):1713–1720. doi: 10.1001/jama.290.13.1713. PubMed DOI
Sildorf S. M., Fredheim S., Svensson J., Buschard K. Remission without insulin therapy on gluten-free diet in a 6-year old boy with type 1 diabetes mellitus. BMJ Case Reports. 2012;2012 doi: 10.1136/bcr.02.2012.5878. PubMed DOI PMC
Buschard K. What causes type 1 diabetes? Lessons from animal models. APMIS. Supplementum. 2011;(132):1–19. doi: 10.1111/j.1600-0463.2011.02765.x. PubMed DOI
Antvorskov J. C., Fundova P., Buschard K., Funda D. P. Dietary gluten alters the balance of pro-inflammatory and anti-inflammatory cytokines in T cells of BALB/c mice. Immunology. 2013;138(1):23–33. doi: 10.1111/imm.12007. PubMed DOI PMC
Larsen J., Dall M., Antvorskov J. C., et al. Dietary gluten increases natural killer cell cytotoxicity and cytokine secretion. European Journal of Immunology. 2014;44(10):3056–3067. doi: 10.1002/eji.201344264. PubMed DOI
Larsen J., Weile C., Antvorskov J. C., et al. Effect of dietary gluten on dendritic cells and innate immune subsets in BALB/c and NOD mice. PLoS ONE. 2015;10(3) doi: 10.1371/journal.pone.0118618.e0118618 PubMed DOI PMC
Piper J. L., Gray G. M., Khosla C. Effect of prolyl endopeptidase on digestive-resistant gliadin peptides in vivo. Journal of Pharmacology and Experimental Therapeutics. 2004;311(1):213–219. doi: 10.1124/jpet.104.068429. PubMed DOI
Shan L., Molberg Ø., Parrot I., et al. Structural basis for gluten intolerance in celiac sprue. Science. 2002;297(5590):2275–2279. doi: 10.1126/science.1074129. PubMed DOI
Bosi E., Molteni L., Radaelli M. G., et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia. 2006;49(12):2824–2827. doi: 10.1007/s00125-006-0465-3. PubMed DOI
Sapone A., de Magistris L., Pietzak M., et al. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes. 2006;55(5):1443–1449. doi: 10.2337/db05-1593. PubMed DOI
Jalonen T., Isolauri E., Heyman M., Crain-Denoyelle A.-M., Sillanaukee P., Koivula T. Increased β-lactoglobulin absorption during rotavirus enteritis in infants: relationship to sugar permeability. Pediatric Research. 1991;30(3):290–293. doi: 10.1203/00006450-199109000-00019. PubMed DOI
Matsubara T., Aoki N., Honjoh T., et al. Absorption, migration and kinetics in peripheral blood of orally administered ovalbumin in a mouse model. Bioscience, Biotechnology and Biochemistry. 2008;72(10):2555–2565. doi: 10.1271/bbb.80252. PubMed DOI
Chirdo F. G., Rumbo M., Añón M. C., Fossati C. A. Presence of high levels of non-degraded gliadin in breast milk from healthy mothers. Scandinavian Journal of Gastroenterology. 1998;33(11):1186–1192. doi: 10.1080/00365529850172557. PubMed DOI
Heyman M., Abed J., Lebreton C., Cerf-Bensussan N. Intestinal permeability in coeliac disease: insight into mechanisms and relevance to pathogenesis. Gut. 2012;61(9):1355–1364. doi: 10.1136/gutjnl-2011-300327. PubMed DOI
Maiuri L., Ciacci C., Ricciardelli I., et al. Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. The Lancet. 2003;362(9377):30–37. doi: 10.1016/s0140-6736(03)13803-2. PubMed DOI
Bethune M. T., Khosla C. Parallels between pathogens and gluten peptides in celiac sprue. PLoS Pathogens. 2008;4(2, article e34) doi: 10.1371/journal.ppat.0040034. PubMed DOI PMC
Rauhavirta T., Qiao S.-W., Jiang Z., et al. Epithelial transport and deamidation of gliadin peptides: a role for coeliac disease patient immunoglobulin A. Clinical and Experimental Immunology. 2011;164(1):127–136. doi: 10.1111/j.1365-2249.2010.04317.x. PubMed DOI PMC
Matysiak-Budnik T., Moura I. C., Arcos-Fajardo M., et al. Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. Journal of Experimental Medicine. 2008;205(1):143–154. doi: 10.1084/jem.20071204. PubMed DOI PMC
Pedersen M. H. F., Baun M. Tritium labelling of PACAP-38 using a synthetic diiodinated precursor peptide. Journal of Labelled Compounds and Radiopharmaceuticals. 2012;55(1):1–4. doi: 10.1002/jlcr.1941. DOI
Finn R. Handbook of Radiopharmaceuticals: Radiochemistry and Applications. West Sussex, UK: John Wiley & Sons; 2003. Chemistry applied to iodine radionuclides; pp. 423–440.
Vlieghe P., Lisowski V., Martinez J., Khrestchatisky M. Synthetic therapeutic peptides: science and market. Drug Discovery Today. 2010;15(1-2):40–56. doi: 10.1016/j.drudis.2009.10.009. PubMed DOI
Hollon J., Puppa E. L., Greenwald B., Goldberg E., Guerrerio A., Fasano A. Effect of gliadin on permeability of intestinal biopsy explants from celiac disease patients and patients with non-celiac gluten sensitivity. Nutrients. 2015;7(3):1565–1576. doi: 10.3390/nu7031565. PubMed DOI PMC
Bethune M. T., Crespo-Bosque M., Bergseng E., et al. Noninflammatory gluten peptide analogs as biomarkers for celiac sprue. Chemistry and Biology. 2009;16(8):868–881. doi: 10.1016/j.chembiol.2009.07.009. PubMed DOI PMC
Ménard S., Cerf-Bensussan N., Heyman M. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunology. 2010;3(3):247–259. doi: 10.1038/mi.2010.5. PubMed DOI
Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Annals of the New York Academy of Sciences. 2012;1258(1):25–33. doi: 10.1111/j.1749-6632.2012.06538.x. PubMed DOI PMC
Visser J., Rozing J., Sapone A., Lammers K., Fasano A. Tight junctions, intestinal permeability, and autoimmunity: celiac disease and type 1 diabetes paradigms. Annals of the New York Academy of Sciences. 2009;1165:195–205. doi: 10.1111/j.1749-6632.2009.04037.x. PubMed DOI PMC
De Kort S., Keszthelyi D., Masclee A. A. Leaky gut and diabetes mellitus: what is the link? Obesity Reviews. 2011;12(6):449–458. doi: 10.1111/j.1467-789x.2010.00845.x. PubMed DOI
Gaglia J. L., Harisinghani M., Aganj I., et al. Noninvasive mapping of pancreatic inflammation in recent-onset type-1 diabetes patients. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(7):2139–2144. doi: 10.1073/pnas.1424993112. PubMed DOI PMC
Papaccio G. Insulitis and islet microvasculature in type 1 diabetes. Histology and Histopathology. 1993;8(4):751–759. PubMed
De Paepe M. E., Corriveau M., Tannous W. N., Seemayer T. A., Colle E. Increased vascular permeability in pancreas of diabetic rats: detection with high resolution protein A-gold cytochemistry. Diabetologia. 1992;35(12):1118–1124. doi: 10.1007/BF00401364. PubMed DOI
Lee A. S., Gibson D. L., Zhang Y., Sham H. P., Vallance B. A., Dutz J. P. Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia. 2010;53(4):741–748. doi: 10.1007/s00125-009-1626-y. PubMed DOI
Hadjiyanni I., Li K. K., Drucker D. J. Glucagon-like peptide-2 reduces intestinal permeability but does not modify the onset of type 1 diabetes in the nonobese diabetic mouse. Endocrinology. 2009;150(2):592–599. doi: 10.1210/en.2008-1228. PubMed DOI
Bethune M. T., Ribka E., Khosla C., Sestak K. Transepithelial transport and enzymatic detoxification of gluten in gluten-sensitive rhesus macaques. PLoS ONE. 2008;3, article e1857 doi: 10.1371/journal.pone.0001857. PubMed DOI PMC
Foltz M., van der Pijl P. C., Duchateau G. S. M. J. E. Current in vitro testing of bioactive peptides is not valuable. Journal of Nutrition. 2010;140(1):117–118. doi: 10.3945/jn.109.116228. PubMed DOI
Deacon C. F., Nauck M. A., Toft-Nielsen M., Pridal L., Willms B., Holst J. J. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes. 1995;44(9):1126–1131. doi: 10.2337/diab.44.9.1126. PubMed DOI
Regazzo D., Mollé D., Gabai G., et al. The (193–209) 17-residues peptide of bovine β-casein is transported through Caco-2 monolayer. Molecular Nutrition & Food Research. 2010;54(10):1428–1435. doi: 10.1002/mnfr.200900443. PubMed DOI
Ozuna C. V., Iehisa J. C. M., Giménez M. J., Alvarez J. B., Sousa C., Barro F. Diversification of the celiac disease α-gliadin complex in wheat: a 33-mer peptide with six overlapping epitopes, evolved following polyploidization. Plant Journal. 2015;82(5):794–805. doi: 10.1111/tpj.12851. PubMed DOI
Pallarés I., Berenguer C., Avilés F. X., Vendrell J., Ventura S. Self-assembly of human latexin into amyloid-like oligomers. BMC Structural Biology. 2007;7, article 75 doi: 10.1186/1472-6807-7-75. PubMed DOI PMC
Herrera M. G., Zamarreño F., Costabel M., et al. Circular dichroism and electron microscopy studies in vitro of 33-mer gliadin peptide revealed secondary structure transition and supramolecular organization. Biopolymers. 2014;101(1):96–106. doi: 10.1002/bip.22288. PubMed DOI
Rudra J. S., Tian Y. F., Jung J. P., Collier J. H. A self-assembling peptide acting as an immune adjuvant. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(2):622–627. doi: 10.1073/pnas.0912124107. PubMed DOI PMC
Sharp F. A., Ruane D., Claass B., et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(3):870–875. doi: 10.1073/pnas.0804897106. PubMed DOI PMC
Guan Y., Zhu Q., Huang D., Zhao S., Jan Lo L., Peng J. An equation to estimate the difference between theoretically predicted and SDS PAGE-displayed molecular weights for an acidic peptide. Scientific Reports. 2015;5 doi: 10.1038/srep13370.13370 PubMed DOI PMC
Iacomino G., Fierro O., D'Auria S., et al. Structural analysis and Caco-2 cell permeability of the celiac-toxic A-gliadin peptide 31–55. Journal of Agricultural and Food Chemistry. 2013;61(5):1088–1096. doi: 10.1021/jf3045523. PubMed DOI
Kirkland T. N., Finley F., Orsborn K. I., Galgiani J. N. Evaluation of the proline-rich antigen of Coccidioides immitis as a vaccine candidate in mice. Infection and Immunity. 1998;66(8):3519–3522. PubMed PMC
Parrot I., Huang P. C., Khosla C. Circular dichroism and nuclear magnetic resonance spectroscopic analysis of immunogenic gluten peptides and their analogs. The Journal of Biological Chemistry. 2002;277(47):45572–45578. doi: 10.1074/jbc.m207606200. PubMed DOI
Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiological Reviews. 2011;91(1):151–175. doi: 10.1152/physrev.00003.2008. PubMed DOI
Wasserman K., Loeb L., Mayerson H. S. Capillary permeability to macromolecules. Circulation Research. 1955;3(6):594–603. doi: 10.1161/01.res.3.6.594. PubMed DOI
Dall M., Calloe K., Haupt-Jorgensen M., et al. Gliadin fragments and a specific gliadin 33-mer peptide close KATP channels and induce insulin secretion in INS-1E cells and rat islets of langerhans. PLoS ONE. 2013;8(6) doi: 10.1371/journal.pone.0066474.e66474 PubMed DOI PMC
Antvorskov J. C., Fundova P., Buschard K., Funda D. P. Impact of dietary gluten on regulatory T cells and Th17 cells in BALB/c mice. PLoS ONE. 2012;7(3) doi: 10.1371/journal.pone.0033315.e33315 PubMed DOI PMC
Adlercreutz E. H., Weile C., Larsen J., et al. A gluten-free diet lowers NKG2D and ligand expression in BALB/c and non-obese diabetic (NOD) mice. Clinical and Experimental Immunology. 2014;177(2):391–403. doi: 10.1111/cei.12340. PubMed DOI PMC
Thomas K. E., Sapone A., Fasano A., Vogel S. N. Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in celiac disease. The Journal of Immunology. 2006;176(4):2512–2521. doi: 10.4049/jimmunol.176.4.2512. PubMed DOI
Svensson J., Sildorf S. M., Pipper C. B., et al. Potential beneficial effects of a gluten-free diet in newly diagnosed children with type 1 diabetes: a pilot study. SpringerPlus. 2016;5, article 994 doi: 10.1186/s40064-016-2641-3. PubMed DOI PMC
Editorial: The gut-pancreas axis in type 1 diabetes - a focus on environmental factors