Thioredoxin System in Insects: Uncovering the Roles of Thioredoxins and Thioredoxin Reductase beyond the Antioxidant Defences
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LUAUS24085
Ministry of Education, Youth and Sport of the Czech Republic
PubMed
39452373
PubMed Central
PMC11508645
DOI
10.3390/insects15100797
PII: insects15100797
Knihovny.cz E-zdroje
- Klíčová slova
- Drosophila melanogaster, antioxidant system, honey bee, reactive oxygen species, redox signalling, thioredoxin, thioredoxin reductase,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Increased levels of reactive oxygen species (ROS) produced during aerobic metabolism in animals can negatively affect the intracellular redox status, cause oxidative stress and interfere with physiological processes in the cells. The antioxidant defence regulates ROS levels by interplaying diverse enzymes and non-enzymatic metabolites. The thioredoxin system, consisting of the enzyme thioredoxin reductase (TrxR), the redox-active protein thioredoxin (Trx) and NADPH, represent a crucial component of antioxidant defence. It is involved in the signalling and regulation of multiple developmental processes, such as cell proliferation or apoptotic death. Insects have evolved unique variations of TrxR, which resemble mammalian enzymes in overall structure and catalytic mechanisms, but the selenocysteine-cysteine pair in the active site is replaced by a cysteine-cysteine pair typical of bacteria. Moreover, the role of the thioredoxin system in insects is indispensable due to the absence of glutathione reductase, an essential enzyme of the glutathione system. However, the functions of the Trx system in insects are still poorly characterised. In the present review, we provide a critical overview of the current knowledge on the insect Trx system, focusing mainly on TrxR's role in the antioxidant and immune system of model insect species.
Zobrazit více v PubMed
Kaludercic N., Deshwal S., Di Lisa F. Reactive oxygen species and redox compartmentalization. Front. Physiol. 2014;5:285. doi: 10.3389/fphys.2014.00285. PubMed DOI PMC
Zhang B., Pan C., Feng C., Yan C., Yu Y., Chen Z., Guo C., Wang X. Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep. 2002;27:45–52. doi: 10.1080/13510002.2022.2046423. PubMed DOI PMC
Chaitanya R., Shashank K., Sridevi P. Free Radicals and Diseases. IntechOpen; London, UK: 2016. Oxidative Stress in Invertebrate Systems. DOI
Farjan M., Dmitryjuk M., Lipiński Z., Biernat-Łopieńska E., Żółtowska K. Supplementation of the honey bee diet with vitamin C: The effect on the antioxidative system of Apis mellifera carnica brood at different stages. J. Apic. Res. 2015;51:263–270. doi: 10.3896/IBRA.1.51.3.07. DOI
Dey S., Sidor A., O’Rourke B. Compartment-specific Control of Reactive Oxygen Species Scavenging by Antioxidant Pathway Enzymes. J. Biol. Chem. 2016;291:11185–11197. doi: 10.1074/jbc.M116.726968. PubMed DOI PMC
Ursini F., Maiorino M., Forman H.J. Redox homeostasis: The Golden Mean of healthy living. Redox Biol. 2016;8:205–215. doi: 10.1016/j.redox.2016.01.010. PubMed DOI PMC
D’Autréaux B., Toledano M.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 2007;8:813–824. doi: 10.1038/nrm2256. PubMed DOI
Ray P.D., Huang B.W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24:981–990. doi: 10.1016/j.cellsig.2012.01.008. PubMed DOI PMC
Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002. PubMed DOI PMC
Janků M., Luhová L., Petřivalský M. On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments. Antioxidants. 2019;8:105. doi: 10.3390/antiox8040105. PubMed DOI PMC
Słowińska M., Nynca J., Wilde J., Bąk B., Siuda M., Ciereszko A. Total antioxidant capacity of honeybee haemolymph in relation to age and exposure to pesticide, and comparison to antioxidant capacity of seminal plasma. Apidologie. 2016;47:227–236. doi: 10.1007/s13592-015-0391-9. DOI
Su L.J., Zhang J.H., Gomez H., Murugan R., Hong X., Xu D., Jiang F., Peng Z.Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid. Med. Cell. Longev. 2019;2019:5080843. doi: 10.1155/2019/5080843. PubMed DOI PMC
Qian S., Chen G., Li R., Ma Y., Pan L., Wang X., Wang X. Disulfide stress and its role in cardiovascular diseases. Redox Biol. 2024;75:103297. doi: 10.1016/j.redox.2024.103297. PubMed DOI PMC
Jacob C., Knight I., Winyard P.G. Aspects of the biological redox chemistry of cysteine: From simple redox responses to sophisticated signalling pathways. Biol. Chem. 2006;387:1385–1397. doi: 10.1515/BC.2006.174. PubMed DOI
Lamontagne F., Paz-Trejo C., Zamorano Cuervo N., Grandvaux N. Redox signaling in cell fate: Beyond damage. Biochimica et biophysica acta. Mol. Cell Res. 2024;1871:119722. doi: 10.1016/j.bbamcr.2024.119722. PubMed DOI
Matsuzawa A. Thioredoxin and redox signaling: Roles of the thioredoxin system in control of cell fate. Arch. Biochem. Biophys. 2017;617:101–105. doi: 10.1016/j.abb.2016.09.011. PubMed DOI
Balsera M., Buchanan B.B. Evolution of the thioredoxin system as a step enabling adaptation to oxidative stress. Free. Radic. Biol. Med. 2019;140:28–35. doi: 10.1016/j.freeradbiomed.2019.03.003. PubMed DOI
Groitl B., Jakob U. Thiol-based redox switches. Biochim. Biophys. Acta. 2014;1844:1335–1343. doi: 10.1016/j.bbapap.2014.03.007. PubMed DOI PMC
Liu Z. Antioxidant activity of the thioredoxin system. Biophys. Rep. 2023;9:26–32. doi: 10.52601/bpr.2023.230002. PubMed DOI PMC
Davies S.A., Cabrero P., Overend G., Aitchison L., Sebastian S., Terhzaz S., Dow J.A. Cell signalling mechanisms for insect stress tolerance. J. Exp. Biol. 2014;217:119–128. doi: 10.1242/jeb.090571. PubMed DOI
Corona M., Robinson G.E. Genes of the antioxidant system of the honey bee: Annotation and phylogeny. Insect Mol. Biol. 2006;15:687–701. doi: 10.1111/j.1365-2583.2006.00695.x. PubMed DOI PMC
Lennicke C., Cochemé H.M. Redox signalling and ageing: Insights from Drosophila. Biochem. Soc. Trans. 2020;48:367–377. doi: 10.1042/BST20190052. PubMed DOI PMC
Cardoso M.A., Gonçalves H.M.R., Davis F. Reactive oxygen species in biological media are they friend or foe? Major In vivo and In vitro sensing challenges. Talanta. 2023;260:124648. doi: 10.1016/j.talanta.2023.124648. PubMed DOI
Kodrík D., Bednářová A., Zemanová M., Krishnan N. Hormonal Regulation of Response to Oxidative Stress in Insects-An Update. Int. J. Mol. Sci. 2015;16:25788–25816. doi: 10.3390/ijms161025788. PubMed DOI PMC
Juan C.A., Pérez de la Lastra J.M., Plou F.J., Pérez-Lebeña E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021;22:4642. doi: 10.3390/ijms22094642. PubMed DOI PMC
Renaudin X. Chromatin and Genomic Instability in Cancer. Volume 364. Elsevier; Amsterdam, The Netherlands: 2021. Reactive oxygen species and DNA damage response in cancer; pp. 139–161. PubMed DOI
Yadav D.K., Kumar S., Choi E.H., Chaudhary S., Kim M.H. Molecular dynamic simulations of oxidized skin lipid bilayer and permeability of reactive oxygen species. Sci. Rep. 2019;9:4496. doi: 10.1038/s41598-019-40913-y. PubMed DOI PMC
Monaghan P., Metcalfe N.B., Torres R. Oxidative stress as a mediator of life history trade-offs: Mechanisms, measurements and interpretation. Ecol. Lett. 2009;12:75–92. doi: 10.1111/j.1461-0248.2008.01258.x. PubMed DOI
Krishnan N., Kodrík D. Oxidative Stress in Vertebrates and Invertebrates. Wiley; Hoboken, NJ, USA: 2011. Endocrine Control of Oxidative Stress in Insects; pp. 259–270. DOI
Korayem A., Khodairy M., Abdel-Aal A.A., El-Sonbaty A. The protective strategy of antioxidant enzymes against hydrogen peroxide in honey bee, Apis mellifera during two different seasons. [(accessed on 19 July 2024)];J. Biol. Earth Sci. 2012 2:B93–B109. Available online: https://doaj.org/article/c06f7458fc8c433ea3651dedc660715f.
Dröge W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI
Felton G.W., Summers C.B. Antioxidant systems in insects. Arch. Insect Biochem. Physiol. 1995;29:187–197. doi: 10.1002/arch.940290208. PubMed DOI
Nimse S.B., Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5:27986–28006. doi: 10.1039/C4RA13315C. DOI
Williams C.H., Arscott L.D., Müller S., Lennon B.W., Ludwig M.L., Wang P.F., Veine D.M., Becker K., Schirmer R.H. Thioredoxin reductase. Eur. J. Biochem. 2000;267:6110–6117. doi: 10.1046/j.1432-1327.2000.01702.x. PubMed DOI
Kanzok S.M., Fechner A., Bauer H., Ulschmid J.K., Müller H.M., Botella-Munoz J., Schneuwly S., Schirmer R.H., Becker K. Substitution of the Thioredoxin System for Glutathione Reductase in Drosophila melanogaster. Science. 2001;291:643–646. doi: 10.1126/science.291.5504.643. PubMed DOI
García-Caparrós P., De Filippis L., Gul A., Hasanuzzaman M., Ozturk M., Altay V., Lao M.T. Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: A Review. Bot. Rev. 2020;87:421–466. doi: 10.1007/s12229-020-09231-1. DOI
Seehuus S.C., Norberg K., Gimsa U., Krekling T., Amdam G.V. Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc. Natl. Acad. Sci. USA. 2006;103:962–967. doi: 10.1073/pnas.0502681103. PubMed DOI PMC
Wang X. Vitamin E and its function in membranes. Prog. Lipid Res. 1999;38:309–336. doi: 10.1016/S0163-7827(99)00008-9. PubMed DOI
Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: In vitro and in vivo evidence. Free Radic. Biol. Med. 2014;66:3–12. doi: 10.1016/j.freeradbiomed.2013.03.022. PubMed DOI
Bahadorani S., Bahadorani P., Phillips J.P., Hilliker A.J. The Effects of Vitamin Supplementation on Drosophila Life Span Under Normoxia and Under Oxidative Stress. J. Gerontol. A Biol. Sci. Med. Sci. 2008;63:35–42. doi: 10.1093/gerona/63.1.35. PubMed DOI
Kohen R., Nyska A. Oxidation of Biological Systems. Toxicol. Pathol. 2002;30:620–650. doi: 10.1080/01926230290166724. PubMed DOI
von Lintig J., Moon J., Babino D. Molecular components affecting ocular carotenoid and retinoid homeostasis. Prog. Retin. Eye Res. 2021;80:100864. doi: 10.1016/j.preteyeres.2020.100864. PubMed DOI PMC
Jumarie C., Aras P., Boily M. Mixtures of herbicides and metals affect the redox system of honey bees. Chemosphere. 2017;168:163–170. doi: 10.1016/j.chemosphere.2016.10.056. PubMed DOI
Dunkov B., Georgieva T. Insect iron binding proteins: Insights from the genomes. Insect Biochem. Mol. Biol. 2006;36:300–309. doi: 10.1016/j.ibmb.2006.01.007. PubMed DOI
Kim B.Y., Lee K.S., Choo Y.M., Kim I., Je Y.H., Woo S.D., Lee S.M., Park H.C., Sohn H.D., Jin B.R. Insect transferrin functions as an antioxidant protein in a beetle larva. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008;150:161–169. doi: 10.1016/j.cbpb.2008.02.009. PubMed DOI
Pham D.Q., Winzerling J.J. Insect ferritins: Typical or atypical? Biochim. Biophys. Acta. 2010;1800:824–833. doi: 10.1016/j.bbagen.2010.03.004. PubMed DOI PMC
Gorman M.J. Iron Homeostasis in Insects. Annu. Rev. Entomol. 2023;68:51–67. doi: 10.1146/annurev-ento-040622-092836. PubMed DOI PMC
Tang X., Zhou B. Ferritin is the key to dietary iron absorption and tissue iron detoxification in Drosophila melanogaster. FASEB J. 2013;27:288–298. doi: 10.1096/fj.12-213595. PubMed DOI
Park H.G., Lee K.S., Kim B.Y., Yoon H.J., Choi Y.S., Lee K.Y., Wan H., Li J., Jin B.R. Honeybee (Apis cerana) vitellogenin acts as an antimicrobial and antioxidant agent in the body and venom. Dev. Comp. Immunol. 2018;85:51–60. doi: 10.1016/j.dci.2018.04.001. PubMed DOI
Weirich G.F., Collins A.M., Williams V.P. Antioxidant enzymes in the honey bee. Apidologie. 2002;33:3–14. doi: 10.1051/apido:2001001. DOI
Landis G.N., Tower J. Superoxide dismutase evolution and life span regulation. Mech. Ageing Dev. 2005;126:365–379. doi: 10.1016/j.mad.2004.08.012. PubMed DOI
Duttaroy A., Paul A., Kundu M., Belton A. A Sod2 Null Mutation Confers Severely Reduced Adult Life Span in Drosophila. Genetics. 2003;165:2295–2299. doi: 10.1093/genetics/165.4.2295. PubMed DOI PMC
Sun J., Molitor J., Tower J. Effects of simultaneous over-expression of Cu/ZnSOD and MnSOD on Drosophila melanogaster life span. Mech. Ageing Dev. 2004;125:341–349. doi: 10.1016/j.mad.2004.01.009. PubMed DOI
Parker J.D., Parker K.M., Sohal B.H., Sohal R.S., Keller L. Decreased expression of Cu-Zn superoxide dismutase 1 in ants with extreme lifespan. Proc. Natl. Acad. Sci. USA. 2004;101:3486–3489. doi: 10.1073/pnas.0400222101. PubMed DOI PMC
Williams J.B., Roberts S.P., Elekonich M.M. Age and natural metabolically-intensive behavior affect oxidative stress and antioxidant mechanisms. Exp. Gerontol. 2008;43:538–549. doi: 10.1016/j.exger.2008.02.001. PubMed DOI
Sun L., Yin J., Du H., Liu P., Cao C. Characterisation of GST genes from the Hyphantria cunea and their response to the oxidative stress caused by the infection of Hyphantria cunea nucleopolyhedrovirus (HcNPV) Pest. Biochem. Physiol. 2020;163:254–262. doi: 10.1016/j.pestbp.2019.11.019. PubMed DOI
Koirala B.K.S., Moural T., Zhu F. Functional and Structural Diversity of Insect Glutathione S-transferases in Xenobiotic Adaptation. Int. J. Biol. Sci. 2022;18:5713–5723. doi: 10.7150/ijbs.77141. PubMed DOI PMC
Pavlidi N., Vontas J., Van Leeuwen T. The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Curr. Opin. Insect Sci. 2018;27:97–102. doi: 10.1016/j.cois.2018.04.007. PubMed DOI
Shi H., Pei L., Gu S., Zhu S., Wang Y., Zhang Y., Li B. Glutathione S-transferase (GST) genes in the red flour beetle, Tribolium castaneum, and comparative analysis with five additional insects. Genomics. 2012;100:327–335. doi: 10.1016/j.ygeno.2012.07.010. PubMed DOI
Margis R., Dunand C., Teixeira F.K., Margis-Pinheiro M. Glutathione peroxidase family—An evolutionary overview. FEBS J. 2008;275:3959–3970. doi: 10.1111/j.1742-4658.2008.06542.x. PubMed DOI
Dias F.A., Gandara A.C.P., Perdomo H.D., Gonçalves R.S., Oliveira C.R., Oliveira R.L.L., Citelli M., Polycarpo C.R., Santesmasses D., Mariotti M., et al. Identification of a selenium-dependent glutathione peroxidase in the blood-sucking insect Rhodnius prolixus. Insect Biochem. Mol. Biol. 2016;69:105–114. doi: 10.1016/j.ibmb.2015.08.007. PubMed DOI
Benhar M. Roles of mammalian glutathione peroxidase and thioredoxin reductase enzymes in the cellular response to nitrosative stress. Free Radic. Biol. Med. 2018;127:160–164. doi: 10.1016/j.freeradbiomed.2018.01.028. PubMed DOI
Krishnan N., Kodrík D. Antioxidant enzymes in Spodoptera littoralis (Boisduval): Are they enhanced to protect gut tissues during oxidative stress? J. Insect Physiol. 2006;52:11–20. doi: 10.1016/j.jinsphys.2005.08.009. PubMed DOI
Cao Y., Yang Q., Tu X.H., Li S.G., Liu S. Molecular characterisation of a typical 2-Cys thioredoxin peroxidase from the Asiatic rice borer Chilo suppressalis and its role in oxidative stress. Arch. Insect Biochem. Physiol. 2018;99:e21476. doi: 10.1002/arch.21476. PubMed DOI
Hu Z., Lee K.S., Choo Y.M., Yoon H.J., Lee S.M., Lee J.H., Kim D.H., Sohn H.D., Jin B.R. Molecular cloning and characterisation of 1-Cys and 2-Cys peroxiredoxins from the bumblebee Bombus ignitus. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2010;155:272–280. doi: 10.1016/j.cbpb.2009.11.011. PubMed DOI
Moskovitz J., Bar-Noy S., Williams W.M., Requena J., Berlett B.S., Stadtman E.R. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in Comp. Biochem. Physiol. B: Biochem. Mol. Biol. mammals. Proc. Natl. Acad. Sci. USA. 2001;98:12920–12925. doi: 10.1073/pnas.231472998. PubMed DOI PMC
Moskovitz J., Smith A. Methionine sulfoxide and the methionine sulfoxide reductase system as modulators of signal transduction pathways: A review. Amino Acids. 2021;53:1011–1020. doi: 10.1007/s00726-021-03020-9. PubMed DOI
Zhang X.H., Weissbach H. Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases. Biol. Rev. 2008;83:249–257. doi: 10.1111/j.1469-185X.2008.00042.x. PubMed DOI
Lu J., Holmgren A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014;66:75–87. doi: 10.1016/j.freeradbiomed.2013.07.036. PubMed DOI
Koháryová M., Kollárová M. Thioredoxin system—A novel therapeutic target. Gen. Physiol. Biophys. 2015;34:221–233. doi: 10.4149/gpb_2015006. PubMed DOI
Jedelská T., Luhová L., Petřivalský M. Thioredoxins: Emerging Players in the Regulation of Protein S-Nitrosation in Plants. Plants. 2020;9:1426. doi: 10.3390/plants9111426. PubMed DOI PMC
Bauer H., Kanzok S.M., Schirmer R.H. Thioredoxin-2 but Not Thioredoxin-1 Is a Substrate of Thioredoxin Peroxidase-1 from Drosophila melanogaster. J. Biol. Chem. 2002;277:17457–17463. doi: 10.1074/jbc.M200636200. PubMed DOI
Lee S., Kim S.M., Lee R.T. Thioredoxin and Thioredoxin Target Proteins: From Molecular Mechanisms to Functional Significance. Antioxid. Redox Signal. 2013;18:1165–1207. doi: 10.1089/ars.2011.4322. PubMed DOI PMC
Laurent T.C., Moore E.C., Reichard P. Enzymatic Synthesis of Deoxyribonucleotides. J. Biol. Chem. 1964;239:3436–3444. doi: 10.1016/S0021-9258(18)97742-2. PubMed DOI
Wahl M.C., Irmler A., Hecker B., Schirmer R.H., Becker K. Comparative Structural Analysis of Oxidized and Reduced Thioredoxin from Drosophila melanogaster. J. Mol. Biol. 2005;345:1119–1130. doi: 10.1016/j.jmb.2004.11.004. PubMed DOI
Collet J.F., Messens J. Structure, Function, and Mechanism of Thioredoxin Proteins. Antioxid. Redox Signal. 2010;13:1205–1216. doi: 10.1089/ars.2010.3114. PubMed DOI
Arnér E.S.J., Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 2000;267:6102–6109. doi: 10.1046/j.1432-1327.2000.01701.x. PubMed DOI
Lillig C.H., Holmgren A. Thioredoxin and Related Molecules–From Biology to Health and Disease. Antioxid. Redox Signal. 2007;9:25–47. doi: 10.1089/ars.2007.9.25. PubMed DOI
Jensen K.S., Hansen R.E., Winther J.R. Kinetic and Thermodynamic Aspects of Cellular Thiol–Disulfide Redox Regulation. Antioxid. Redox Signal. 2009;11:1047–1058. doi: 10.1089/ars.2008.2297. PubMed DOI
Klomsiri C., Karplus P.A., Poole L.B. Cysteine-based redox switches in enzymes. Antioxid. Redox Signal. 2011;14:1065–1077. doi: 10.1089/ars.2010.3376. PubMed DOI PMC
Svensson J.M., Larsson J. Thioredoxin-2 affects lifespan and oxidative stress in Drosophila. Hereditas. 2007;144:25–32. doi: 10.1111/j.2007.0018-0661.01990.x. PubMed DOI
Tsuda M., Ootaka R., Ohkura C., Kishita Y., Seong K.H., Matsuo T., Aigaki T. Loss of Trx-2 enhances oxidative stress-dependent phenotypes in Drosophila. FEBS Lett. 2010;584:3398–3401. doi: 10.1016/j.febslet.2010.06.034. PubMed DOI
Yao P., Hao L., Wang F., Chen X., Yan Y., Guo X., Xu B. Molecular cloning, expression and antioxidant characterisation of a typical thioredoxin gene (AccTrx2) in Apis cerana cerana. Gene. 2013;527:33–41. doi: 10.1016/j.gene.2013.05.062. PubMed DOI
Kang T., Wan H., Zhang Y., Shakeel M., Lu Y., You H., Lee K.S., Jin B.R., Li J. Comparative study of two thioredoxins from common cutworm (Spodoptera litura): Cloning, expression, and functional characterization. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2015;182:47–54. doi: 10.1016/j.cbpb.2014.12.004. PubMed DOI
Kim Y.J., Lee K.S., Kim B.Y., Choo Y.M., Sohn H.D., Jin B.R. Thioredoxin from the silkworm, Bombyx mori: cDNA sequence, expression, and functional characterization. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007;147:574–581. doi: 10.1016/j.cbpb.2007.03.012. PubMed DOI
Zhang S., Li Z., Nian X., Wu F., Shen Z., Zhang B., Zhang Q., Liu X. Sequence analysis, expression profiles and function of thioredoxin 2 and thioredoxin reductase 1 in resistance to nucleopolyhedrovirus in Helicoverpa armigera. Sci. Rep. 2015;5:15531. doi: 10.1038/srep15531. PubMed DOI PMC
Hoflehner E., Binder M., Hemmer W., Mahler V., Panzani R.C., Jarisch R., Wiedermann U., Duchêne M., Kanellopoulos J. Thioredoxin from the Indianmeal Moth Plodia interpunctella: Cloning and Test of the Allergenic Potential in Mice. PLoS ONE. 2012;7:e42026. doi: 10.1371/journal.pone.0042026. PubMed DOI PMC
Jiménez A., Pelto-Huikko M., Gustafsson J.Å., Miranda-Vizuete A. Characterization of human thioredoxin-like-1: Potential involvement in the cellular response against glucose deprivation. FEBS Lett. 2006;580:960–967. doi: 10.1016/j.febslet.2006.01.025. PubMed DOI
Lu W., Kang M., Liu X., Zhao X., Guo X., Xu B. Identification and antioxidant characterisation of thioredoxin-like1 from Apis cerana cerana. Apidologie. 2012;43:737–752. doi: 10.1007/s13592-012-0148-7. DOI
Novoselov S.V., Gladyshev V.N. Non-animal origin of animal thioredoxin reductases: Implications for selenocysteine evolution and evolution of protein function through carboxy-terminal extensions. Protein Sci. 2003;12:372–378. doi: 10.1110/ps.0226503. PubMed DOI PMC
Gromer S., Urig S., Becker K. The thioredoxin system—From science to clinic. Med. Res. Rev. 2004;24:40–89. doi: 10.1002/med.10051. PubMed DOI
Bauer H., Massey V., Arscott L.D., Schirmer R.H., Ballou D.P., Williams C.H. The Mechanism of High M r Thioredoxin Reductase from Drosophila melanogaster. J. Biol. Chem. 2003;278:33020–33028. doi: 10.1074/jbc.M303762200. PubMed DOI
Huang H.H., Arscott L.D., Ballou D.P., Williams C.H. Acid−Base Catalysis in the Mechanism of Thioredoxin Reductase from Drosophila melanogaster. Biochemistry. 2008;47:1721–1731. doi: 10.1021/bi702040u. PubMed DOI
Zhong L., Arnér E.S.J., Holmgren A. Structure and mechanism of mammalian thioredoxin reductase: The active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc. Natl. Acad. Sci. USA. 2000;97:5854–5859. doi: 10.1073/pnas.100114897. PubMed DOI PMC
Eckenroth B.E., Rould M.A., Hondal R.J., Everse S.J. Structural and Biochemical Studies Reveal Differences in the Catalytic Mechanisms of Mammalian and Drosophila melanogaster Thioredoxin Reductases. Biochemistry. 2007;46:4694–4705. doi: 10.1021/bi602394p. PubMed DOI PMC
Bauer H., Gromer S., Urbani A., Schnölzer M., Schirmer R.H., Müller H.M. Thioredoxin reductase from the malaria mosquito Anopheles gambiae. Eur. J. Biochem. 2003;270:4272–4281. doi: 10.1046/j.1432-1033.2003.03812.x. PubMed DOI
Lothrop A.P., Snider G.W., Ruggles E.L., Patel A.S., Lees W.J., Hondal R.J. Selenium as an Electron Acceptor during the Catalytic Mechanism of Thioredoxin Reductase. Biochemistry. 2014;53:654–663. doi: 10.1021/bi400658g. PubMed DOI PMC
Hondal R., Ruggles E. Differing views of the role of selenium in thioredoxin reductase. Amino Acids. 2011;41:73–89. doi: 10.1007/s00726-010-0494-6. PubMed DOI PMC
Snider G.W., Ruggles E., Khan N., Hondal R.J. Selenocysteine confers resistance to inactivation by oxidation in thioredoxin reductase: Comparison of selenium and sulfur enzymes. Biochemistry. 2013;52:5472–5481. doi: 10.1021/bi400462j. PubMed DOI PMC
Gromer S., Johansson L., Bauer H., Arscott L.D., Rauch S., Ballou D.P., Williams C.H., Schirmer R.H., Arnér E.S.J. Active sites of thioredoxin reductases: Why selenoproteins? Proc. Natl. Acad. Sci. USA. 2003;100:12618–12623. doi: 10.1073/pnas.2134510100. PubMed DOI PMC
Lothrop A.P., Snider G.W., Flemer S., Ruggles E.L., Davidson R.S., Lamb A.L., Hondal R.J. Compensating for the Absence of Selenocysteine in High-Molecular Weight Thioredoxin Reductases: The Electrophilic Activation Hypothesis. Biochemistry. 2014;53:664–674. doi: 10.1021/bi4007258. PubMed DOI PMC
Eckenroth B.E., Lacey B.M., Lothrop A.P., Harris K.M., Hondal R.J. Investigation of the C-Terminal Redox Center of High-Mr Thioredoxin Reductase by Protein Engineering and Semisynthesis. Biochemistry. 2007;46:9472–9483. doi: 10.1021/bi7004812. PubMed DOI PMC
Zhong L., Holmgren A. Essential Role of Selenium in the Catalytic Activities of Mammalian Thioredoxin Reductase Revealed by Characterization of Recombinant Enzymes with Selenocysteine Mutations. J. Biol. Chem. 2000;275:18121–18128. doi: 10.1074/jbc.M000690200. PubMed DOI
Lothrop A.P., Ruggles E.L., Hondal R.J. No Selenium Required: Reactions Catalyzed by Mammalian Thioredoxin Reductase That Are Independent of a Selenocysteine Residue. Biochemistry. 2009;48:6213–6223. doi: 10.1021/bi802146w. PubMed DOI PMC
Cheng Z., Arscott L.D., Ballou D.P., Williams C.H. The Relationship of the Redox Potentials of Thioredoxin and Thioredoxin Reductase from Drosophila melanogaster to the Enzymatic Mechanism: Reduced Thioredoxin Is the Reductant of Glutathione in Drosophila. Biochemistry. 2007;46:7875–7885. doi: 10.1021/bi700442r. PubMed DOI
Radyuk S.N., Klichko V.I., Spinola B., Sohal R.S., Orr W.C. The peroxiredoxin gene family in drosophila melanogaster. Free. Radic. Biol. Med. 2001;31:1090–1100. doi: 10.1016/S0891-5849(01)00692-X. PubMed DOI
Missirlis F., Hirosawa-Takamori M., Grönke S., Schäfer U., Jäckle H., Ulschmid J.K., Becker K., Phillips J.P. Mitochondrial and Cytoplasmic Thioredoxin Reductase Variants Encoded by a Single Drosophila Gene Are Both Essential for Viability. J. Biol. Chem. 2002;277:11521–11526. doi: 10.1074/jbc.M111692200. PubMed DOI
Nair P.M.G., Choi J. Characterization and transcriptional regulation of thioredoxin reductase 1 on exposure to oxidative stress inducing environmental pollutants in Chironomus riparius. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2012;161:134–139. doi: 10.1016/j.cbpb.2011.10.007. PubMed DOI
Krishnan N., Kodrík D., Kłudkiewicz B., Sehnal F. Glutathione–ascorbic acid redox cycle and thioredoxin reductase activity in the digestive tract of Leptinotarsa decemlineata (Say) Insect Biochem. Mol. Biol. 2009;39:180–188. doi: 10.1016/j.ibmb.2008.11.001. PubMed DOI
Gelhaye E., Rouhier N., Navrot N., Jacquot J.P. The plant thioredoxin system. Cell. Mol. Life Sci. 2005;62:24–35. doi: 10.1007/s00018-004-4296-4. PubMed DOI
Arnér E.S.J. Selective evaluation of thioredoxin reductase enzymatic activities. Methods Mol. Biol. 2018;1661:301–309. doi: 10.1007/978-1-4939-7258-6_21. PubMed DOI
Gromer S., Merkle H., Heiner Schirmer R., Becker K. Human placenta thioredoxin reductase: Preparation and inhibitor studies. Methods Enzymol. 2002;347:382–394. doi: 10.1016/S0076-6879(02)47038-3. PubMed DOI
Arnér E.S., Holmgren A. Measurement of thioredoxin and thioredoxin reductase. Curr. Protoc. Toxicol. 2001;7:4–7. doi: 10.1002/0471140856.tx0704s05. PubMed DOI
Ye B., Gitler C., Gressel J. A High-Sensitivity, Single-Gel, Polyacrylamide Gel Electrophoresis Method for the Quantitative Determination of Glutathione Reductases. Anal. Biochem. 1997;246:159–165. doi: 10.1006/abio.1996.9985. PubMed DOI
Arnér E.S., Zhong L., Holmgren A. Preparation and assay of mammalian thioredoxin and thioredoxin reductase. Methods Enzymol. 1999;300:226–239. doi: 10.1016/s0076-6879(99)00129-9. PubMed DOI
Kumar S., Björnstedt M., Holmgren A. Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen. Eur. J. Biochem. 1992;207:435–439. doi: 10.1111/j.1432-1033.1992.tb17068.x. PubMed DOI
Cunniff B., Snider G.W., Fredette N., Hondal R.J., Heintz N.H. A direct and continuous assay for the determination of thioredoxin reductase activity in cell lysates. Anal. Biochem. 2013;443:34–40. doi: 10.1016/j.ab.2013.08.013. PubMed DOI PMC
Montano S.J., Lu J., Gustafsson T.N., Holmgren A. Activity assays of mammalian thioredoxin and thioredoxin reductase: Fluorescent disulfide substrates, mechanisms, and use with tissue samples. Anal. Biochem. 2014;449:139–146. doi: 10.1016/j.ab.2013.12.025. PubMed DOI
Pader I., Sengupta R., Cebula M., Xu J., Lundberg J.O., Holmgren A., Johansson K., Arnér E.S.J. Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase. Proc. Natl. Acad. Sci. USA. 2014;111:6964–6969. doi: 10.1073/pnas.1317320111. PubMed DOI PMC
Cai W., Zhang L., Song Y., Wang B., Zhang B., Cui X., Hu G., Liu Y., Wu J., Fang J. Small molecule inhibitors of mammalian thioredoxin reductase. Free. Radic. Biol. Med. 2012;52:257–265. doi: 10.1016/j.freeradbiomed.2011.10.447. PubMed DOI
Urig S., Becker K. On the potential of thioredoxin reductase inhibitors for cancer therapy. Semin. Cancer Biol. 2006;16:452–465. doi: 10.1016/j.semcancer.2006.09.004. PubMed DOI
Song Z., Fan C., Zhao J., Wang L., Duan D., Shen T., Li X. Fluorescent Probes for Mammalian Thioredoxin Reductase: Mechanistic Analysis, Construction Strategies, and Future Perspectives. Biosensors. 2023;13:811. doi: 10.3390/bios13080811. PubMed DOI PMC
Zhang L., Duan D., Liu Y., Ge C., Cui X., Sun J., Fang J. Highly Selective Off–On Fluorescent Probe for Imaging Thioredoxin Reductase in Living Cells. J. Am. Chem. Soc. 2014;136:226–233. doi: 10.1021/ja408792k. PubMed DOI
AlOkda A., Van Raamsdonk J.M. Evolutionarily Conserved Role of Thioredoxin Systems in Determining Longevity. Antioxidants. 2023;12:944. doi: 10.3390/antiox12040944. PubMed DOI PMC
Wu C., Liu T., Chen W., Oka S., Fu C., Jain M.R., Parrott A.M., Baykal A.T., Sadoshima J., Li H. Redox regulatory mechanism of transnitrosylation by thioredoxin. Mol. Cell. Proteom. 2010;9:2262–2275. doi: 10.1074/mcp.M110.000034. PubMed DOI PMC
Wu C., Parrott A.M., Fu C., Liu T., Marino S.M., Gladyshev V.N., Jain M.R., Baykal A.T., Li Q., Oka S., et al. Thioredoxin 1-Mediated Post-Translational Modifications: Reduction, Transnitrosylation, Denitrosylation, and Related Proteomics Methodologies. Antioxid. Redox Signal. 2011;15:2565–2604. doi: 10.1089/ars.2010.3831. PubMed DOI PMC
Anand P., Stamler J.S. Enzymatic mechanisms regulating protein S-nitrosylation: Implications in health and disease. J. Mol. Med. 2012;90:233–244. doi: 10.1007/s00109-012-0878-z. PubMed DOI PMC
Sengupta R., Holmgren A. Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation. Antioxid. Redox Signal. 2013;18:259–269. doi: 10.1089/ars.2012.4716. PubMed DOI
Haendeler J. Thioredoxin-1 and Posttranslational Modifications. Antioxid. Redox Signal. 2006;8:1723–1728. doi: 10.1089/ars.2006.8.1723. PubMed DOI
Benhar M., Forrester M.T., Hess D.T., Stamler J.S. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science. 2008;320:1050–1054. doi: 10.1126/science.1158265. PubMed DOI PMC
Arnér E.S.J. Focus on mammalian thioredoxin reductases—Important selenoproteins with versatile functions. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2009;1790:495–526. doi: 10.1016/j.bbagen.2009.01.014. PubMed DOI
Wright D.E., Altaany Z., Bi Y., Alperstein Z., O’Donoghue P. Acetylation Regulates Thioredoxin Reductase Oligomerization and Activity. Antioxid. Redox Signal. 2018;29:377–388. doi: 10.1089/ars.2017.7082. PubMed DOI PMC
Wright D.E., Panaseiko N., O’Donoghue P. Acetylated Thioredoxin Reductase 1 Resists Oxidative Inactivation. Front. Chem. 2021;9:747236. doi: 10.3389/fchem.2021.747236. PubMed DOI PMC
Junn E., Han S.H., Im J.Y., Yang Y., Cho E.W., Um H.D., Kim D.K., Lee K.W., Han P.L., Rhee S.G., et al. Vitamin D3 Up-Regulated Protein 1 Mediates Oxidative Stress Via Suppressing the Thioredoxin Function. J. Immunol. 2000;164:6287–6295. doi: 10.4049/jimmunol.164.12.6287. PubMed DOI
Holmgren A., Sengupta R. The use of thiols by ribonucleotide reductase. Free. Radic. Biol. Med. 2010;49:1617–1628. doi: 10.1016/j.freeradbiomed.2010.09.005. PubMed DOI
Aye Y., Li M., Long M.J., Weiss R.S. Ribonucleotide reductase and cancer: Biological mechanisms and targeted therapies. Oncogene. 2015;34:2011–2021. doi: 10.1038/onc.2014.155. PubMed DOI
Nordlund P., Reichard P. Ribonucleotide Reductases. Annu. Rev. Biochem. 2006;75:681–706. doi: 10.1146/annurev.biochem.75.103004.142443. PubMed DOI
Rhee S.G., Kil I.S. Multiple Functions and Regulation of Mammalian Peroxiredoxins. Annu. Rev. Biochem. 2017;86:749–775. doi: 10.1146/annurev-biochem-060815-014431. PubMed DOI
Radyuk S.N., Rebrin I., Klichko V.I., Sohal B.H., Michalak K., Benes J., Sohal R.S., Orr W.C. Mitochondrial peroxiredoxins are critical for the maintenance of redox state and the survival of adult Drosophila. Free. Radic. Biol. Med. 2010;49:1892–1902. doi: 10.1016/j.freeradbiomed.2010.09.014. PubMed DOI PMC
Yu F., Kang M., Meng F., Guo X., Xu B. Molecular cloning and characterization of a thioredoxin peroxidase gene from Apis cerana cerana. Insect Mol. Biol. 2011;20:367–378. doi: 10.1111/j.1365-2583.2011.01071.x. PubMed DOI
Yao P., Chen X., Yan Y., Liu F., Zhang Y., Guo X., Xu B. Glutaredoxin 1, glutaredoxin 2, thioredoxin 1, and thioredoxin peroxidase 3 play important roles in antioxidant defense in Apis cerana cerana. Free. Radic. Biol. Med. 2014;68:335–346. doi: 10.1016/j.freeradbiomed.2013.12.020. PubMed DOI
Yan Y., Zhang Y., Huaxia Y., Wang X., Yao P., Guo X., Xu B. Identification and characterisation of a novel 1-Cys thioredoxin peroxidase gene ( AccTpx5 ) from Apis cerana cerana. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2014;172–173:39–48. doi: 10.1016/j.cbpb.2014.04.004. PubMed DOI
Huaxia Y., Wang F., Yan Y., Liu F., Wang H., Guo X., Xu B. A novel 1-Cys thioredoxin peroxidase gene in Apis cerana cerana: Characterization of AccTpx4 and its role in oxidative stresses. Cell Stress Chaperones. 2015;20:663–672. doi: 10.1007/s12192-015-0594-z. PubMed DOI PMC
Jarvis R.M., Hughes S.M., Ledgerwood E.C. Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free. Radic. Biol. Med. 2012;53:1522–1530. doi: 10.1016/j.freeradbiomed.2012.08.001. PubMed DOI
Levine R.L., Moskovitz J., Stadtman E.R. Oxidation of Methionine in Proteins: Roles in Antioxidant Defense and Cellular Regulation. IUBMB Life. 2000;50:301–307. doi: 10.1080/15216540051081056. PubMed DOI
Rosenfeld M.A., Yurina L.V., Vasilyeva A.D. Antioxidant role of methionine-containing intra- and extracellular proteins. Biophys. Rev. 2023;15:367–383. doi: 10.1007/s12551-023-01056-7. PubMed DOI PMC
Chandran S., Binninger D. Role of Oxidative Stress, Methionine Oxidation and Methionine Sulfoxide Reductases (MSR) in Alzheimer’s Disease. Antioxidants. 2023;13:21. doi: 10.3390/antiox13010021. PubMed DOI PMC
Ruan H., Tang X.D., Chen M.L., Joiner M.A., Sun G., Brot N., Weissbach H., Heinemann S.H., Iverson L., Wu C.F., et al. High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc. Natl. Acad. Sci. USA. 2002;99:2748–2753. doi: 10.1073/pnas.032671199. PubMed DOI PMC
Bruce L., Singkornrat D., Wilson K., Hausman W., Robbins K., Huang L., Foss K., Binninger D. In Vivo Effects of Methionine Sulfoxide Reductase Deficiency in Drosophila melanogaster. Antioxidants. 2018;7:155. doi: 10.3390/antiox7110155. PubMed DOI PMC
Salmon A.B., Pérez V.I., Bokov A., Jernigan A., Kim G., Zhao H., Levine R.L., Richardson A. Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span. FASEB J. 2009;23:3601–3608. doi: 10.1096/fj.08-127415. PubMed DOI PMC
Koo H.N., Lee S.G., Yun S.H., Kim H.K., Choi Y.S., Kim G.H. Comparative Analyses of Cu-Zn Superoxide Dismutase (SOD1) and Thioredoxin Reductase (TrxR) at the mRNA Level between Apis mellifera L. and Apis cerana F. (Hymenoptera: Apidae) Under Stress Conditions. J. Insect Sci. 2016;16:4. doi: 10.1093/jisesa/iev159. PubMed DOI PMC
Yang H., Kang M., Guo X., Xu B. Cloning, structural features, and expression analysis of the gene encoding thioredoxin reductase 1 from Apis cerana cerana. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2010;156:229–236. doi: 10.1016/j.cbpb.2010.04.003. PubMed DOI
Lee K., Ryulkim S., Sookpark N., Kim I., Dongkang P., Heesohn B., Hochoi K., Wookang S., Hoje Y., Monglee S. Characterisation of a silkworm thioredoxin peroxidase that is induced by external temperature stimulus and viral infection. Insect Biochem. Mol. Biol. 2005;35:73–84. doi: 10.1016/j.ibmb.2004.09.008. PubMed DOI
Cox A.G., Peskin A.V., Paton L.N., Winterbourn C.C., Hampton M.B. Redox Potential and Peroxide Reactivity of Human Peroxiredoxin 3. Biochemistry. 2009;48:6495–6501. doi: 10.1021/bi900558g. PubMed DOI
Nordberg J., Arnér E.S.J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free. Radic. Biol. Med. 2001;31:1287–1312. doi: 10.1016/S0891-5849(01)00724-9. PubMed DOI
Schafer F.Q., Buettner G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free. Radic. Biol. Med. 2001;30:1191–1212. doi: 10.1016/S0891-5849(01)00480-4. PubMed DOI
Njus D., Kelley P.M., Tu Y.J., Schlegel H.B. Ascorbic acid: The chemistry underlying its antioxidant properties. Free. Radic. Biol. Med. 2020;159:37–43. doi: 10.1016/j.freeradbiomed.2020.07.013. PubMed DOI
Arnér E.S.J., Nordberg J., Holmgren A. Efficient Reduction of Lipoamide and Lipoic Acid by Mammalian Thioredoxin Reductase. Biochem. Biophys. Res. Commun. 1996;225:268–274. doi: 10.1006/bbrc.1996.1165. PubMed DOI
Dos Santos E., Cochemé H.M. How does a fly die? Insights into ageing from the pathophysiology of Drosophila mortality. GeroScience. 2024;46:4003–4015. doi: 10.1007/s11357-024-01158-4. PubMed DOI PMC
Luo J., Mills K., le Cessie S., Noordam R., van Heemst D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev. 2020;57:100982. doi: 10.1016/j.arr.2019.100982. PubMed DOI
Sohal R.S., Orr W.C. The redox stress hypothesis of aging. Free. Radic. Biol. Med. 2012;52:539–555. doi: 10.1016/j.freeradbiomed.2011.10.445. PubMed DOI PMC
Harris-Gauthier N., Traa A., AlOkda A., Moldakozhayev A., Anglas U., Soo S.K., Van Raamsdonk J.M. Mitochondrial thioredoxin system is required for enhanced stress resistance and extended longevity in long-lived mitochondrial mutants. Redox Biol. 2022;53:102335. doi: 10.1016/j.redox.2022.102335. PubMed DOI PMC
Corona M., Hughes K.A., Weaver D.B., Robinson G.E. Gene expression patterns associated with queen honey bee longevity. Mech. Ageing Dev. 2005;126:1230–1238. doi: 10.1016/j.mad.2005.07.004. PubMed DOI
Korandová M., Frydrychová R.Č. Activity of telomerase and telomeric length in Apis mellifera. Chromosoma. 2016;125:405–411. doi: 10.1007/s00412-015-0547-4. PubMed DOI
Hsieh Y.S., Hsu C.Y. Oxidative Stress and Anti-Oxidant Enzyme Activities in the Trophocytes and Fat Cells of Queen Honeybees (Apis mellifera) Rejuvenation Res. 2013;16:295–303. doi: 10.1089/rej.2013.1420. PubMed DOI PMC
Kunc M., Dobeš P., Hurychová J., Vojtek L., Poiani S.B., Danihlík J., Havlík J., Titěra D., Hyršl P. The Year of the Honey Bee (Apis mellifera L.) with Respect to Its Physiology and Immunity: A Search for Biochemical Markers of Longevity. Insects. 2019;10:244. doi: 10.3390/insects10080244. PubMed DOI PMC
Yang W., Tian Y., Han M., Miao X. Longevity extension of worker honey bees (Apis mellifera) by royal jelly: Optimal dose and active ingredient. PeerJ. 2017;5:e3118. doi: 10.7717/peerj.3118. PubMed DOI PMC
Alaux C., Dantec C., Parrinello H., Le Conte Y. Nutrigenomics in honey bees: Digital gene expression analysis of pollen’s nutritive effects on healthy and varroa-parasitized bees. BMC Genom. 2011;12:496. doi: 10.1186/1471-2164-12-496. PubMed DOI PMC
Alburaki M., Smith K.D., Adamczyk J., Karim S. Interplay between Selenium, selenoprotein genes, and oxidative stress in honey bee Apis mellifera L. J. Insect Physiol. 2019;117:103891. doi: 10.1016/j.jinsphys.2019.103891. PubMed DOI PMC
Alburaki M., Karim S., Lamour K., Adamczyk J., Stewart S.D. RNA-seq reveals disruption of gene regulation when honey bees are caged and deprived of hive conditions. J. Exp. Biol. 2019;222:jeb207761. PubMed PMC
Gregorc A., Alburaki M., Rinderer N., Sampson B., Knight P.R., Karim S., Adamczyk J. Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae) lifespan and antioxidant gene regulations in laboratory experiments. Sci. Rep. 2018;8:15003. doi: 10.1038/s41598-018-33348-4. PubMed DOI PMC
Stoyanovsky D.A., Tyurina Y.Y., Tyurin V.A., Anand D., Mandavia D.N., Gius D., Ivanova J., Pitt B., Billiar T.R., Kagan V.E. Thioredoxin and Lipoic Acid Catalyze the Denitrosation of Low Molecular Weight and Protein S -Nitrosothiols. J. Am. Chem. Soc. 2005;127:15815–15823. doi: 10.1021/ja0529135. PubMed DOI
Novo N., Ferreira P., Medina M. The apoptosis-inducing factor family: Moonlighting proteins in the crosstalk between mitochondria and nuclei. IUBMB Life. 2021;73:568–581. doi: 10.1002/iub.2390. PubMed DOI
Herrmann J.M., Riemer J. Apoptosis inducing factor and mitochondrial NADH dehydrogenases: Redox-controlled gear boxes to switch between mitochondrial biogenesis and cell death. Biol. Chem. 2020;402:289–297. doi: 10.1515/hsz-2020-0254. PubMed DOI
Shelar S.B., Kaminska K.K., Reddy S.A., Kumar D., Tan C.T., Yu V.C., Lu J., Holmgren A., Hagen T., Chew E.H. Thioredoxin-dependent regulation of AIF-mediated DNA damage. Free. Radic. Biol. Med. 2015;87:125–136. doi: 10.1016/j.freeradbiomed.2015.06.029. PubMed DOI
Joza N., Galindo K., Pospisilik J.A., Benit P., Rangachari M., Kanitz E.E., Nakashima Y., Neely G.G., Rustin P., Abrams J.M., et al. The molecular archaeology of a mitochondrial death effector: AIF in Drosophila. Cell Death Differ. 2008;15:1009–1018. doi: 10.1038/cdd.2008.24. PubMed DOI PMC
Wang F., Zhang Y., Yao P., Guo X., Li H., Xu B. Molecular identification and stress response of the apoptosis-inducing factor gene 3 (AccAIF3) from Apis cerana cerana. Apidologie. 2014;45:685–700. doi: 10.1007/s13592-014-0285-2. DOI
Landino L.M., Skreslet T.E., Alston J.A. Cysteine Oxidation of Tau and Microtubule-associated Protein-2 by Peroxynitrite. J. Biol. Chem. 2004;279:35101–35105. doi: 10.1074/jbc.M405471200. PubMed DOI
Khan I.A., Ludueña R.F. Possible regulation of the in vitro assembly of bovine brain tubulin by the bovine thioredoxin system. Biochim. Biophys. Acta (BBA)—Protein Struct. Mol. Enzymol. 1991;1076:289–297. doi: 10.1016/0167-4838(91)90280-D. PubMed DOI
Bordier C., Suchail S., Pioz M., Devaud J.M., Collet C., Charreton M., Le Conte Y., Alaux C. Stress response in honeybees is associated with changes in task-related physiology and energetic metabolism. J. Insect Physiol. 2017;98:47–54. doi: 10.1016/j.jinsphys.2016.11.013. PubMed DOI
Li G., Zhao H., Liu Z., Wang H., Xu B., Guo X. The Wisdom of Honeybee Defenses Against Environmental Stresses. Front. Microbiol. 2018;9:722. doi: 10.3389/fmicb.2018.00722. PubMed DOI PMC
Tahir F., Goblirsch M., Adamczyk J., Karim S., Alburaki M. Honey bee Apis mellifera L. responses to oxidative stress induced by pharmacological and pesticidal compounds. Front. Bee Sci. 2023;1:1275862. doi: 10.3389/frbee.2023.1275862. DOI
Degueldre F., Aron S. Long-term sperm storage in eusocial Hymenoptera. Biol. Rev. Camb. Philos. Soc. 2023;98:567–583. doi: 10.1111/brv.12919. PubMed DOI
Aitken R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 2017;84:1039–1052. doi: 10.1002/mrd.22871. PubMed DOI
O’Flaherty C., Scarlata E. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: The protection of mammalian spermatozoa against oxidative stress. Reproduction. 2022;164:F67–F78. doi: 10.1530/REP-22-0200. PubMed DOI
O’Flaherty C., Matsushita-Fournier D. Reactive oxygen species and protein modifications in spermatozoa. Biol. Reprod. 2017;97:577–585. doi: 10.1093/biolre/iox104. PubMed DOI
Gonzalez A.N., Ing N., Rangel J. Upregulation of antioxidant genes in the spermathecae of honey bee (Apis mellifera) queens after mating. Apidologie. 2018;49:224–234. doi: 10.1007/s13592-017-0546-y. DOI
Rangel J., Shepherd T.F., Gonzalez A.N., Hillhouse A., Konganti K., Ing N.H. Transcriptomic analysis of the honey bee (Apis mellifera) queen spermathecae reveals genes that may be involved in sperm storage after mating. PLoS ONE. 2021;16:e0244648. doi: 10.1371/journal.pone.0244648. PubMed DOI PMC
Anderson K.E., Copeland D.C. The honey bee “hive” microbiota: Meta-analysis reveals a native and aerobic microbiota prevalent throughout the social resource niche. Front. Bee Sci. 2024;2:1410331. doi: 10.3389/frbee.2024.1410331. DOI
Leonard S.P., Powell J.E., Perutka J., Geng P., Heckmann L.C., Horak R.D., Davies B.W., Ellington A.D., Barrick J.E., Moran N.A. Engineered symbionts activate honey bee immunity and limit pathogens. Science. 2020;367:573–576. doi: 10.1126/science.aax9039. PubMed DOI PMC
Huang Q., Lariviere P.J., Powell J.E., Moran N.A. Engineered gut symbiont inhibits microsporidian parasite and improves honey bee survival. Proc. Natl. Acad. Sci. USA. 2023;120:e2220922120. doi: 10.1073/pnas.2220922120. PubMed DOI PMC
Sattayawat P., Inwongwan S., Noirungsee N., Li J., Guo J., Disayathanoowat T. Engineering Gut Symbionts: A Way to Promote Bee Growth? Insects. 2024;15:369. doi: 10.3390/insects15050369. PubMed DOI PMC
Lang H., Wang H., Wang H., Zhong Z., Xie X., Zhang W., Guo J., Meng L., Hu X., Zhang X., et al. Engineered symbiotic bacteria interfering Nosema redox system inhibit microsporidia parasitism in honeybees. Nat. Commun. 2023;14:2778. doi: 10.1038/s41467-023-38498-2. PubMed DOI PMC
Arts I., Vertommen D., Baldin F., Laloux G., Collet J.F. Comprehensively Characterizing the Thioredoxin Interactome In Vivo Highlights the Central Role Played by This Ubiquitous Oxidoreductase in Redox Control. Mol. Cell. Proteom. 2016;15:2125–2140. doi: 10.1074/mcp.M115.056440. PubMed DOI PMC
Ancín M., Fernandez-Irigoyen J., Santamaria E., Larraya L., Fernández-San Millán A., Veramendi J., Farran I. New In Vivo Approach to Broaden the Thioredoxin Family Interactome in Chloroplasts. Antioxidants. 2022;11:1979. doi: 10.3390/antiox11101979. PubMed DOI PMC
Nakao L.S., Everley R.A., Marino S.M., Lo S.M., de Souza L.E., Gygi S.P., Gladyshev V.N. Mechanism-based proteomic screening identifies targets of thioredoxin-like proteins. J. Biol. Chem. 2015;290:5685–5695. doi: 10.1074/jbc.M114.597245. PubMed DOI PMC
Pedre B. A guide to genetically-encoded redox biosensors: State of the art and opportunities. Arch. Biochem. Biophys. 2024;758:110067. doi: 10.1016/j.abb.2024.110067. PubMed DOI
Calabrese G., Morgan B., Riemer J. Mitochondrial Glutathione: Regulation and Functions. Antioxid. Redox Signal. 2017;27:1162–1177. doi: 10.1089/ars.2017.7121. PubMed DOI
Zhuravlev A., Ezeriņa D., Ivanova J., Guriev N., Pugovkina N., Shatrova A., Aksenov N., Messens J., Lyublinskaya O. HyPer as a tool to determine the reductive activity in cellular compartments. Redox Biol. 2024;70:103058. doi: 10.1016/j.redox.2024.103058. PubMed DOI PMC
Molinari P.E., Krapp A.R., Weiner A., Beyer H.M., Kondadi A.K., Blomeier T., López M., Bustos-Sanmamed P., Tevere E., Weber W., et al. NERNST: A genetically-encoded ratiometric non-destructive sensing tool to estimate NADP(H) redox status in bacterial, plant and animal systems. Nat. Commun. 2023;14:3277. doi: 10.1038/s41467-023-38739-4. PubMed DOI PMC