Thioredoxin System in Insects: Uncovering the Roles of Thioredoxins and Thioredoxin Reductase beyond the Antioxidant Defences

. 2024 Oct 14 ; 15 (10) : . [epub] 20241014

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39452373

Grantová podpora
LUAUS24085 Ministry of Education, Youth and Sport of the Czech Republic

Increased levels of reactive oxygen species (ROS) produced during aerobic metabolism in animals can negatively affect the intracellular redox status, cause oxidative stress and interfere with physiological processes in the cells. The antioxidant defence regulates ROS levels by interplaying diverse enzymes and non-enzymatic metabolites. The thioredoxin system, consisting of the enzyme thioredoxin reductase (TrxR), the redox-active protein thioredoxin (Trx) and NADPH, represent a crucial component of antioxidant defence. It is involved in the signalling and regulation of multiple developmental processes, such as cell proliferation or apoptotic death. Insects have evolved unique variations of TrxR, which resemble mammalian enzymes in overall structure and catalytic mechanisms, but the selenocysteine-cysteine pair in the active site is replaced by a cysteine-cysteine pair typical of bacteria. Moreover, the role of the thioredoxin system in insects is indispensable due to the absence of glutathione reductase, an essential enzyme of the glutathione system. However, the functions of the Trx system in insects are still poorly characterised. In the present review, we provide a critical overview of the current knowledge on the insect Trx system, focusing mainly on TrxR's role in the antioxidant and immune system of model insect species.

Zobrazit více v PubMed

Kaludercic N., Deshwal S., Di Lisa F. Reactive oxygen species and redox compartmentalization. Front. Physiol. 2014;5:285. doi: 10.3389/fphys.2014.00285. PubMed DOI PMC

Zhang B., Pan C., Feng C., Yan C., Yu Y., Chen Z., Guo C., Wang X. Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep. 2002;27:45–52. doi: 10.1080/13510002.2022.2046423. PubMed DOI PMC

Chaitanya R., Shashank K., Sridevi P. Free Radicals and Diseases. IntechOpen; London, UK: 2016. Oxidative Stress in Invertebrate Systems. DOI

Farjan M., Dmitryjuk M., Lipiński Z., Biernat-Łopieńska E., Żółtowska K. Supplementation of the honey bee diet with vitamin C: The effect on the antioxidative system of Apis mellifera carnica brood at different stages. J. Apic. Res. 2015;51:263–270. doi: 10.3896/IBRA.1.51.3.07. DOI

Dey S., Sidor A., O’Rourke B. Compartment-specific Control of Reactive Oxygen Species Scavenging by Antioxidant Pathway Enzymes. J. Biol. Chem. 2016;291:11185–11197. doi: 10.1074/jbc.M116.726968. PubMed DOI PMC

Ursini F., Maiorino M., Forman H.J. Redox homeostasis: The Golden Mean of healthy living. Redox Biol. 2016;8:205–215. doi: 10.1016/j.redox.2016.01.010. PubMed DOI PMC

D’Autréaux B., Toledano M.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 2007;8:813–824. doi: 10.1038/nrm2256. PubMed DOI

Ray P.D., Huang B.W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24:981–990. doi: 10.1016/j.cellsig.2012.01.008. PubMed DOI PMC

Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002. PubMed DOI PMC

Janků M., Luhová L., Petřivalský M. On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments. Antioxidants. 2019;8:105. doi: 10.3390/antiox8040105. PubMed DOI PMC

Słowińska M., Nynca J., Wilde J., Bąk B., Siuda M., Ciereszko A. Total antioxidant capacity of honeybee haemolymph in relation to age and exposure to pesticide, and comparison to antioxidant capacity of seminal plasma. Apidologie. 2016;47:227–236. doi: 10.1007/s13592-015-0391-9. DOI

Su L.J., Zhang J.H., Gomez H., Murugan R., Hong X., Xu D., Jiang F., Peng Z.Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid. Med. Cell. Longev. 2019;2019:5080843. doi: 10.1155/2019/5080843. PubMed DOI PMC

Qian S., Chen G., Li R., Ma Y., Pan L., Wang X., Wang X. Disulfide stress and its role in cardiovascular diseases. Redox Biol. 2024;75:103297. doi: 10.1016/j.redox.2024.103297. PubMed DOI PMC

Jacob C., Knight I., Winyard P.G. Aspects of the biological redox chemistry of cysteine: From simple redox responses to sophisticated signalling pathways. Biol. Chem. 2006;387:1385–1397. doi: 10.1515/BC.2006.174. PubMed DOI

Lamontagne F., Paz-Trejo C., Zamorano Cuervo N., Grandvaux N. Redox signaling in cell fate: Beyond damage. Biochimica et biophysica acta. Mol. Cell Res. 2024;1871:119722. doi: 10.1016/j.bbamcr.2024.119722. PubMed DOI

Matsuzawa A. Thioredoxin and redox signaling: Roles of the thioredoxin system in control of cell fate. Arch. Biochem. Biophys. 2017;617:101–105. doi: 10.1016/j.abb.2016.09.011. PubMed DOI

Balsera M., Buchanan B.B. Evolution of the thioredoxin system as a step enabling adaptation to oxidative stress. Free. Radic. Biol. Med. 2019;140:28–35. doi: 10.1016/j.freeradbiomed.2019.03.003. PubMed DOI

Groitl B., Jakob U. Thiol-based redox switches. Biochim. Biophys. Acta. 2014;1844:1335–1343. doi: 10.1016/j.bbapap.2014.03.007. PubMed DOI PMC

Liu Z. Antioxidant activity of the thioredoxin system. Biophys. Rep. 2023;9:26–32. doi: 10.52601/bpr.2023.230002. PubMed DOI PMC

Davies S.A., Cabrero P., Overend G., Aitchison L., Sebastian S., Terhzaz S., Dow J.A. Cell signalling mechanisms for insect stress tolerance. J. Exp. Biol. 2014;217:119–128. doi: 10.1242/jeb.090571. PubMed DOI

Corona M., Robinson G.E. Genes of the antioxidant system of the honey bee: Annotation and phylogeny. Insect Mol. Biol. 2006;15:687–701. doi: 10.1111/j.1365-2583.2006.00695.x. PubMed DOI PMC

Lennicke C., Cochemé H.M. Redox signalling and ageing: Insights from Drosophila. Biochem. Soc. Trans. 2020;48:367–377. doi: 10.1042/BST20190052. PubMed DOI PMC

Cardoso M.A., Gonçalves H.M.R., Davis F. Reactive oxygen species in biological media are they friend or foe? Major In vivo and In vitro sensing challenges. Talanta. 2023;260:124648. doi: 10.1016/j.talanta.2023.124648. PubMed DOI

Kodrík D., Bednářová A., Zemanová M., Krishnan N. Hormonal Regulation of Response to Oxidative Stress in Insects-An Update. Int. J. Mol. Sci. 2015;16:25788–25816. doi: 10.3390/ijms161025788. PubMed DOI PMC

Juan C.A., Pérez de la Lastra J.M., Plou F.J., Pérez-Lebeña E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021;22:4642. doi: 10.3390/ijms22094642. PubMed DOI PMC

Renaudin X. Chromatin and Genomic Instability in Cancer. Volume 364. Elsevier; Amsterdam, The Netherlands: 2021. Reactive oxygen species and DNA damage response in cancer; pp. 139–161. PubMed DOI

Yadav D.K., Kumar S., Choi E.H., Chaudhary S., Kim M.H. Molecular dynamic simulations of oxidized skin lipid bilayer and permeability of reactive oxygen species. Sci. Rep. 2019;9:4496. doi: 10.1038/s41598-019-40913-y. PubMed DOI PMC

Monaghan P., Metcalfe N.B., Torres R. Oxidative stress as a mediator of life history trade-offs: Mechanisms, measurements and interpretation. Ecol. Lett. 2009;12:75–92. doi: 10.1111/j.1461-0248.2008.01258.x. PubMed DOI

Krishnan N., Kodrík D. Oxidative Stress in Vertebrates and Invertebrates. Wiley; Hoboken, NJ, USA: 2011. Endocrine Control of Oxidative Stress in Insects; pp. 259–270. DOI

Korayem A., Khodairy M., Abdel-Aal A.A., El-Sonbaty A. The protective strategy of antioxidant enzymes against hydrogen peroxide in honey bee, Apis mellifera during two different seasons. [(accessed on 19 July 2024)];J. Biol. Earth Sci. 2012 2:B93–B109. Available online: https://doaj.org/article/c06f7458fc8c433ea3651dedc660715f.

Dröge W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI

Felton G.W., Summers C.B. Antioxidant systems in insects. Arch. Insect Biochem. Physiol. 1995;29:187–197. doi: 10.1002/arch.940290208. PubMed DOI

Nimse S.B., Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5:27986–28006. doi: 10.1039/C4RA13315C. DOI

Williams C.H., Arscott L.D., Müller S., Lennon B.W., Ludwig M.L., Wang P.F., Veine D.M., Becker K., Schirmer R.H. Thioredoxin reductase. Eur. J. Biochem. 2000;267:6110–6117. doi: 10.1046/j.1432-1327.2000.01702.x. PubMed DOI

Kanzok S.M., Fechner A., Bauer H., Ulschmid J.K., Müller H.M., Botella-Munoz J., Schneuwly S., Schirmer R.H., Becker K. Substitution of the Thioredoxin System for Glutathione Reductase in Drosophila melanogaster. Science. 2001;291:643–646. doi: 10.1126/science.291.5504.643. PubMed DOI

García-Caparrós P., De Filippis L., Gul A., Hasanuzzaman M., Ozturk M., Altay V., Lao M.T. Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: A Review. Bot. Rev. 2020;87:421–466. doi: 10.1007/s12229-020-09231-1. DOI

Seehuus S.C., Norberg K., Gimsa U., Krekling T., Amdam G.V. Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc. Natl. Acad. Sci. USA. 2006;103:962–967. doi: 10.1073/pnas.0502681103. PubMed DOI PMC

Wang X. Vitamin E and its function in membranes. Prog. Lipid Res. 1999;38:309–336. doi: 10.1016/S0163-7827(99)00008-9. PubMed DOI

Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: In vitro and in vivo evidence. Free Radic. Biol. Med. 2014;66:3–12. doi: 10.1016/j.freeradbiomed.2013.03.022. PubMed DOI

Bahadorani S., Bahadorani P., Phillips J.P., Hilliker A.J. The Effects of Vitamin Supplementation on Drosophila Life Span Under Normoxia and Under Oxidative Stress. J. Gerontol. A Biol. Sci. Med. Sci. 2008;63:35–42. doi: 10.1093/gerona/63.1.35. PubMed DOI

Kohen R., Nyska A. Oxidation of Biological Systems. Toxicol. Pathol. 2002;30:620–650. doi: 10.1080/01926230290166724. PubMed DOI

von Lintig J., Moon J., Babino D. Molecular components affecting ocular carotenoid and retinoid homeostasis. Prog. Retin. Eye Res. 2021;80:100864. doi: 10.1016/j.preteyeres.2020.100864. PubMed DOI PMC

Jumarie C., Aras P., Boily M. Mixtures of herbicides and metals affect the redox system of honey bees. Chemosphere. 2017;168:163–170. doi: 10.1016/j.chemosphere.2016.10.056. PubMed DOI

Dunkov B., Georgieva T. Insect iron binding proteins: Insights from the genomes. Insect Biochem. Mol. Biol. 2006;36:300–309. doi: 10.1016/j.ibmb.2006.01.007. PubMed DOI

Kim B.Y., Lee K.S., Choo Y.M., Kim I., Je Y.H., Woo S.D., Lee S.M., Park H.C., Sohn H.D., Jin B.R. Insect transferrin functions as an antioxidant protein in a beetle larva. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008;150:161–169. doi: 10.1016/j.cbpb.2008.02.009. PubMed DOI

Pham D.Q., Winzerling J.J. Insect ferritins: Typical or atypical? Biochim. Biophys. Acta. 2010;1800:824–833. doi: 10.1016/j.bbagen.2010.03.004. PubMed DOI PMC

Gorman M.J. Iron Homeostasis in Insects. Annu. Rev. Entomol. 2023;68:51–67. doi: 10.1146/annurev-ento-040622-092836. PubMed DOI PMC

Tang X., Zhou B. Ferritin is the key to dietary iron absorption and tissue iron detoxification in Drosophila melanogaster. FASEB J. 2013;27:288–298. doi: 10.1096/fj.12-213595. PubMed DOI

Park H.G., Lee K.S., Kim B.Y., Yoon H.J., Choi Y.S., Lee K.Y., Wan H., Li J., Jin B.R. Honeybee (Apis cerana) vitellogenin acts as an antimicrobial and antioxidant agent in the body and venom. Dev. Comp. Immunol. 2018;85:51–60. doi: 10.1016/j.dci.2018.04.001. PubMed DOI

Weirich G.F., Collins A.M., Williams V.P. Antioxidant enzymes in the honey bee. Apidologie. 2002;33:3–14. doi: 10.1051/apido:2001001. DOI

Landis G.N., Tower J. Superoxide dismutase evolution and life span regulation. Mech. Ageing Dev. 2005;126:365–379. doi: 10.1016/j.mad.2004.08.012. PubMed DOI

Duttaroy A., Paul A., Kundu M., Belton A. A Sod2 Null Mutation Confers Severely Reduced Adult Life Span in Drosophila. Genetics. 2003;165:2295–2299. doi: 10.1093/genetics/165.4.2295. PubMed DOI PMC

Sun J., Molitor J., Tower J. Effects of simultaneous over-expression of Cu/ZnSOD and MnSOD on Drosophila melanogaster life span. Mech. Ageing Dev. 2004;125:341–349. doi: 10.1016/j.mad.2004.01.009. PubMed DOI

Parker J.D., Parker K.M., Sohal B.H., Sohal R.S., Keller L. Decreased expression of Cu-Zn superoxide dismutase 1 in ants with extreme lifespan. Proc. Natl. Acad. Sci. USA. 2004;101:3486–3489. doi: 10.1073/pnas.0400222101. PubMed DOI PMC

Williams J.B., Roberts S.P., Elekonich M.M. Age and natural metabolically-intensive behavior affect oxidative stress and antioxidant mechanisms. Exp. Gerontol. 2008;43:538–549. doi: 10.1016/j.exger.2008.02.001. PubMed DOI

Sun L., Yin J., Du H., Liu P., Cao C. Characterisation of GST genes from the Hyphantria cunea and their response to the oxidative stress caused by the infection of Hyphantria cunea nucleopolyhedrovirus (HcNPV) Pest. Biochem. Physiol. 2020;163:254–262. doi: 10.1016/j.pestbp.2019.11.019. PubMed DOI

Koirala B.K.S., Moural T., Zhu F. Functional and Structural Diversity of Insect Glutathione S-transferases in Xenobiotic Adaptation. Int. J. Biol. Sci. 2022;18:5713–5723. doi: 10.7150/ijbs.77141. PubMed DOI PMC

Pavlidi N., Vontas J., Van Leeuwen T. The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Curr. Opin. Insect Sci. 2018;27:97–102. doi: 10.1016/j.cois.2018.04.007. PubMed DOI

Shi H., Pei L., Gu S., Zhu S., Wang Y., Zhang Y., Li B. Glutathione S-transferase (GST) genes in the red flour beetle, Tribolium castaneum, and comparative analysis with five additional insects. Genomics. 2012;100:327–335. doi: 10.1016/j.ygeno.2012.07.010. PubMed DOI

Margis R., Dunand C., Teixeira F.K., Margis-Pinheiro M. Glutathione peroxidase family—An evolutionary overview. FEBS J. 2008;275:3959–3970. doi: 10.1111/j.1742-4658.2008.06542.x. PubMed DOI

Dias F.A., Gandara A.C.P., Perdomo H.D., Gonçalves R.S., Oliveira C.R., Oliveira R.L.L., Citelli M., Polycarpo C.R., Santesmasses D., Mariotti M., et al. Identification of a selenium-dependent glutathione peroxidase in the blood-sucking insect Rhodnius prolixus. Insect Biochem. Mol. Biol. 2016;69:105–114. doi: 10.1016/j.ibmb.2015.08.007. PubMed DOI

Benhar M. Roles of mammalian glutathione peroxidase and thioredoxin reductase enzymes in the cellular response to nitrosative stress. Free Radic. Biol. Med. 2018;127:160–164. doi: 10.1016/j.freeradbiomed.2018.01.028. PubMed DOI

Krishnan N., Kodrík D. Antioxidant enzymes in Spodoptera littoralis (Boisduval): Are they enhanced to protect gut tissues during oxidative stress? J. Insect Physiol. 2006;52:11–20. doi: 10.1016/j.jinsphys.2005.08.009. PubMed DOI

Cao Y., Yang Q., Tu X.H., Li S.G., Liu S. Molecular characterisation of a typical 2-Cys thioredoxin peroxidase from the Asiatic rice borer Chilo suppressalis and its role in oxidative stress. Arch. Insect Biochem. Physiol. 2018;99:e21476. doi: 10.1002/arch.21476. PubMed DOI

Hu Z., Lee K.S., Choo Y.M., Yoon H.J., Lee S.M., Lee J.H., Kim D.H., Sohn H.D., Jin B.R. Molecular cloning and characterisation of 1-Cys and 2-Cys peroxiredoxins from the bumblebee Bombus ignitus. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2010;155:272–280. doi: 10.1016/j.cbpb.2009.11.011. PubMed DOI

Moskovitz J., Bar-Noy S., Williams W.M., Requena J., Berlett B.S., Stadtman E.R. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in Comp. Biochem. Physiol. B: Biochem. Mol. Biol. mammals. Proc. Natl. Acad. Sci. USA. 2001;98:12920–12925. doi: 10.1073/pnas.231472998. PubMed DOI PMC

Moskovitz J., Smith A. Methionine sulfoxide and the methionine sulfoxide reductase system as modulators of signal transduction pathways: A review. Amino Acids. 2021;53:1011–1020. doi: 10.1007/s00726-021-03020-9. PubMed DOI

Zhang X.H., Weissbach H. Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases. Biol. Rev. 2008;83:249–257. doi: 10.1111/j.1469-185X.2008.00042.x. PubMed DOI

Lu J., Holmgren A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014;66:75–87. doi: 10.1016/j.freeradbiomed.2013.07.036. PubMed DOI

Koháryová M., Kollárová M. Thioredoxin system—A novel therapeutic target. Gen. Physiol. Biophys. 2015;34:221–233. doi: 10.4149/gpb_2015006. PubMed DOI

Jedelská T., Luhová L., Petřivalský M. Thioredoxins: Emerging Players in the Regulation of Protein S-Nitrosation in Plants. Plants. 2020;9:1426. doi: 10.3390/plants9111426. PubMed DOI PMC

Bauer H., Kanzok S.M., Schirmer R.H. Thioredoxin-2 but Not Thioredoxin-1 Is a Substrate of Thioredoxin Peroxidase-1 from Drosophila melanogaster. J. Biol. Chem. 2002;277:17457–17463. doi: 10.1074/jbc.M200636200. PubMed DOI

Lee S., Kim S.M., Lee R.T. Thioredoxin and Thioredoxin Target Proteins: From Molecular Mechanisms to Functional Significance. Antioxid. Redox Signal. 2013;18:1165–1207. doi: 10.1089/ars.2011.4322. PubMed DOI PMC

Laurent T.C., Moore E.C., Reichard P. Enzymatic Synthesis of Deoxyribonucleotides. J. Biol. Chem. 1964;239:3436–3444. doi: 10.1016/S0021-9258(18)97742-2. PubMed DOI

Wahl M.C., Irmler A., Hecker B., Schirmer R.H., Becker K. Comparative Structural Analysis of Oxidized and Reduced Thioredoxin from Drosophila melanogaster. J. Mol. Biol. 2005;345:1119–1130. doi: 10.1016/j.jmb.2004.11.004. PubMed DOI

Collet J.F., Messens J. Structure, Function, and Mechanism of Thioredoxin Proteins. Antioxid. Redox Signal. 2010;13:1205–1216. doi: 10.1089/ars.2010.3114. PubMed DOI

Arnér E.S.J., Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 2000;267:6102–6109. doi: 10.1046/j.1432-1327.2000.01701.x. PubMed DOI

Lillig C.H., Holmgren A. Thioredoxin and Related Molecules–From Biology to Health and Disease. Antioxid. Redox Signal. 2007;9:25–47. doi: 10.1089/ars.2007.9.25. PubMed DOI

Jensen K.S., Hansen R.E., Winther J.R. Kinetic and Thermodynamic Aspects of Cellular Thiol–Disulfide Redox Regulation. Antioxid. Redox Signal. 2009;11:1047–1058. doi: 10.1089/ars.2008.2297. PubMed DOI

Klomsiri C., Karplus P.A., Poole L.B. Cysteine-based redox switches in enzymes. Antioxid. Redox Signal. 2011;14:1065–1077. doi: 10.1089/ars.2010.3376. PubMed DOI PMC

Svensson J.M., Larsson J. Thioredoxin-2 affects lifespan and oxidative stress in Drosophila. Hereditas. 2007;144:25–32. doi: 10.1111/j.2007.0018-0661.01990.x. PubMed DOI

Tsuda M., Ootaka R., Ohkura C., Kishita Y., Seong K.H., Matsuo T., Aigaki T. Loss of Trx-2 enhances oxidative stress-dependent phenotypes in Drosophila. FEBS Lett. 2010;584:3398–3401. doi: 10.1016/j.febslet.2010.06.034. PubMed DOI

Yao P., Hao L., Wang F., Chen X., Yan Y., Guo X., Xu B. Molecular cloning, expression and antioxidant characterisation of a typical thioredoxin gene (AccTrx2) in Apis cerana cerana. Gene. 2013;527:33–41. doi: 10.1016/j.gene.2013.05.062. PubMed DOI

Kang T., Wan H., Zhang Y., Shakeel M., Lu Y., You H., Lee K.S., Jin B.R., Li J. Comparative study of two thioredoxins from common cutworm (Spodoptera litura): Cloning, expression, and functional characterization. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2015;182:47–54. doi: 10.1016/j.cbpb.2014.12.004. PubMed DOI

Kim Y.J., Lee K.S., Kim B.Y., Choo Y.M., Sohn H.D., Jin B.R. Thioredoxin from the silkworm, Bombyx mori: cDNA sequence, expression, and functional characterization. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007;147:574–581. doi: 10.1016/j.cbpb.2007.03.012. PubMed DOI

Zhang S., Li Z., Nian X., Wu F., Shen Z., Zhang B., Zhang Q., Liu X. Sequence analysis, expression profiles and function of thioredoxin 2 and thioredoxin reductase 1 in resistance to nucleopolyhedrovirus in Helicoverpa armigera. Sci. Rep. 2015;5:15531. doi: 10.1038/srep15531. PubMed DOI PMC

Hoflehner E., Binder M., Hemmer W., Mahler V., Panzani R.C., Jarisch R., Wiedermann U., Duchêne M., Kanellopoulos J. Thioredoxin from the Indianmeal Moth Plodia interpunctella: Cloning and Test of the Allergenic Potential in Mice. PLoS ONE. 2012;7:e42026. doi: 10.1371/journal.pone.0042026. PubMed DOI PMC

Jiménez A., Pelto-Huikko M., Gustafsson J.Å., Miranda-Vizuete A. Characterization of human thioredoxin-like-1: Potential involvement in the cellular response against glucose deprivation. FEBS Lett. 2006;580:960–967. doi: 10.1016/j.febslet.2006.01.025. PubMed DOI

Lu W., Kang M., Liu X., Zhao X., Guo X., Xu B. Identification and antioxidant characterisation of thioredoxin-like1 from Apis cerana cerana. Apidologie. 2012;43:737–752. doi: 10.1007/s13592-012-0148-7. DOI

Novoselov S.V., Gladyshev V.N. Non-animal origin of animal thioredoxin reductases: Implications for selenocysteine evolution and evolution of protein function through carboxy-terminal extensions. Protein Sci. 2003;12:372–378. doi: 10.1110/ps.0226503. PubMed DOI PMC

Gromer S., Urig S., Becker K. The thioredoxin system—From science to clinic. Med. Res. Rev. 2004;24:40–89. doi: 10.1002/med.10051. PubMed DOI

Bauer H., Massey V., Arscott L.D., Schirmer R.H., Ballou D.P., Williams C.H. The Mechanism of High M r Thioredoxin Reductase from Drosophila melanogaster. J. Biol. Chem. 2003;278:33020–33028. doi: 10.1074/jbc.M303762200. PubMed DOI

Huang H.H., Arscott L.D., Ballou D.P., Williams C.H. Acid−Base Catalysis in the Mechanism of Thioredoxin Reductase from Drosophila melanogaster. Biochemistry. 2008;47:1721–1731. doi: 10.1021/bi702040u. PubMed DOI

Zhong L., Arnér E.S.J., Holmgren A. Structure and mechanism of mammalian thioredoxin reductase: The active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc. Natl. Acad. Sci. USA. 2000;97:5854–5859. doi: 10.1073/pnas.100114897. PubMed DOI PMC

Eckenroth B.E., Rould M.A., Hondal R.J., Everse S.J. Structural and Biochemical Studies Reveal Differences in the Catalytic Mechanisms of Mammalian and Drosophila melanogaster Thioredoxin Reductases. Biochemistry. 2007;46:4694–4705. doi: 10.1021/bi602394p. PubMed DOI PMC

Bauer H., Gromer S., Urbani A., Schnölzer M., Schirmer R.H., Müller H.M. Thioredoxin reductase from the malaria mosquito Anopheles gambiae. Eur. J. Biochem. 2003;270:4272–4281. doi: 10.1046/j.1432-1033.2003.03812.x. PubMed DOI

Lothrop A.P., Snider G.W., Ruggles E.L., Patel A.S., Lees W.J., Hondal R.J. Selenium as an Electron Acceptor during the Catalytic Mechanism of Thioredoxin Reductase. Biochemistry. 2014;53:654–663. doi: 10.1021/bi400658g. PubMed DOI PMC

Hondal R., Ruggles E. Differing views of the role of selenium in thioredoxin reductase. Amino Acids. 2011;41:73–89. doi: 10.1007/s00726-010-0494-6. PubMed DOI PMC

Snider G.W., Ruggles E., Khan N., Hondal R.J. Selenocysteine confers resistance to inactivation by oxidation in thioredoxin reductase: Comparison of selenium and sulfur enzymes. Biochemistry. 2013;52:5472–5481. doi: 10.1021/bi400462j. PubMed DOI PMC

Gromer S., Johansson L., Bauer H., Arscott L.D., Rauch S., Ballou D.P., Williams C.H., Schirmer R.H., Arnér E.S.J. Active sites of thioredoxin reductases: Why selenoproteins? Proc. Natl. Acad. Sci. USA. 2003;100:12618–12623. doi: 10.1073/pnas.2134510100. PubMed DOI PMC

Lothrop A.P., Snider G.W., Flemer S., Ruggles E.L., Davidson R.S., Lamb A.L., Hondal R.J. Compensating for the Absence of Selenocysteine in High-Molecular Weight Thioredoxin Reductases: The Electrophilic Activation Hypothesis. Biochemistry. 2014;53:664–674. doi: 10.1021/bi4007258. PubMed DOI PMC

Eckenroth B.E., Lacey B.M., Lothrop A.P., Harris K.M., Hondal R.J. Investigation of the C-Terminal Redox Center of High-Mr Thioredoxin Reductase by Protein Engineering and Semisynthesis. Biochemistry. 2007;46:9472–9483. doi: 10.1021/bi7004812. PubMed DOI PMC

Zhong L., Holmgren A. Essential Role of Selenium in the Catalytic Activities of Mammalian Thioredoxin Reductase Revealed by Characterization of Recombinant Enzymes with Selenocysteine Mutations. J. Biol. Chem. 2000;275:18121–18128. doi: 10.1074/jbc.M000690200. PubMed DOI

Lothrop A.P., Ruggles E.L., Hondal R.J. No Selenium Required: Reactions Catalyzed by Mammalian Thioredoxin Reductase That Are Independent of a Selenocysteine Residue. Biochemistry. 2009;48:6213–6223. doi: 10.1021/bi802146w. PubMed DOI PMC

Cheng Z., Arscott L.D., Ballou D.P., Williams C.H. The Relationship of the Redox Potentials of Thioredoxin and Thioredoxin Reductase from Drosophila melanogaster to the Enzymatic Mechanism: Reduced Thioredoxin Is the Reductant of Glutathione in Drosophila. Biochemistry. 2007;46:7875–7885. doi: 10.1021/bi700442r. PubMed DOI

Radyuk S.N., Klichko V.I., Spinola B., Sohal R.S., Orr W.C. The peroxiredoxin gene family in drosophila melanogaster. Free. Radic. Biol. Med. 2001;31:1090–1100. doi: 10.1016/S0891-5849(01)00692-X. PubMed DOI

Missirlis F., Hirosawa-Takamori M., Grönke S., Schäfer U., Jäckle H., Ulschmid J.K., Becker K., Phillips J.P. Mitochondrial and Cytoplasmic Thioredoxin Reductase Variants Encoded by a Single Drosophila Gene Are Both Essential for Viability. J. Biol. Chem. 2002;277:11521–11526. doi: 10.1074/jbc.M111692200. PubMed DOI

Nair P.M.G., Choi J. Characterization and transcriptional regulation of thioredoxin reductase 1 on exposure to oxidative stress inducing environmental pollutants in Chironomus riparius. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2012;161:134–139. doi: 10.1016/j.cbpb.2011.10.007. PubMed DOI

Krishnan N., Kodrík D., Kłudkiewicz B., Sehnal F. Glutathione–ascorbic acid redox cycle and thioredoxin reductase activity in the digestive tract of Leptinotarsa decemlineata (Say) Insect Biochem. Mol. Biol. 2009;39:180–188. doi: 10.1016/j.ibmb.2008.11.001. PubMed DOI

Gelhaye E., Rouhier N., Navrot N., Jacquot J.P. The plant thioredoxin system. Cell. Mol. Life Sci. 2005;62:24–35. doi: 10.1007/s00018-004-4296-4. PubMed DOI

Arnér E.S.J. Selective evaluation of thioredoxin reductase enzymatic activities. Methods Mol. Biol. 2018;1661:301–309. doi: 10.1007/978-1-4939-7258-6_21. PubMed DOI

Gromer S., Merkle H., Heiner Schirmer R., Becker K. Human placenta thioredoxin reductase: Preparation and inhibitor studies. Methods Enzymol. 2002;347:382–394. doi: 10.1016/S0076-6879(02)47038-3. PubMed DOI

Arnér E.S., Holmgren A. Measurement of thioredoxin and thioredoxin reductase. Curr. Protoc. Toxicol. 2001;7:4–7. doi: 10.1002/0471140856.tx0704s05. PubMed DOI

Ye B., Gitler C., Gressel J. A High-Sensitivity, Single-Gel, Polyacrylamide Gel Electrophoresis Method for the Quantitative Determination of Glutathione Reductases. Anal. Biochem. 1997;246:159–165. doi: 10.1006/abio.1996.9985. PubMed DOI

Arnér E.S., Zhong L., Holmgren A. Preparation and assay of mammalian thioredoxin and thioredoxin reductase. Methods Enzymol. 1999;300:226–239. doi: 10.1016/s0076-6879(99)00129-9. PubMed DOI

Kumar S., Björnstedt M., Holmgren A. Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen. Eur. J. Biochem. 1992;207:435–439. doi: 10.1111/j.1432-1033.1992.tb17068.x. PubMed DOI

Cunniff B., Snider G.W., Fredette N., Hondal R.J., Heintz N.H. A direct and continuous assay for the determination of thioredoxin reductase activity in cell lysates. Anal. Biochem. 2013;443:34–40. doi: 10.1016/j.ab.2013.08.013. PubMed DOI PMC

Montano S.J., Lu J., Gustafsson T.N., Holmgren A. Activity assays of mammalian thioredoxin and thioredoxin reductase: Fluorescent disulfide substrates, mechanisms, and use with tissue samples. Anal. Biochem. 2014;449:139–146. doi: 10.1016/j.ab.2013.12.025. PubMed DOI

Pader I., Sengupta R., Cebula M., Xu J., Lundberg J.O., Holmgren A., Johansson K., Arnér E.S.J. Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase. Proc. Natl. Acad. Sci. USA. 2014;111:6964–6969. doi: 10.1073/pnas.1317320111. PubMed DOI PMC

Cai W., Zhang L., Song Y., Wang B., Zhang B., Cui X., Hu G., Liu Y., Wu J., Fang J. Small molecule inhibitors of mammalian thioredoxin reductase. Free. Radic. Biol. Med. 2012;52:257–265. doi: 10.1016/j.freeradbiomed.2011.10.447. PubMed DOI

Urig S., Becker K. On the potential of thioredoxin reductase inhibitors for cancer therapy. Semin. Cancer Biol. 2006;16:452–465. doi: 10.1016/j.semcancer.2006.09.004. PubMed DOI

Song Z., Fan C., Zhao J., Wang L., Duan D., Shen T., Li X. Fluorescent Probes for Mammalian Thioredoxin Reductase: Mechanistic Analysis, Construction Strategies, and Future Perspectives. Biosensors. 2023;13:811. doi: 10.3390/bios13080811. PubMed DOI PMC

Zhang L., Duan D., Liu Y., Ge C., Cui X., Sun J., Fang J. Highly Selective Off–On Fluorescent Probe for Imaging Thioredoxin Reductase in Living Cells. J. Am. Chem. Soc. 2014;136:226–233. doi: 10.1021/ja408792k. PubMed DOI

AlOkda A., Van Raamsdonk J.M. Evolutionarily Conserved Role of Thioredoxin Systems in Determining Longevity. Antioxidants. 2023;12:944. doi: 10.3390/antiox12040944. PubMed DOI PMC

Wu C., Liu T., Chen W., Oka S., Fu C., Jain M.R., Parrott A.M., Baykal A.T., Sadoshima J., Li H. Redox regulatory mechanism of transnitrosylation by thioredoxin. Mol. Cell. Proteom. 2010;9:2262–2275. doi: 10.1074/mcp.M110.000034. PubMed DOI PMC

Wu C., Parrott A.M., Fu C., Liu T., Marino S.M., Gladyshev V.N., Jain M.R., Baykal A.T., Li Q., Oka S., et al. Thioredoxin 1-Mediated Post-Translational Modifications: Reduction, Transnitrosylation, Denitrosylation, and Related Proteomics Methodologies. Antioxid. Redox Signal. 2011;15:2565–2604. doi: 10.1089/ars.2010.3831. PubMed DOI PMC

Anand P., Stamler J.S. Enzymatic mechanisms regulating protein S-nitrosylation: Implications in health and disease. J. Mol. Med. 2012;90:233–244. doi: 10.1007/s00109-012-0878-z. PubMed DOI PMC

Sengupta R., Holmgren A. Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation. Antioxid. Redox Signal. 2013;18:259–269. doi: 10.1089/ars.2012.4716. PubMed DOI

Haendeler J. Thioredoxin-1 and Posttranslational Modifications. Antioxid. Redox Signal. 2006;8:1723–1728. doi: 10.1089/ars.2006.8.1723. PubMed DOI

Benhar M., Forrester M.T., Hess D.T., Stamler J.S. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science. 2008;320:1050–1054. doi: 10.1126/science.1158265. PubMed DOI PMC

Arnér E.S.J. Focus on mammalian thioredoxin reductases—Important selenoproteins with versatile functions. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2009;1790:495–526. doi: 10.1016/j.bbagen.2009.01.014. PubMed DOI

Wright D.E., Altaany Z., Bi Y., Alperstein Z., O’Donoghue P. Acetylation Regulates Thioredoxin Reductase Oligomerization and Activity. Antioxid. Redox Signal. 2018;29:377–388. doi: 10.1089/ars.2017.7082. PubMed DOI PMC

Wright D.E., Panaseiko N., O’Donoghue P. Acetylated Thioredoxin Reductase 1 Resists Oxidative Inactivation. Front. Chem. 2021;9:747236. doi: 10.3389/fchem.2021.747236. PubMed DOI PMC

Junn E., Han S.H., Im J.Y., Yang Y., Cho E.W., Um H.D., Kim D.K., Lee K.W., Han P.L., Rhee S.G., et al. Vitamin D3 Up-Regulated Protein 1 Mediates Oxidative Stress Via Suppressing the Thioredoxin Function. J. Immunol. 2000;164:6287–6295. doi: 10.4049/jimmunol.164.12.6287. PubMed DOI

Holmgren A., Sengupta R. The use of thiols by ribonucleotide reductase. Free. Radic. Biol. Med. 2010;49:1617–1628. doi: 10.1016/j.freeradbiomed.2010.09.005. PubMed DOI

Aye Y., Li M., Long M.J., Weiss R.S. Ribonucleotide reductase and cancer: Biological mechanisms and targeted therapies. Oncogene. 2015;34:2011–2021. doi: 10.1038/onc.2014.155. PubMed DOI

Nordlund P., Reichard P. Ribonucleotide Reductases. Annu. Rev. Biochem. 2006;75:681–706. doi: 10.1146/annurev.biochem.75.103004.142443. PubMed DOI

Rhee S.G., Kil I.S. Multiple Functions and Regulation of Mammalian Peroxiredoxins. Annu. Rev. Biochem. 2017;86:749–775. doi: 10.1146/annurev-biochem-060815-014431. PubMed DOI

Radyuk S.N., Rebrin I., Klichko V.I., Sohal B.H., Michalak K., Benes J., Sohal R.S., Orr W.C. Mitochondrial peroxiredoxins are critical for the maintenance of redox state and the survival of adult Drosophila. Free. Radic. Biol. Med. 2010;49:1892–1902. doi: 10.1016/j.freeradbiomed.2010.09.014. PubMed DOI PMC

Yu F., Kang M., Meng F., Guo X., Xu B. Molecular cloning and characterization of a thioredoxin peroxidase gene from Apis cerana cerana. Insect Mol. Biol. 2011;20:367–378. doi: 10.1111/j.1365-2583.2011.01071.x. PubMed DOI

Yao P., Chen X., Yan Y., Liu F., Zhang Y., Guo X., Xu B. Glutaredoxin 1, glutaredoxin 2, thioredoxin 1, and thioredoxin peroxidase 3 play important roles in antioxidant defense in Apis cerana cerana. Free. Radic. Biol. Med. 2014;68:335–346. doi: 10.1016/j.freeradbiomed.2013.12.020. PubMed DOI

Yan Y., Zhang Y., Huaxia Y., Wang X., Yao P., Guo X., Xu B. Identification and characterisation of a novel 1-Cys thioredoxin peroxidase gene ( AccTpx5 ) from Apis cerana cerana. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2014;172–173:39–48. doi: 10.1016/j.cbpb.2014.04.004. PubMed DOI

Huaxia Y., Wang F., Yan Y., Liu F., Wang H., Guo X., Xu B. A novel 1-Cys thioredoxin peroxidase gene in Apis cerana cerana: Characterization of AccTpx4 and its role in oxidative stresses. Cell Stress Chaperones. 2015;20:663–672. doi: 10.1007/s12192-015-0594-z. PubMed DOI PMC

Jarvis R.M., Hughes S.M., Ledgerwood E.C. Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free. Radic. Biol. Med. 2012;53:1522–1530. doi: 10.1016/j.freeradbiomed.2012.08.001. PubMed DOI

Levine R.L., Moskovitz J., Stadtman E.R. Oxidation of Methionine in Proteins: Roles in Antioxidant Defense and Cellular Regulation. IUBMB Life. 2000;50:301–307. doi: 10.1080/15216540051081056. PubMed DOI

Rosenfeld M.A., Yurina L.V., Vasilyeva A.D. Antioxidant role of methionine-containing intra- and extracellular proteins. Biophys. Rev. 2023;15:367–383. doi: 10.1007/s12551-023-01056-7. PubMed DOI PMC

Chandran S., Binninger D. Role of Oxidative Stress, Methionine Oxidation and Methionine Sulfoxide Reductases (MSR) in Alzheimer’s Disease. Antioxidants. 2023;13:21. doi: 10.3390/antiox13010021. PubMed DOI PMC

Ruan H., Tang X.D., Chen M.L., Joiner M.A., Sun G., Brot N., Weissbach H., Heinemann S.H., Iverson L., Wu C.F., et al. High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc. Natl. Acad. Sci. USA. 2002;99:2748–2753. doi: 10.1073/pnas.032671199. PubMed DOI PMC

Bruce L., Singkornrat D., Wilson K., Hausman W., Robbins K., Huang L., Foss K., Binninger D. In Vivo Effects of Methionine Sulfoxide Reductase Deficiency in Drosophila melanogaster. Antioxidants. 2018;7:155. doi: 10.3390/antiox7110155. PubMed DOI PMC

Salmon A.B., Pérez V.I., Bokov A., Jernigan A., Kim G., Zhao H., Levine R.L., Richardson A. Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span. FASEB J. 2009;23:3601–3608. doi: 10.1096/fj.08-127415. PubMed DOI PMC

Koo H.N., Lee S.G., Yun S.H., Kim H.K., Choi Y.S., Kim G.H. Comparative Analyses of Cu-Zn Superoxide Dismutase (SOD1) and Thioredoxin Reductase (TrxR) at the mRNA Level between Apis mellifera L. and Apis cerana F. (Hymenoptera: Apidae) Under Stress Conditions. J. Insect Sci. 2016;16:4. doi: 10.1093/jisesa/iev159. PubMed DOI PMC

Yang H., Kang M., Guo X., Xu B. Cloning, structural features, and expression analysis of the gene encoding thioredoxin reductase 1 from Apis cerana cerana. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2010;156:229–236. doi: 10.1016/j.cbpb.2010.04.003. PubMed DOI

Lee K., Ryulkim S., Sookpark N., Kim I., Dongkang P., Heesohn B., Hochoi K., Wookang S., Hoje Y., Monglee S. Characterisation of a silkworm thioredoxin peroxidase that is induced by external temperature stimulus and viral infection. Insect Biochem. Mol. Biol. 2005;35:73–84. doi: 10.1016/j.ibmb.2004.09.008. PubMed DOI

Cox A.G., Peskin A.V., Paton L.N., Winterbourn C.C., Hampton M.B. Redox Potential and Peroxide Reactivity of Human Peroxiredoxin 3. Biochemistry. 2009;48:6495–6501. doi: 10.1021/bi900558g. PubMed DOI

Nordberg J., Arnér E.S.J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free. Radic. Biol. Med. 2001;31:1287–1312. doi: 10.1016/S0891-5849(01)00724-9. PubMed DOI

Schafer F.Q., Buettner G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free. Radic. Biol. Med. 2001;30:1191–1212. doi: 10.1016/S0891-5849(01)00480-4. PubMed DOI

Njus D., Kelley P.M., Tu Y.J., Schlegel H.B. Ascorbic acid: The chemistry underlying its antioxidant properties. Free. Radic. Biol. Med. 2020;159:37–43. doi: 10.1016/j.freeradbiomed.2020.07.013. PubMed DOI

Arnér E.S.J., Nordberg J., Holmgren A. Efficient Reduction of Lipoamide and Lipoic Acid by Mammalian Thioredoxin Reductase. Biochem. Biophys. Res. Commun. 1996;225:268–274. doi: 10.1006/bbrc.1996.1165. PubMed DOI

Dos Santos E., Cochemé H.M. How does a fly die? Insights into ageing from the pathophysiology of Drosophila mortality. GeroScience. 2024;46:4003–4015. doi: 10.1007/s11357-024-01158-4. PubMed DOI PMC

Luo J., Mills K., le Cessie S., Noordam R., van Heemst D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev. 2020;57:100982. doi: 10.1016/j.arr.2019.100982. PubMed DOI

Sohal R.S., Orr W.C. The redox stress hypothesis of aging. Free. Radic. Biol. Med. 2012;52:539–555. doi: 10.1016/j.freeradbiomed.2011.10.445. PubMed DOI PMC

Harris-Gauthier N., Traa A., AlOkda A., Moldakozhayev A., Anglas U., Soo S.K., Van Raamsdonk J.M. Mitochondrial thioredoxin system is required for enhanced stress resistance and extended longevity in long-lived mitochondrial mutants. Redox Biol. 2022;53:102335. doi: 10.1016/j.redox.2022.102335. PubMed DOI PMC

Corona M., Hughes K.A., Weaver D.B., Robinson G.E. Gene expression patterns associated with queen honey bee longevity. Mech. Ageing Dev. 2005;126:1230–1238. doi: 10.1016/j.mad.2005.07.004. PubMed DOI

Korandová M., Frydrychová R.Č. Activity of telomerase and telomeric length in Apis mellifera. Chromosoma. 2016;125:405–411. doi: 10.1007/s00412-015-0547-4. PubMed DOI

Hsieh Y.S., Hsu C.Y. Oxidative Stress and Anti-Oxidant Enzyme Activities in the Trophocytes and Fat Cells of Queen Honeybees (Apis mellifera) Rejuvenation Res. 2013;16:295–303. doi: 10.1089/rej.2013.1420. PubMed DOI PMC

Kunc M., Dobeš P., Hurychová J., Vojtek L., Poiani S.B., Danihlík J., Havlík J., Titěra D., Hyršl P. The Year of the Honey Bee (Apis mellifera L.) with Respect to Its Physiology and Immunity: A Search for Biochemical Markers of Longevity. Insects. 2019;10:244. doi: 10.3390/insects10080244. PubMed DOI PMC

Yang W., Tian Y., Han M., Miao X. Longevity extension of worker honey bees (Apis mellifera) by royal jelly: Optimal dose and active ingredient. PeerJ. 2017;5:e3118. doi: 10.7717/peerj.3118. PubMed DOI PMC

Alaux C., Dantec C., Parrinello H., Le Conte Y. Nutrigenomics in honey bees: Digital gene expression analysis of pollen’s nutritive effects on healthy and varroa-parasitized bees. BMC Genom. 2011;12:496. doi: 10.1186/1471-2164-12-496. PubMed DOI PMC

Alburaki M., Smith K.D., Adamczyk J., Karim S. Interplay between Selenium, selenoprotein genes, and oxidative stress in honey bee Apis mellifera L. J. Insect Physiol. 2019;117:103891. doi: 10.1016/j.jinsphys.2019.103891. PubMed DOI PMC

Alburaki M., Karim S., Lamour K., Adamczyk J., Stewart S.D. RNA-seq reveals disruption of gene regulation when honey bees are caged and deprived of hive conditions. J. Exp. Biol. 2019;222:jeb207761. PubMed PMC

Gregorc A., Alburaki M., Rinderer N., Sampson B., Knight P.R., Karim S., Adamczyk J. Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae) lifespan and antioxidant gene regulations in laboratory experiments. Sci. Rep. 2018;8:15003. doi: 10.1038/s41598-018-33348-4. PubMed DOI PMC

Stoyanovsky D.A., Tyurina Y.Y., Tyurin V.A., Anand D., Mandavia D.N., Gius D., Ivanova J., Pitt B., Billiar T.R., Kagan V.E. Thioredoxin and Lipoic Acid Catalyze the Denitrosation of Low Molecular Weight and Protein S -Nitrosothiols. J. Am. Chem. Soc. 2005;127:15815–15823. doi: 10.1021/ja0529135. PubMed DOI

Novo N., Ferreira P., Medina M. The apoptosis-inducing factor family: Moonlighting proteins in the crosstalk between mitochondria and nuclei. IUBMB Life. 2021;73:568–581. doi: 10.1002/iub.2390. PubMed DOI

Herrmann J.M., Riemer J. Apoptosis inducing factor and mitochondrial NADH dehydrogenases: Redox-controlled gear boxes to switch between mitochondrial biogenesis and cell death. Biol. Chem. 2020;402:289–297. doi: 10.1515/hsz-2020-0254. PubMed DOI

Shelar S.B., Kaminska K.K., Reddy S.A., Kumar D., Tan C.T., Yu V.C., Lu J., Holmgren A., Hagen T., Chew E.H. Thioredoxin-dependent regulation of AIF-mediated DNA damage. Free. Radic. Biol. Med. 2015;87:125–136. doi: 10.1016/j.freeradbiomed.2015.06.029. PubMed DOI

Joza N., Galindo K., Pospisilik J.A., Benit P., Rangachari M., Kanitz E.E., Nakashima Y., Neely G.G., Rustin P., Abrams J.M., et al. The molecular archaeology of a mitochondrial death effector: AIF in Drosophila. Cell Death Differ. 2008;15:1009–1018. doi: 10.1038/cdd.2008.24. PubMed DOI PMC

Wang F., Zhang Y., Yao P., Guo X., Li H., Xu B. Molecular identification and stress response of the apoptosis-inducing factor gene 3 (AccAIF3) from Apis cerana cerana. Apidologie. 2014;45:685–700. doi: 10.1007/s13592-014-0285-2. DOI

Landino L.M., Skreslet T.E., Alston J.A. Cysteine Oxidation of Tau and Microtubule-associated Protein-2 by Peroxynitrite. J. Biol. Chem. 2004;279:35101–35105. doi: 10.1074/jbc.M405471200. PubMed DOI

Khan I.A., Ludueña R.F. Possible regulation of the in vitro assembly of bovine brain tubulin by the bovine thioredoxin system. Biochim. Biophys. Acta (BBA)—Protein Struct. Mol. Enzymol. 1991;1076:289–297. doi: 10.1016/0167-4838(91)90280-D. PubMed DOI

Bordier C., Suchail S., Pioz M., Devaud J.M., Collet C., Charreton M., Le Conte Y., Alaux C. Stress response in honeybees is associated with changes in task-related physiology and energetic metabolism. J. Insect Physiol. 2017;98:47–54. doi: 10.1016/j.jinsphys.2016.11.013. PubMed DOI

Li G., Zhao H., Liu Z., Wang H., Xu B., Guo X. The Wisdom of Honeybee Defenses Against Environmental Stresses. Front. Microbiol. 2018;9:722. doi: 10.3389/fmicb.2018.00722. PubMed DOI PMC

Tahir F., Goblirsch M., Adamczyk J., Karim S., Alburaki M. Honey bee Apis mellifera L. responses to oxidative stress induced by pharmacological and pesticidal compounds. Front. Bee Sci. 2023;1:1275862. doi: 10.3389/frbee.2023.1275862. DOI

Degueldre F., Aron S. Long-term sperm storage in eusocial Hymenoptera. Biol. Rev. Camb. Philos. Soc. 2023;98:567–583. doi: 10.1111/brv.12919. PubMed DOI

Aitken R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 2017;84:1039–1052. doi: 10.1002/mrd.22871. PubMed DOI

O’Flaherty C., Scarlata E. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: The protection of mammalian spermatozoa against oxidative stress. Reproduction. 2022;164:F67–F78. doi: 10.1530/REP-22-0200. PubMed DOI

O’Flaherty C., Matsushita-Fournier D. Reactive oxygen species and protein modifications in spermatozoa. Biol. Reprod. 2017;97:577–585. doi: 10.1093/biolre/iox104. PubMed DOI

Gonzalez A.N., Ing N., Rangel J. Upregulation of antioxidant genes in the spermathecae of honey bee (Apis mellifera) queens after mating. Apidologie. 2018;49:224–234. doi: 10.1007/s13592-017-0546-y. DOI

Rangel J., Shepherd T.F., Gonzalez A.N., Hillhouse A., Konganti K., Ing N.H. Transcriptomic analysis of the honey bee (Apis mellifera) queen spermathecae reveals genes that may be involved in sperm storage after mating. PLoS ONE. 2021;16:e0244648. doi: 10.1371/journal.pone.0244648. PubMed DOI PMC

Anderson K.E., Copeland D.C. The honey bee “hive” microbiota: Meta-analysis reveals a native and aerobic microbiota prevalent throughout the social resource niche. Front. Bee Sci. 2024;2:1410331. doi: 10.3389/frbee.2024.1410331. DOI

Leonard S.P., Powell J.E., Perutka J., Geng P., Heckmann L.C., Horak R.D., Davies B.W., Ellington A.D., Barrick J.E., Moran N.A. Engineered symbionts activate honey bee immunity and limit pathogens. Science. 2020;367:573–576. doi: 10.1126/science.aax9039. PubMed DOI PMC

Huang Q., Lariviere P.J., Powell J.E., Moran N.A. Engineered gut symbiont inhibits microsporidian parasite and improves honey bee survival. Proc. Natl. Acad. Sci. USA. 2023;120:e2220922120. doi: 10.1073/pnas.2220922120. PubMed DOI PMC

Sattayawat P., Inwongwan S., Noirungsee N., Li J., Guo J., Disayathanoowat T. Engineering Gut Symbionts: A Way to Promote Bee Growth? Insects. 2024;15:369. doi: 10.3390/insects15050369. PubMed DOI PMC

Lang H., Wang H., Wang H., Zhong Z., Xie X., Zhang W., Guo J., Meng L., Hu X., Zhang X., et al. Engineered symbiotic bacteria interfering Nosema redox system inhibit microsporidia parasitism in honeybees. Nat. Commun. 2023;14:2778. doi: 10.1038/s41467-023-38498-2. PubMed DOI PMC

Arts I., Vertommen D., Baldin F., Laloux G., Collet J.F. Comprehensively Characterizing the Thioredoxin Interactome In Vivo Highlights the Central Role Played by This Ubiquitous Oxidoreductase in Redox Control. Mol. Cell. Proteom. 2016;15:2125–2140. doi: 10.1074/mcp.M115.056440. PubMed DOI PMC

Ancín M., Fernandez-Irigoyen J., Santamaria E., Larraya L., Fernández-San Millán A., Veramendi J., Farran I. New In Vivo Approach to Broaden the Thioredoxin Family Interactome in Chloroplasts. Antioxidants. 2022;11:1979. doi: 10.3390/antiox11101979. PubMed DOI PMC

Nakao L.S., Everley R.A., Marino S.M., Lo S.M., de Souza L.E., Gygi S.P., Gladyshev V.N. Mechanism-based proteomic screening identifies targets of thioredoxin-like proteins. J. Biol. Chem. 2015;290:5685–5695. doi: 10.1074/jbc.M114.597245. PubMed DOI PMC

Pedre B. A guide to genetically-encoded redox biosensors: State of the art and opportunities. Arch. Biochem. Biophys. 2024;758:110067. doi: 10.1016/j.abb.2024.110067. PubMed DOI

Calabrese G., Morgan B., Riemer J. Mitochondrial Glutathione: Regulation and Functions. Antioxid. Redox Signal. 2017;27:1162–1177. doi: 10.1089/ars.2017.7121. PubMed DOI

Zhuravlev A., Ezeriņa D., Ivanova J., Guriev N., Pugovkina N., Shatrova A., Aksenov N., Messens J., Lyublinskaya O. HyPer as a tool to determine the reductive activity in cellular compartments. Redox Biol. 2024;70:103058. doi: 10.1016/j.redox.2024.103058. PubMed DOI PMC

Molinari P.E., Krapp A.R., Weiner A., Beyer H.M., Kondadi A.K., Blomeier T., López M., Bustos-Sanmamed P., Tevere E., Weber W., et al. NERNST: A genetically-encoded ratiometric non-destructive sensing tool to estimate NADP(H) redox status in bacterial, plant and animal systems. Nat. Commun. 2023;14:3277. doi: 10.1038/s41467-023-38739-4. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...