Thioredoxins: Emerging Players in the Regulation of Protein S-Nitrosation in Plants

. 2020 Oct 24 ; 9 (11) : . [epub] 20201024

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33114295

Grantová podpora
IGA_PrF_2020_013 Univerzita Palackého v Olomouci

S-nitrosation has been recognized as an important mechanism of ubiquitous posttranslational modification of proteins on the basis of the attachment of the nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-based modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. This review summarizes the current knowledge on the emerging role of the thioredoxin-thioredoxin reductase (TRXR-TRX) system in protein denitrosation. Important advances have been recently achieved on plant thioredoxins (TRXs) and their properties, regulation, and functions in the control of protein S-nitrosation in plant root development, translation of photosynthetic light harvesting proteins, and immune responses. Future studies of plants with down- and upregulated TRXs together with the application of genomics and proteomics approaches will contribute to obtain new insights into plant S-nitrosothiol metabolism and its regulation.

Zobrazit více v PubMed

Walsh C.T., Garneau-Tsodikova S., Gatto G.J., Jr. Protein Posttranslational Modifications: The Chemistry of Proteome Diversifications. Angew. Chem. Int. Ed. 2005;44:7342–7372. doi: 10.1002/anie.200501023. PubMed DOI

Duan G., Walther D. The Roles of Post-translational Modifications in the Context of Protein Interaction Networks. PLoS Comput. Biol. 2015;11:e1004049. doi: 10.1371/journal.pcbi.1004049. PubMed DOI PMC

Friso G., Van Wijk K.J. Update: Post-translational protein modifications in plant metabolism. Plant Physiol. 2015;169:1469–1487. doi: 10.1104/pp.15.01378. PubMed DOI PMC

Wu C., Liu T., Chen W., Oka S.-I., Fu C., Jain M.R., Parrott A.M., Baykal A.T., Sadoshima J., Li H. Redox Regulatory Mechanism of Transnitrosylation by Thioredoxin. Mol. Cell. Proteom. 2010;9:2262–2275. doi: 10.1074/mcp.M110.000034. PubMed DOI PMC

Hashiguchi A., Komatsu S. Posttranslational Modifications and Plant–Environment Interaction. Methods Enzymol. 2017;586:97–113. PubMed

Spoel S.H. Orchestrating the proteome with post-translational modifications. J. Exp. Bot. 2018;69:4499–4503. doi: 10.1093/jxb/ery295. PubMed DOI PMC

Klomsiri C., Karplus P.A., Poole L.B. Cysteine-Based Redox Switches in Enzymes. Antioxid. Redox Signal. 2011;14:1065–1077. doi: 10.1089/ars.2010.3376. PubMed DOI PMC

Poole L.B. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 2015;80:148–157. doi: 10.1016/j.freeradbiomed.2014.11.013. PubMed DOI PMC

Waszczak C., Akter S., Jacques S., Huang J., Messens J., Van Breusegem F. Oxidative post-translational modifications of cysteine residues in plant signal transduction. J. Exp. Bot. 2015;66:2923–2934. doi: 10.1093/jxb/erv084. PubMed DOI

Ruiz-May E., Segura-Cabrera A., Elizalde-Contreras J.M., Shannon L.M., Loyola-Vargas V.M. A recent advance in the intracellular and extracellular redox post-translational modification of proteins in plants. J. Mol. Recognit. 2018;32:e2754. doi: 10.1002/jmr.2754. PubMed DOI

Šírová J., Sedlářová M., Piterková J., Luhová L., Petrivalsky M. The role of nitric oxide in the germination of plant seeds and pollen. Plant Sci. 2011;181:560–572. doi: 10.1016/j.plantsci.2011.03.014. PubMed DOI

Astier J., Gross I., Durner J. Nitric oxide production in plants: An update. J. Exp. Bot. 2017;69:3401–3411. doi: 10.1093/jxb/erx420. PubMed DOI

Corpas F.J., Del Río L.A., Palma J.M. Impact of Nitric Oxide (NO) on the ROS Metabolism of Peroxisomes. Plants. 2019;8:37. doi: 10.3390/plants8020037. PubMed DOI PMC

Hancock J.T., Neill S.J. Nitric Oxide: Its Generation and Interactions with Other Reactive Signaling Compounds. Plants. 2019;8:41. doi: 10.3390/plants8020041. PubMed DOI PMC

Petřivalský M., Luhová L. Nitrated Nucleotides: New Players in Signaling Pathways of Reactive Nitrogen and Oxygen Species in Plants. Front. Plant Sci. 2020;11:598. doi: 10.3389/fpls.2020.00598. PubMed DOI PMC

Astier J., Lindermayr C. Nitric Oxide-Dependent Posttranslational Modification in Plants: An Update. Int. J. Mol. Sci. 2012;13:15193–15208. doi: 10.3390/ijms131115193. PubMed DOI PMC

Kovacs I., Lindermayr C. Nitric oxide-based protein modification: Formation and site-specificity of protein S-nitrosylation. Front. Plant Sci. 2013;4:137. doi: 10.3389/fpls.2013.00137. PubMed DOI PMC

Begara-Morales J.C., Chaki M., Valderrama R., Mata-Pérez C., Padilla M.N., Barroso J.B. S-nitrosothiols function during abiotic stress in plants. J. Exp. Bot. 2019;70:4429–4439. doi: 10.1093/jxb/erz197. PubMed DOI

Umbreen S., Lubega J., Loake G.J. Sulphur: The heart of nitric oxide-dependent redox signalling. J. Exp. Bot. 2019;70:4279–4286. doi: 10.1093/jxb/erz135. PubMed DOI

Kolbert Z., Barroso J., Brouquisse R., Corpas F., Gupta K., Lindermayr C., Loake G., Palma J., Petřivalský M., Wendehenne D., et al. A forty year journey: The generation and roles of NO in plants. Nitric Oxide. 2019;93:53–70. doi: 10.1016/j.niox.2019.09.006. PubMed DOI

Gupta K.J., Kolbert Z., Durner J., Lindermayr C., Corpas F.J., Brouquisse R., Barroso J.B., Umbreen S., Palma J.M., Hancock J.T., et al. Regulating the regulator: Nitric oxide control of post-translational modifications. New Phytol. 2020;227:1319–1325. doi: 10.1111/nph.16622. PubMed DOI

Hess D.T., Stamler J.S. Regulation byS-Nitrosylation of Protein Post-translational Modification. J. Biol. Chem. 2011;287:4411–4418. doi: 10.1074/jbc.R111.285742. PubMed DOI PMC

Seth D., Stamler J.S. The SNO-proteome: Causation and classifications. Curr. Opin. Chem. Biol. 2011;15:129–136. doi: 10.1016/j.cbpa.2010.10.012. PubMed DOI PMC

Begara-Morales J.C., Chaki M., Valderrama R., Sánchez-Calvo B., Mata-Pérez C., Padilla M.N., Corpas F.J., Barroso J.B. Nitric oxide buffering and conditional nitric oxide release in stress response. J. Exp. Bot. 2018;69:3425–3438. doi: 10.1093/jxb/ery072. PubMed DOI

Corpas F.J., Palma J.M., Del Rio L.A., Barroso J.B. Evidence supporting the existence of l-arginine-dependent nitric oxide synthase activity in plants. New Phytol. 2009;184:9–14. doi: 10.1111/j.1469-8137.2009.02989.x. PubMed DOI

Corpas F.J., Palma J.M. Assessing Nitric Oxide (NO) in Higher Plants: An Outline. Nitrogen. 2018;1:12–20. doi: 10.3390/nitrogen1010003. DOI

Jeandroz S., Wipf D., Stuehr D.J., LaMattina L., Melkonian M., Tian Z., Zhu Y., Carpenter E.J., Wong G.K.-S., Wendehenne D. Occurrence, structure, and evolution of nitric oxide synthase–like proteins in the plant kingdom. Sci. Signal. 2016;9:re2. doi: 10.1126/scisignal.aad4403. PubMed DOI

Santolini J., André F., Jeandroz S., Wendehenne D. Nitric oxide synthase in plants: Where do we stand? Nitric Oxide. 2017;63:30–38. doi: 10.1016/j.niox.2016.09.005. PubMed DOI

Hill B.G., Dranka B.P., Bailey S.M., Lancaster J.R., Jr., Darley-Usmar V.M. What Part of NO Don’t You Understand? Some Answers to the Cardinal Questions in Nitric Oxide Biology. J. Biol. Chem. 2010;285:19699–19704. doi: 10.1074/jbc.R110.101618. PubMed DOI PMC

Heinrich T.A., Da Silva R.S., Miranda K.M., Switzer C.H., Wink D.A., Fukuto J.M. Biological nitric oxide signalling: Chemistry and terminology. Br. J. Pharmacol. 2013;169:1417–1429. doi: 10.1111/bph.12217. PubMed DOI PMC

Elamotte O., Bertoldo J.B., Besson-Bard A., Erosnoblet C., Aimé S., Ehichami S., Terenzi H., Wendehenne D. Protein S-nitrosylation: Specificity and identification strategies in plants. Front. Chem. 2015;2:114. PubMed PMC

Gaston B. Nitric oxide and thiol groups. Biochim. Biophys. Acta. 1999;1411:323–333. doi: 10.1016/S0005-2728(99)00023-7. PubMed DOI

Handy D.E., Loscalzo J. Nitric Oxide and Posttranslational Modification of the Vascular Proteome. Arter. Thromb. Vasc. Biol. 2006;26:1207–1214. doi: 10.1161/01.ATV.0000217632.98717.a0. PubMed DOI

Kuruthukulangarakoola G.T., Lindermayr C. Regulation and Function of Protein S-Nitrosylation in Plant Stress. In: Sarwat M., Ahmad A., Abdin M., editors. Stress Signaling in Plants: Genomics and Proteomics Perspective. Volume 1 Springer; New York, NY, USA: 2013.

Mata-Pérez C., Spoel S.H. Thioredoxin-mediated redox signalling in plant immunity. Plant Sci. 2019;279:27–33. doi: 10.1016/j.plantsci.2018.05.001. PubMed DOI

Yun B.-W., Skelly M.J., Yin M., Yu M., Mun B., Lee S., Hussain A., Spoel S.H., Loake G.J. Nitric oxide and S -nitrosoglutathione function additively during plant immunity. New Phytol. 2016;211:516–526. doi: 10.1111/nph.13903. PubMed DOI

Martínez-Ruiz A. S-nitrosylation: A potential new paradigm in signal transduction. Cardiovasc. Res. 2004;62:43–52. doi: 10.1016/j.cardiores.2004.01.013. PubMed DOI

Corpas F.J., Alché J.D.D., Barroso-Albarracín J.B. Current overview of S-nitrosoglutathione (GSNO) in higher plants. Front. Plant Sci. 2013;4:126. doi: 10.3389/fpls.2013.00126. PubMed DOI PMC

Malik S.I., Hussain A., Yun B.-W., Spoel S.H., Loake G.J. GSNOR-mediated de-nitrosylation in the plant defence response. Plant Sci. 2011;181:540–544. doi: 10.1016/j.plantsci.2011.04.004. PubMed DOI

Broniowska K.A., Hogg N. The chemical biology of S-nitrosothiols. Antioxid Redox Signal. 2012;17:969–980. doi: 10.1089/ars.2012.4590. PubMed DOI PMC

Lancaster J.R., Jr. Protein cysteine thiol nitrosation: Maker or marker of reactive nitrogen species-induced nonerythroid cellular signaling? Nitric Oxide. 2008;19:68–72. doi: 10.1016/j.niox.2008.04.028. PubMed DOI

Li Q., Lancaster J.R. A Conspectus of Cellular Mechanisms of Nitrosothiol Formation from Nitric Oxide. Forum Immunopathol. Dis. Ther. 2012;3:183–191. doi: 10.1615/ForumImmunDisTher.2012006372. PubMed DOI PMC

Lancaster J.R. How are nitrosothiols formed de novo in vivo ? Arch. Biochem. Biophys. 2017;617:137–144. doi: 10.1016/j.abb.2016.10.015. PubMed DOI

Nakamura T., Lipton S.A. Emerging Role of Protein-Protein Transnitrosylation in Cell Signaling Pathways. Antioxid. Redox Signal. 2013;18:239–249. doi: 10.1089/ars.2012.4703. PubMed DOI PMC

Seth D., Hess D.T., Hausladen A., Wang L., Wang Y.-J., Stamler J.S. A Multiplex Enzymatic Machinery for Cellular Protein S-nitrosylation. Mol. Cell. 2018;69:451–464.e6. doi: 10.1016/j.molcel.2017.12.025. PubMed DOI PMC

Wolhuter K., Whitwell H.J., Switzer C.H., Burgoyne J.R., Timms J.F., Eaton P. Evidence against Stable Protein S-Nitrosylation as a Widespread Mechanism of Post-translational Regulation. Mol. Cell. 2018;69:438–450.e5. doi: 10.1016/j.molcel.2017.12.019. PubMed DOI PMC

Clementi E., Brown G.C., Feelisch M., Moncada S. Persistent inhibition of cell respiration by nitric oxide: Crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Natl. Acad. Sci. USA. 1998;95:7631–7636. doi: 10.1073/pnas.95.13.7631. PubMed DOI PMC

Benhar M., Forrester M.T., Stamler J.S. Protein denitrosylation: Enzymatic mechanisms and cellular functions. Nat. Rev. Mol. Cell Biol. 2009;10:721–732. doi: 10.1038/nrm2764. PubMed DOI

Paige J.S., Xu G., Stancevic B., Jaffrey S.R. Nitrosothiol Reactivity Profiling Identifies S-Nitrosylated Proteins with Unexpected Stability. Chem. Biol. 2008;15:1307–1316. doi: 10.1016/j.chembiol.2008.10.013. PubMed DOI PMC

Liu L., Hausladen A., Zeng M., Que L., Heitman J., Stamler J.S. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nat. Cell Biol. 2001;410:490–494. doi: 10.1038/35068596. PubMed DOI

Barnett S.D., Buxton I.L.O. The role of S-nitrosoglutathione reductase (GSNOR) in human disease and therapy. Crit. Rev. Biochem. Mol. Biol. 2017;52:340–354. doi: 10.1080/10409238.2017.1304353. PubMed DOI PMC

Jahnová J., Luhová L., Petrivalsky M. S-Nitrosoglutathione Reductase—The Master Regulator of Protein S-Nitrosation in Plant NO Signaling. Plants. 2019;8:48. doi: 10.3390/plants8020048. PubMed DOI PMC

Kubienová L., Kopečný D., Tylichová M., Briozzo P., Skopalová J., Šebela M., Navrátil M., Tâche R., Luhová L., Barroso J.B., et al. Structural and functional characterization of a plant S-nitrosoglutathione reductase from Solanum lycopersicum. Biochimie. 2013;95:889–902. doi: 10.1016/j.biochi.2012.12.009. PubMed DOI

Xu S., Guerra D., Lee U., Vierling E. S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Front. Plant Sci. 2013;4:430. doi: 10.3389/fpls.2013.00430. PubMed DOI PMC

Guerra D., Ballard K., Truebridge I., Vierling E. S-Nitrosation of Conserved Cysteines Modulates Activity and Stability ofS-Nitrosoglutathione Reductase (GSNOR) Biochemie. 2016;55:2452–2464. doi: 10.1021/acs.biochem.5b01373. PubMed DOI PMC

Kovacs I., Holzmeister C., Wirtz M., Geerlof A., Fröhlich T., Römling G., Kuruthukulangarakoola G.T., Linster E., Hell R., Arnold G.J., et al. ROS-Mediated Inhibition of S-nitrosoglutathione Reductase Contributes to the Activation of Anti-oxidative Mechanisms. Front. Plant Sci. 2016;7:1669. doi: 10.3389/fpls.2016.01669. PubMed DOI PMC

Tichá T., Lochman J., Činčalová L., Luhová L., Petřivalský M. Redox regulation of plant S-nitrosoglutathione reductase activity through post-translational modifications of cysteine residues. Biochem. Biophys. Res. Commun. 2017;494:27–33. doi: 10.1016/j.bbrc.2017.10.090. PubMed DOI

Tichá T., Činčalová L., Kopečný D., Sedlářová M., Kopečná M., Luhová L., Petřivalský M. Characterization of S-nitrosoglutathione reductase from Brassica and Lactuca spp. and its modulation during plant development. Nitric Oxide. 2017;68:68–76. doi: 10.1016/j.niox.2016.12.002. PubMed DOI

Leterrier M., Chaki M., Airaki M., Valderrama R., Palma J.M., Barroso J.B., Corpas F.J. Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. Plant Signal. Behav. 2011;6:789–793. doi: 10.4161/psb.6.6.15161. PubMed DOI PMC

Kubienová L., Tichá T., Jahnová J., Luhová L., Mieslerová B., Petřivalský M. Effect of abiotic stress stimuli on S-nitrosoglutathione reductase in plants. Planta. 2013;239:139–146. doi: 10.1007/s00425-013-1970-5. PubMed DOI

Lu J., Holmgren A. The thioredoxin antioxidant system. Free. Radic. Biol. Med. 2014;66:75–87. doi: 10.1016/j.freeradbiomed.2013.07.036. PubMed DOI

Rouhier N., Cerveau D., Couturier J., Reichheld J.-P., Rey P. Involvement of thiol-based mechanisms in plant development. Biochim. Biophys. Acta. 2015;1850:1479–1496. doi: 10.1016/j.bbagen.2015.01.023. PubMed DOI

Hondal R.J., Ruggles E.L. Differing views of the role of selenium in thioredoxin reductase. Amino Acids. 2011;41:73–89. doi: 10.1007/s00726-010-0494-6. PubMed DOI PMC

Nikitovic D., Holmgren A. S-Nitrosoglutathione Is Cleaved by the Thioredoxin System with Liberation of Glutathione and Redox Regulating Nitric Oxide. J. Biol. Chem. 1996;271:19180–19185. doi: 10.1074/jbc.271.32.19180. PubMed DOI

Benhar M., Forrester M.T., Hess U.T., Stamler J.S. Regulated Protein Denitrosylation by Cytosolic and Mitochondrial Thioredoxins. Science. 2008;320:1050–1054. doi: 10.1126/science.1158265. PubMed DOI PMC

Ben-Lulu S., Ziv T., Admon A., Weisman-Shomer P., Benhar M. A Substrate Trapping Approach Identifies Proteins Regulated by Reversible S-nitrosylation. Mol. Cell. Proteom. 2014;13:2573–2583. doi: 10.1074/mcp.M114.038166. PubMed DOI PMC

Stoyanovsky D.A., Tyurina Y.Y., Tyurin V.A., Anand D., Mandavia D.N., Gius D., Ivanova J., Pitt B., Billiar T.R., Kagan V.E. Thioredoxin and Lipoic Acid Catalyze the Denitrosation of Low Molecular Weight and ProteinS-Nitrosothiols. J. Am. Chem. Soc. 2005;127:15815–15823. doi: 10.1021/ja0529135. PubMed DOI

Sengupta R., Ryter S.W., Zuckerbraun B.S., Tzeng E., Billiar T.R., Stoyanovsky D.A. Thioredoxin Catalyzes the Denitrosation of Low-Molecular Mass and ProteinS-Nitrosothiols. Biochemistry. 2007;46:8472–8483. doi: 10.1021/bi700449x. PubMed DOI

Barglow K.T., Knutson C.G.F., Wishnok J.S., Tannenbaum S.R., Marletta M.A. Site-specific and redox-controlled S-nitrosation of thioredoxin. Proc. Natl. Acad. Sci. USA. 2011;108:E600–E606. doi: 10.1073/pnas.1110736108. PubMed DOI PMC

Sengupta R., Holmgren A. Thioredoxin and Thioredoxin Reductase in Relation to Reversible S-Nitrosylation. Antioxid. Redox Signal. 2013;18:259–269. doi: 10.1089/ars.2012.4716. PubMed DOI

Engelman R., Ziv T., Arnér E.S.J., Benhar M. Inhibitory nitrosylation of mammalian thioredoxin reductase 1: Molecular characterization and evidence for its functional role in cellular nitroso-redox imbalance. Free Radic. Biol. Med. 2016;97:375–385. doi: 10.1016/j.freeradbiomed.2016.06.032. PubMed DOI

Benhar M. Roles of mammalian glutathione peroxidase and thioredoxin reductase enzymes in the cellular response to nitrosative stress. Free Radic. Biol. Med. 2018;127:160–164. doi: 10.1016/j.freeradbiomed.2018.01.028. PubMed DOI

Espinosa B., Arnér E.S.J. Thioredoxin-related protein of 14 kDa as a modulator of redox signalling pathways. Br. J. Pharmacol. 2018;176:544–553. doi: 10.1111/bph.14479. PubMed DOI PMC

Meyer Y., Belin C., Delorme-Hinoux V., Reichheld J.-P., Riondet C. Thioredoxin and Glutaredoxin Systems in Plants: Molecular Mechanisms, Crosstalks, and Functional Significance. Antioxid. Redox Signal. 2012;17:1124–1160. doi: 10.1089/ars.2011.4327. PubMed DOI

Geigenberger P., Thormählen I., Daloso D.M., Fernie A.R. The Unprecedented Versatility of the Plant Thioredoxin System. Trends Plant Sci. 2017;22:249–262. doi: 10.1016/j.tplants.2016.12.008. PubMed DOI

Dos Santos C.V., Rey P. Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci. 2006;11:329–334. doi: 10.1016/j.tplants.2006.05.005. PubMed DOI

Reichheld J.-P., Khafif M., Riondet C., Droux M., Bonnard G., Meyer Y. Inactivation of Thioredoxin Reductases Reveals a Complex Interplay between Thioredoxin and Glutathione Pathways in Arabidopsis Development. Plant Cell. 2007;19:1851–1865. doi: 10.1105/tpc.107.050849. PubMed DOI PMC

Cha J.-Y., Barman D.N., Kim M.G., Kim W.-Y. Stress defense mechanisms of NADPH-dependent thioredoxin reductases (NTRs) in plants. Plant Signal. Behav. 2015;10:e1017698. doi: 10.1080/15592324.2015.1017698. PubMed DOI PMC

Delorme-Hinoux V., Bangash S.A., Meyer A.J., Reichheld J.-P. Nuclear thiol redox systems in plants. Plant Sci. 2016;243:84–95. doi: 10.1016/j.plantsci.2015.12.002. PubMed DOI

Correa-Aragunde N., Foresi N., Delledonne M., LaMattina L. Auxin induces redox regulation of ascorbate peroxidase 1 activity by S-nitrosylation/denitrosylation balance resulting in changes of root growth pattern in Arabidopsis. J. Exp. Bot. 2013;64:3339–3349. doi: 10.1093/jxb/ert172. PubMed DOI

Berger H., De Mia M., Morisse S., Marchand C.H., Lemaire S.D., Wobbe L., Kruse O. A Light Switch Based on Protein S-Nitrosylation Fine-Tunes Photosynthetic Light Harvesting in Chlamydomonas1. Plant Physiol. 2016;171:821–832. PubMed PMC

Tada Y., Spoel S.H., Pajerowska-Mukhtar K., Mou Z., Song J., Wang C., Zuo J., Dong X. Plant Immunity Requires Conformational Charges of NPR1 via S-Nitrosylation and Thioredoxins. Science. 2008;321:952–956. doi: 10.1126/science.1156970. PubMed DOI PMC

Kneeshaw S., Gelineau S., Tada Y., Loake G.J., Spoel S.H. Selective Protein Denitrosylation Activity of Thioredoxin-h5 Modulates Plant Immunity. Mol. Cell. 2014;56:153–162. doi: 10.1016/j.molcel.2014.08.003. PubMed DOI

Bashandy T., Guilleminot J., Vernoux T., Caparros-Ruiz D., Ljung K., Meyer Y., Reichheld J.-P. Interplay between the NADP-Linked Thioredoxin and Glutathione Systems in Arabidopsis Auxin Signaling. Plant Cell. 2010;22:376–391. doi: 10.1105/tpc.109.071225. PubMed DOI PMC

Correa-Aragunde N., Cejudo F.J., LaMattina L. Nitric oxide is required for the auxin-induced activation of NADPH-dependent thioredoxin reductase and protein denitrosylation during root growth responses in arabidopsis. Ann. Bot. 2015;116:695–702. doi: 10.1093/aob/mcv116. PubMed DOI PMC

Ghanta S., Bhattacharyya D., Sinha R., Banerjee A., Chattopadhyay S. Nicotiana tabacum overexpressing γ-ECS exhibits biotic stress tolerance likely through NPR1-dependent salicylic acid-mediated pathway. Planta. 2011;233:895–910. doi: 10.1007/s00425-011-1349-4. PubMed DOI

Zaffagnini M., Morisse S., Bedhomme M., Marchand C.H., Festa M., Rouhier N., Lemaire S.D., Trost P. Mechanisms of Nitrosylation and Denitrosylation of Cytoplasmic Glyceraldehyde-3-phosphate Dehydrogenase fromArabidopsis thaliana. J. Biol. Chem. 2013;288:22777–22789. doi: 10.1074/jbc.M113.475467. PubMed DOI PMC

Zhao Y., He M., Ding J., Xi Q., Loake G.J., Zheng W. Regulation of Anticancer Styrylpyrone Biosynthesis in the Medicinal Mushroom Inonotus obliquus Requires Thioredoxin Mediated Transnitrosylation of S-nitrosoglutathione Reductase. Sci. Rep. 2016;6:37601. doi: 10.1038/srep37601. PubMed DOI PMC

Liebthal M., Maynard D., Dietz K.-J. Peroxiredoxins and Redox Signaling in Plants. Antioxid. Redox Signal. 2018;28:609–624. doi: 10.1089/ars.2017.7164. PubMed DOI PMC

Dietz K.-J. Peroxiredoxins in Plants and Cyanobacteria. Antioxid. Redox Signal. 2011;15:1129–1159. doi: 10.1089/ars.2010.3657. PubMed DOI PMC

Sakamoto A., Tsukamoto S., Yamamoto H., Ueda-Hashimoto M., Takahashi M., Suzuki H., Morikawa H. Functional complementation in yeast reveals a protective role of chloroplast 2-Cys peroxiredoxin against reactive nitrogen species. Plant J. 2003;33:841–851. doi: 10.1046/j.1365-313X.2003.01669.x. PubMed DOI

Lindermayr C., Saalbach G., Durner J. Proteomic Identification of S-Nitrosylated Proteins in Arabidopsis. Plant Physiol. 2005;137:921–930. doi: 10.1104/pp.104.058719. PubMed DOI PMC

Romero-Puertas M.C., Laxa M., Mattè A., Zaninotto F., Finkemeier I., Jones A.M., Perazzolli M., Vandelle E., Dietz K.-J., Delledonne M. S-Nitrosylation of Peroxiredoxin II E Promotes Peroxynitrite-Mediated Tyrosine Nitration. Plant Cell. 2007;19:4120–4130. doi: 10.1105/tpc.107.055061. PubMed DOI PMC

Engelman R., Weisman-Shomer P., Ziv T., Xu J., Arnér E.S.J., Benhar M. Multilevel Regulation of 2-Cys Peroxiredoxin Reaction Cycle byS-Nitrosylation. J. Biol. Chem. 2013;288:11312–11324. doi: 10.1074/jbc.M112.433755. PubMed DOI PMC

Biteau B., Labarre J., Toledano M.B. ATP-dependent reduction of cysteine–sulphinic acid by S. cerevisiae sulphiredoxin. Nat. Cell Biol. 2003;425:980–984. doi: 10.1038/nature02075. PubMed DOI

Sunico C.R., Sultan A., Nakamura T., Dolatabadi N., Parker J., Shan B., Han X., Yates J.R., Masliah E., Ambasudhan R., et al. Role of sulfiredoxin as a peroxiredoxin-2 denitrosylase in human iPSC-derived dopaminergic neurons. Proc. Natl. Acad. Sci. USA. 2016;113:E7564–E7571. doi: 10.1073/pnas.1608784113. PubMed DOI PMC

Rey P., Bécuwe N., Barrault M.-B., Rumeau D., Havaux M., Biteau B., Toledano M.B. The Arabidopsis thaliana sulfiredoxin is a plastidic cysteine-sulfinic acid reductase involved in the photooxidative stress response. Plant J. 2007;49:505–514. doi: 10.1111/j.1365-313X.2006.02969.x. PubMed DOI

Sevilla F., Camejo D., Ortiz-Espín A., Calderón A., Lázaro J.J., Jiménez A. The thioredoxin/peroxiredoxin/sulfiredoxin system: Current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. J. Exp. Bot. 2015;66:2945–2955. doi: 10.1093/jxb/erv146. PubMed DOI

Root P., Sliskovic I., Mutus B. Platelet cell-surface protein disulphide-isomerase mediated S-nitrosoglutathione consumption. Biochem. J. 2004;382:575–580. doi: 10.1042/BJ20040759. PubMed DOI PMC

Sliskovic I., Raturi A., Mutus B. Characterization of the S-Denitrosation Activity of Protein Disulfide Isomerase. J. Biol. Chem. 2004;280:8733–8741. doi: 10.1074/jbc.M408080200. PubMed DOI

Houston N.L., Fan C., Xiang J.Q., Schulze J.-M., Jung R., Boston R.S. Phylogenetic Analyses Identify 10 Classes of the Protein Disulfide Isomerase Family in Plants, Including Single-Domain Protein Disulfide Isomerase-Related Proteins. Plant Physiol. 2005;137:762–778. doi: 10.1104/pp.104.056507. PubMed DOI PMC

Zhang Z., Liu X., Li R., Yuan L., Dai Y., Wang X. Identification and Functional Analysis of a Protein Disulfide Isomerase (AtPDI1) in Arabidopsis thaliana. Front. Plant Sci. 2018;9:913. doi: 10.3389/fpls.2018.00913. PubMed DOI PMC

Jourd’Heuila D., Larouxa F.S., Miles A.M., Wink D.A., Grisham M.B. Effect of Superoxide Dismutase on the Stability ofS-Nitrosothiols. Arch. Biochem. Biophys. 1999;361:323–330. doi: 10.1006/abbi.1998.1010. PubMed DOI

Johnson M.A., Macdonald T.L., Mannick J.B., Conaway M.R., Gaston B. AcceleratedS-Nitrosothiol Breakdown by Amyotrophic Lateral Sclerosis Mutant Copper,Zinc-Superoxide Dismutase. J. Biol. Chem. 2001;276:39872–39878. doi: 10.1074/jbc.M102781200. PubMed DOI

Schonhoff C.M., Matsuoka M., Tummala H., Johnson M.A., Estevéz A.G., Wu R., Kamaid A., Ricart K.C., Hashimoto Y., Gaston B., et al. S-nitrosothiol depletion in amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA. 2006;103:2404–2409. doi: 10.1073/pnas.0507243103. PubMed DOI PMC

Tsang C.K., Liu Y., Thomas J., Zhang Y., Zheng X.F.S. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat. Commun. 2014;5:3446. doi: 10.1038/ncomms4446. PubMed DOI PMC

Emengel A., Echaki M., Eshekariesfahlan A., Lindermayr C. Effect of nitric oxide on gene transcription—S-nitrosylation of nuclear proteins. Front. Plant Sci. 2013;4:293. PubMed PMC

Spyrou G., Enmark E., Miranda-Vizuete A., Gustafsson J. Cloning and Expression of a Novel Mammalian Thioredoxin. J. Biol. Chem. 1997;272:2936–2941. doi: 10.1074/jbc.272.5.2936. PubMed DOI

Kneeshaw S., Spoel S.H. Thioredoxin-Dependent Decomposition of Protein S-Nitrosothiols. In: Mengel A., Lindermayr C., editors. Nitric Oxide. Methods in Molecular Biology. Volume 1747 Humana Press; New York, NY, USA: 2018. PubMed

Borrelli V.M.G., Brambilla V., Rogowsky P., Marocco A., Lanubile A. The Enhancement of Plant Disease Resistance Using CRISPR/Cas9 Technology. Front. Plant Sci. 2018;9:1245. doi: 10.3389/fpls.2018.01245. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...