Progress in Plant Nitric Oxide Studies: Implications for Phytopathology and Plant Protection

. 2025 Feb 27 ; 26 (5) : . [epub] 20250227

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40076711

Grantová podpora
CZ.02.01.01/00/22_008/0004581 ERDF Programme Johannes Amos Comenius

Nitric oxide (NO) is a gaseous free radical known to modulate plant metabolism through crosstalk with phytohormones (especially ABA, SA, JA, and ethylene) and other signaling molecules (ROS, H2S, melatonin), and to regulate gene expression (by influencing DNA methylation and histone acetylation) as well as protein function through post-translational modifications (cysteine S-nitrosation, metal nitrosation, tyrosine nitration, nitroalkylation). Recently, NO has gained attention as a molecule promoting crop resistance to stress conditions. Herein, we review innovations from the NO field and nanotechnology on an up-to-date phytopathological background.

Zobrazit více v PubMed

Freh N., Gao J., Petersen M., Panstruga R. Plant autoimmunity-fresh insights into an old phenomenon. Plant Physiol. 2022;188:1419–1434. doi: 10.1093/plphys/kiab590. PubMed DOI PMC

Arasimowicz-Jelonek M., Floryszak-Wieczorek J., Suarez S., Doctorovich F., Sobieszczuk-Nowicka E., Bruce King S., Milczarek G., Rębiś T., Gajewska J., Jagodzik P., et al. Discovery of endogenous nitroxyl as a new redox player in Arabidopsis thaliana. Nat. Plants. 2023;9:36–44. doi: 10.1038/s41477-022-01301-z. PubMed DOI PMC

Kolbert Z., Barroso J.B., Boscari A., Corpas F.J., Gupta K.J., Hancock J.T., Lindermayr C., Palma J.M., Petřivalský M., Wendehenne D., et al. Interorgan, intraorgan and interplant communication mediated by nitric oxide and related species. New Phytol. 2024;244:786–797. doi: 10.1111/nph.20085. PubMed DOI

Zhang Y., Wang R., Wang X., Zhao C., Shen H., Yang L. Nitric Oxide Regulates Seed Germination by Integrating Multiple Signalling Pathways. Int. J. Mol. Sci. 2023;24:9052. doi: 10.3390/ijms24109052. PubMed DOI PMC

Kumari R., Kapoor P., Mir B.A., Singh M., Parrey Z.A., Rakhra G., Parihar P., Khan M.N., Rakhra G. Unlocking the versatility of nitric oxide in plants and insights into its molecular interplays under biotic and abiotic stress. Nitric Oxide. 2024;150:1–17. doi: 10.1016/j.niox.2024.07.002. PubMed DOI

Corpas F.J. NO and H2S Contribute to Crop Resilience against Atmospheric Stressors. Int. J. Mol. Sci. 2024;25:3509. doi: 10.3390/ijms25063509. PubMed DOI PMC

Freschi L. Nitric oxide and phytohormone interactions: Current status and perspectives. Front. Plant Sci. 2013;4:398. doi: 10.3389/fpls.2013.00398. PubMed DOI PMC

Simontacchi M., Galatro A., Ramos-Artuso F., Santa-María G.E. Plant Survival in a Changing Environment: The Role of Nitric Oxide in Plant Responses to Abiotic Stress. Front. Plant Sci. 2015;6:977. doi: 10.3389/fpls.2015.00977. PubMed DOI PMC

Graska J., Fidler J., Gietler M., Prabucka B., Nykiel M., Labudda M. Nitric Oxide in Plant Functioning: Metabolism, Signaling, and Responses to Infestation with Ecdysozoa Parasites. Biology. 2023;12:927. doi: 10.3390/biology12070927. PubMed DOI PMC

Khan M., Ali S., Al Azzawi T.N.I., Yun B.-W. Nitric Oxide Acts as a Key Signaling Molecule in Plant Development under Stressful Conditions. Int. J. Mol. Sci. 2023;24:4782. doi: 10.3390/ijms24054782. PubMed DOI PMC

Hussain A., Faheem B., Jang H.-S., Lee D.-S., Mun B.-G., Rolly N.K., Yun B.-W. Melatonin–Nitric Oxide Crosstalk in Plants and the Prospects of NOMela as a Nitric Oxide Donor. Int. J. Mol. Sci. 2024;25:8535. doi: 10.3390/ijms25158535. PubMed DOI PMC

Seabra A.B., Silveira N.M., Ribeiro R.V., Pieretti J.C., Barroso J.B., Corpas F.J., Palma J.M., Hancock J.T., Petřivalský M., Gupta K.J., et al. Nitric oxide-releasing nanomaterials: From basic research to potential biotechnological applications in agriculture. New Phytol. 2022;234:1119–1125. doi: 10.1111/nph.18073. PubMed DOI

Stamler J.S., Singel D.J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992;258:1898–1902. doi: 10.1126/science.1281928. PubMed DOI

Thomas D.D. Breathing new life into nitric oxide signaling: A brief overview of the interplay between oxygen and nitric oxide. Redox Biol. 2015;5:225–233. doi: 10.1016/j.redox.2015.05.002. PubMed DOI PMC

Mur L.A., Mandon J., Persijn S., Cristescu S.M., Moshkov I.E., Novikova G.V., Hall M.A., Harren F.J.M., Hebelstrup K.H., Gupta K.J. Nitric oxide in plants: An assessment of the current state of knowledge. AoB Plants. 2013;5:pls052. doi: 10.1093/aobpla/pls052. PubMed DOI PMC

Allagulova C.R., Lubyanova A.R., Avalbaev A.M. Multiple Ways of Nitric Oxide Production in Plants and Its Functional Activity under Abiotic Stress Conditions. Int. J. Mol. Sci. 2023;24:11637. doi: 10.3390/ijms241411637. PubMed DOI PMC

Rockel P., Strube F., Rockel A., Wildt J., Kaiser W.M. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J. Exp. Bot. 2002;53:103–110. doi: 10.1093/jexbot/53.366.103. PubMed DOI

Planchet E., Kaiser W.M. Nitric oxide production in plants. Plant Signal. Behav. 2006;2:46–51. doi: 10.4161/psb.1.2.2435. PubMed DOI PMC

Kolbert Z., Ortega L., Erdei L. Involvement of nitrate reductase (NR) in osmotic stress-induced NO generation of Arabidopsis thaliana L. roots. J. Plant Physiol. 2010;167:77–80. doi: 10.1016/j.jplph.2009.08.013. PubMed DOI

Lombardo M.C., Lamattina L. Nitric oxide is essential for vesicle formation and trafficking in Arabidopsis root hair growth. J. Exp. Bot. 2012;63:4875–4885. doi: 10.1093/jxb/ers166. PubMed DOI

Mohn M.A., Thaqi B., Fischer-Schrader K. Isoform-specific NO synthesis by Arabidopsis thaliana nitrate reductase. Plants. 2019;8:67. doi: 10.3390/plants8030067. PubMed DOI PMC

Reda M., Kabała K., Stanisławski J., Szczepski K., Janicka M. Regulation of NO-generating system activity in cucumber root response to cold. Int. J. Mol. Sci. 2025;26:1599. doi: 10.3390/ijms26041599. PubMed DOI PMC

Stöhr C., Stremlau S. Formation and possible roles of nitric oxide in plant roots. J. Exp. Bot. 2006;57:463–470. doi: 10.1093/jxb/erj058. PubMed DOI

Chamizo-Ampudia A., Sanz-Luque E., Llamas Á., Ocaña-Calahorro F., Mariscal V., Carreras A., Barroso J.B., Galván A., Fernández E. A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas. Plant Cell Environ. 2016;39:2097–2107. doi: 10.1111/pce.12739. PubMed DOI

Maiber L., Koprivova A., Bender D., Kopriva S., Fischer-Schrader K. Characterization of the amidoxime reducing components ARC1 and ARC2 from Arabidopsis thaliana. FEBS J. 2022;289:5656–5669. doi: 10.1111/febs.16450. PubMed DOI

Millar T.M., Stevens C.R., Benjamin N., Eisenthal R., Harrison R., Blake D.R. Xanthine oxidoreductase catalyses the reduction of nitrates and nitrite to nitric oxide under hypoxic conditions. FEBS Lett. 1998;427:225–228. doi: 10.1016/S0014-5793(98)00430-X. PubMed DOI

Barroso J.B., Corpas F.J., Carreras A., Sandalio L.M., Valderrama R., Palma J., Lupiáñez J.A., del Rıo L.A. Localization of nitric-oxide synthase in plant peroxisomes. J. Biol. Chem. 1999;274:36729–36733. doi: 10.1074/jbc.274.51.36729. PubMed DOI

Kumari A., Kaladhar V.C., Yadav N., Singh P., Reddy K., Gupta K.J. Nitric oxide regulates mitochondrial biogenesis in plants. Plant Cell Environ. 2023;46:2492–2506. doi: 10.1111/pce.14637. PubMed DOI

Stöhr C., Ullrich W.R. Generation and possible roles of NO in plant roots and their apoplastic space. J. Exp. Bot. 2002;53:2293–2303. doi: 10.1093/jxb/erf110. PubMed DOI

Bethke P.C., Badger M.R., Jones R.L. Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell. 2004;16:332–341. doi: 10.1105/tpc.017822. PubMed DOI PMC

Cooney R.V., Harwood P.J., Custer L.J., Franke A.A. Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids. Environ. Health Perspect. 1994;102:460–462. doi: 10.1289/ehp.94102460. PubMed DOI PMC

Jeandroz S., Wipf D., Stuehr D.J., Lamattina L., Melkonian M., Tian Z., Zhu Y., Carpenter E.J., Wong G.K.-S., Wendehenne D. Occurrence, structure, and evolution of nitric oxide synthase–like proteins in the plant kingdom. Sci. Signal. 2016;9:re2. doi: 10.1126/scisignal.aad4403. PubMed DOI

Foresi N., Correa-Aragunde N., Parisi G., Calo G., Salerno G., Lamattina L. Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell. 2010;22:3816–3830. doi: 10.1105/tpc.109.073510. PubMed DOI PMC

Correa-Aragunde N., Foresi N., Del Castello F., Lamattina L. A singular nitric oxide synthase with a globin domain found in Synechococcus PCC 7335 mobilizes N from arginine to nitrate. Sci. Rep. 2018;8:12505. doi: 10.1038/s41598-018-30889-6. PubMed DOI PMC

Rümer S., Gupta K.J., Kaiser W.M. Plant cells oxidize hydroxylamines to NO. J. Exp. Bot. 2009;60:2065–2072. doi: 10.1093/jxb/erp077. PubMed DOI PMC

Wimalasekera R., Tebartz F., Scherer G.F. Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci. 2011;181:593–603. doi: 10.1016/j.plantsci.2011.04.002. PubMed DOI

Groß F., Rudolf E.E., Thiele B., Durner J., Astier J. Copper amine oxidase 8 regulates arginine-dependent nitric oxide production in Arabidopsis thaliana. J. Exp. Bot. 2017;68:2149–2162. doi: 10.1093/jxb/erx105. PubMed DOI PMC

López-Gómez P., Buezo J., Urra M., Cornejo A., Esteban R., de Los Reyes J.F., Urarte E., Rodríguez-Dobreva E., Chamizo-Ampudia A., Eguaras A., et al. A new oxidative pathway of nitric oxide production from oximes in plants. Mol. Plant. 2024;17:178–198. doi: 10.1016/j.molp.2023.12.009. PubMed DOI

Liao W., Igamberdiev A.U., Palma J.M. Advances in Nitric Oxide Signalling and Metabolism in Plants. Int. J. Mol. Sci. 2023;24:6397. doi: 10.3390/ijms24076397. PubMed DOI PMC

Liu Y., Liu Z., Wu X., Fang H., Huang D., Pan X., Liao W. Role of protein S-nitrosylation in plant growth and development. Plant Cell Rep. 2024;43:204. doi: 10.1007/s00299-024-03290-z. PubMed DOI

Corpas F.J., González-Gordo S., Palma J.M. Protein nitration: A connecting bridge between nitric oxide (NO) and plant stress. Plant Stress. 2021;2:100026. doi: 10.1016/j.stress.2021.100026. DOI

León J. Protein tyrosine nitration in plant nitric oxide signaling. Front. Plant Sci. 2022;13:859374. doi: 10.3389/fpls.2022.859374. PubMed DOI PMC

Bartesaghi S., Ferrer-Sueta G., Peluffo G., Valez V., Zhang H., Kalyanaraman B., Radi R. Protein tyrosine nitration in hydrophilic and hydrophobic environments. Amino Acids. 2007;32:501–515. doi: 10.1007/s00726-006-0425-8. PubMed DOI

Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem. Biophys. Res. Commun. 2003;305:776–783. doi: 10.1016/S0006-291X(03)00814-3. PubMed DOI

Begara-Morales J.C., Sánchez-Calvo B., Chaki M., Valderrama R., Mata-Pérez C., López-Jaramillo J., Padilla M.N., Carreras A., Corpas F.J., Barroso J.B. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J. Exp. Bot. 2014;65:527–538. doi: 10.1093/jxb/ert396. PubMed DOI PMC

Begara-Morales J.C., Sánchez-Calvo B., Chaki M., Mata-Pérez C., Valderrama R., Padilla M.N., López-Jaramillo J., Luque F., Corpas F.J., Barroso J.B. Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. J. Exp. Bot. 2015;66:5983–5996. doi: 10.1093/jxb/erv306. PubMed DOI PMC

Holzmeister C., Gaupels F., Geerlof A., Sarioglu H., Sattler M., Durner J., Lindermayr C. Differential inhibition of Arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration. J. Exp. Bot. 2015;66:989–999. doi: 10.1093/jxb/eru458. PubMed DOI PMC

Boutin C., Clément C., Rivoal J. Post-Translational Modifications to Cysteine Residues in Plant Proteins and Their Impact on the Regulation of Metabolism and Signal Transduction. Int. J. Mol. Sci. 2024;25:9845. doi: 10.3390/ijms25189845. PubMed DOI PMC

Lindermayr C., Saalbach G., Durner J. Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol. 2005;137:921–930. doi: 10.1104/pp.104.058719. PubMed DOI PMC

Kovacs I., Ageeva A., König E.-E., Lindermayr C. Chapter Two—S-Nitrosylation of Nuclear Proteins: New Pathways in Regulation of Gene Expression. Adv. Bot. Res. 2016;77:15–39. doi: 10.1016/bs.abr.2015.10.003. DOI

Ageeva-Kieferle A., Rudolf E.E., Lindermayr C. Redox-Dependent Chromatin Remodeling: A New Function of Nitric Oxide as Architect of Chromatin Structure in Plants. Front. Plant Sci. 2019;10:625. doi: 10.3389/fpls.2019.00625. PubMed DOI PMC

Borrowman S., Kapuganti J.G., Loake G.J. Expanding roles for S-nitrosylation in the regulation of plant immunity. Free Radic. Biol. Med. 2023;194:357–368. doi: 10.1016/j.freeradbiomed.2022.12.009. PubMed DOI

González-Gordo S., López-Jaramillo J., Palma J.M., Corpas F.J. Soybean (Glycine max L.) Lipoxygenase 1 (LOX 1) is modulated by nitric oxide and hydrogen sulfide: An in vitro approach. Int. J. Mol. Sci. 2023;24:8001. doi: 10.3390/ijms24098001. PubMed DOI PMC

Durner J., Gow A.J., Stamler J.S., Glazebrook J. Ancient origins of nitric oxide signaling in biological systems. Proc. Natl. Acad. Sci. USA. 1999;96:14206–14207. doi: 10.1073/pnas.96.25.14206. PubMed DOI PMC

Hess D.T., Matsumoto A., Kim S.O., Marshall H.E., Stamler J.S. Protein S-nitrosylation: Purview and parameters. Nat. Rev. Mol. Cell Biol. 2005;6:150–166. doi: 10.1038/nrm1569. PubMed DOI

Liu L., Hausladen A., Zeng M., Que L., Heitman J., Stamler J.S. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature. 2001;410:490–494. doi: 10.1038/35068596. PubMed DOI

Jahnová J., Luhová L., Petřivalský M. S-nitrosoglutathione reductase—The master regulator of protein S-nitrosation in plant NO signaling. Plants. 2019;8:48. doi: 10.3390/plants8020048. PubMed DOI PMC

Kneeshaw S., Gelineau S., Tada Y., Loake G.J., Spoel S.H. Selective protein denitrosylation activity of thioredoxin-h5 modulates plant immunity. Mol. Cell. 2014;56:153–162. doi: 10.1016/j.molcel.2014.08.003. PubMed DOI

Jedelská T., Luhová L., Petřivalský M. Thioredoxins: Emerging players in the regulation of protein S-nitrosation in plants. Plants. 2020;9:1426. doi: 10.3390/plants9111426. PubMed DOI PMC

Treffon P., Vierling E. Focus on nitric oxide homeostasis: Direct and indirect enzymatic regulation of protein denitrosation reactions in plants. Antioxidants. 2022;11:1411. doi: 10.3390/antiox11071411. PubMed DOI PMC

Treffon P., Rossi J., Gabellini G., Trost P., Zaffagnini M., Vierling E. Quantitative proteome profiling of a S-nitrosoglutathione reductase (GSNOR) null mutant reveals a new class of enzymes involved in nitric oxide homeostasis in plants. Front. Plant Sci. 2021;12:787435. doi: 10.3389/fpls.2021.787435. PubMed DOI PMC

Stomberski C.T., Anand P., Venetos N.M., Hausladen A., Zhou H.L., Premont R.T., Stamler J.S. AKR1A1 is a novel mammalian S-nitroso-glutathione reductase. J. Biol. Chem. 2019;294:18285–18293. doi: 10.1074/jbc.RA119.011067. PubMed DOI PMC

Krishnamurthy P., Pothiraj R., Suthanthiram B., Somasundaram S.M., Subbaraya U. Phylogenomic classification and synteny network analyses deciphered the evolutionary landscape of aldo–keto reductase (AKR) gene superfamily in the plant kingdom. Gene. 2022;816:146169. doi: 10.1016/j.gene.2021.146169. PubMed DOI

Yu J., Sun H., Zhang J., Hou Y., Zhang T., Kang J., Wang Z., Yang Q., Long R. Analysis of aldo–keto reductase gene family and their responses to salt, drought, and abscisic acid stresses in Medicago truncatula. Int. J. Mol. Sci. 2020;21:754. doi: 10.3390/ijms21030754. PubMed DOI PMC

Niranjan V., Uttarkar A., Dadi S., Dawane A., Vargheese A., Kumar J.H.G., Makarla U., Ramu V.S. Stress-induced detoxification enzymes in rice have broad substrate affinity. ACS Omega. 2021;6:3399–3410. doi: 10.1021/acsomega.0c05961. PubMed DOI PMC

Javidi M.R., Maali-Amiri R., Poormazaheri H., Niaraki M.S., Kariman K. Cold stress-induced changes in metabolism of carbonyl compounds and membrane fatty acid composition in chickpea. Plant Physiol. Biochem. 2022;192:10–19. doi: 10.1016/j.plaphy.2022.09.031. PubMed DOI

Lamba K., Kumar M., Singh V., Chaudhary L., Gupta V. Transcriptome analysis for heat stress related genes in wheat genotype WH-730. Cereal Res. Commun. 2024:1–13. doi: 10.1007/s42976-024-00595-3. DOI

Guan X., Yu L., Wang A. Genome-Wide Identification and Characterization of Aldo-Keto Reductase (AKR) Gene Family in Response to Abiotic Stresses in Solanum lycopersicum. Int. J. Mol. Sci. 2023;24:1272. doi: 10.3390/ijms24021272. PubMed DOI PMC

Yadav S., Preethi V., Dadi S., Seth C.S., Chandrashekar B.K., Vemanna R.S. Small chemical molecules regulating the phytohormone signalling alter the plant’s physiological processes to improve stress adaptation, growth and productivity. Physiol. Mol. Biol. Plants. 2024;30:1593–1610. doi: 10.1007/s12298-024-01514-w. PubMed DOI PMC

Fujii J., Homma T., Miyata S., Takahashi M. Pleiotropic actions of aldehyde reductase (AKR1A) Metabolites. 2021;11:343. doi: 10.3390/metabo11060343. PubMed DOI PMC

Treffon P., Vierling E. Disrupted nitric oxide homeostasis impacts fertility through multiple processes including protein quality control. Plant Physiol. 2025;197:kiae609. doi: 10.1093/plphys/kiae609. PubMed DOI

Hancock J.T., Veal D. Nitric oxide, other reactive signalling compounds, redox, and reductive stress. J. Exp. Bot. 2021;72:819–829. doi: 10.1093/jxb/eraa331. PubMed DOI

Gupta K.J., Hancock J.T., Petřivalský M., Kolbert Z., Lindermayr C., Durner J., Barroso J.B., Palma J.M., Brouquisse R., Wendehenne D., et al. Recommendations on terminology and experimental best practice associated with plant nitric oxide research. New Phytol. 2020;225:1828–1834. doi: 10.1111/nph.16157. PubMed DOI

Broniowska K.A., Diers A.R., Hogg N. S-nitrosoglutathione. Biochim. Biophys. Acta BBA-Gen. Subj. 2013;1830:3173–3181. doi: 10.1016/j.bbagen.2013.02.004. PubMed DOI PMC

Foyer C.H., Noctor G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 2011;155:2–18. doi: 10.1104/pp.110.167569. PubMed DOI PMC

Noctor G., Cohen M., Trémulot L., Châtel-Innocenti G., Van Breusegem F., Mhamdi A. Glutathione: A key modulator of plant defence and metabolism through multiple mechanisms. J. Exp. Bot. 2024;75:erae194. doi: 10.1093/jxb/erae194. PubMed DOI

Di Fino L., Arruebarrena Di Palma A., Perk E.A., García-Mata C., Schopfer F.J., Laxalt A.M. Nitro-fatty acids: Electrophilic signaling molecules in plant physiology. Planta. 2021;254:120. doi: 10.1007/s00425-021-03777-z. PubMed DOI PMC

Jouhet J., Alves E., Boutté Y., Darnet S., Domergue F., Durand T., Fischer P., Fouillen L., Grube M., Joubès J., et al. Plant and algal lipidomes: Analysis, composition, and their societal significance. Prog. Lipid Res. 2024;96:101290. doi: 10.1016/j.plipres.2024.101290. PubMed DOI

Mata-Pérez C., Sánchez-Calvo B., Padilla M.N., Begara-Morales J.C., Luque F., Melguizo M., Jiménez-Ruiz J., Fierro-Risco J., Peñas-Sanjuán A., Valderrama R., et al. Nitro-Fatty Acids in Plant Signaling: Nitro-Linolenic Acid Induces the Molecular Chaperone Network in Arabidopsis. Plant Physiol. 2016;170:686–701. doi: 10.1104/pp.15.01671. PubMed DOI PMC

Mata-Pérez C., Sánchez-Calvo B., Padilla M.N., Begara-Morales J.C., Valderrama R., Corpas F.J., Barroso J.B. Nitro-fatty acids in plant signaling: New key mediators of nitric oxide metabolism. Redox Biol. 2017;11:554–561. doi: 10.1016/j.redox.2017.01.002. PubMed DOI PMC

Vollár M., Feigl G., Oláh D., Horváth A., Molnár Á., Kúsz N., Ördög A., Csupor D., Kolbert Z. Nitro-Oleic Acid in Seeds and Differently Developed Seedlings of Brassica napus L. Plants. 2020;9:406. doi: 10.3390/plants9030406. PubMed DOI PMC

Begara-Morales J.C., Mata-Pérez C., Padilla M.N., Chaki M., Valderrama R., Aranda-Caño L., Barroso J.B. Role of electrophilic nitrated fatty acids during development and response to abiotic stress processes in plants. J. Exp. Bot. 2021;72:917–927. doi: 10.1093/jxb/eraa517. PubMed DOI

Aranda-Caño L., Valderrama R., Chaki M., Begara-Morales J.C., Melguizo M., Barroso J.B. Nitrated fatty-acids distribution in storage biomolecules during Arabidopsis thaliana development. Antioxidants. 2022;11:1869. doi: 10.3390/antiox11101869. PubMed DOI PMC

Delledonne M., Xia Y., Dixon R., Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature. 1998;394:585–588. doi: 10.1038/29087. PubMed DOI

Arasimowicz M., Floryszak-Wieczorek J. Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci. 2007;172:876–887. doi: 10.1016/j.plantsci.2007.02.005. DOI

Scheler C., Durner J., Astier J. Nitric oxide and reactive oxygen species in plant biotic interactions. Curr. Opin. Plant Biol. 2013;16:534–539. doi: 10.1016/j.pbi.2013.06.020. PubMed DOI

Sytykiewicz H., Czerniewicz P., Ruszczyńska M., Kmieć K. The Interplay of Nitric Oxide and Nitrosative Modifications in Maize: Implications for Aphid Herbivory and Drought Stress. Int. J. Mol. Sci. 2024;25:11280. doi: 10.3390/ijms252011280. PubMed DOI PMC

Du B., Haensch R., Alfarraj S., Rennenberg H. Strategies of plants to overcome abiotic and biotic stresses. Biol. Rev. 2024;99:1524–1536. doi: 10.1111/brv.13079. PubMed DOI

Jones J.D.G., Dangl J.L. The plant immune system. Nature. 2006;444:323–329. doi: 10.1038/nature05286. PubMed DOI

Ngou B.P.M., Ding P., Jones J.D.G. Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell. 2022;34:1447–1478. doi: 10.1093/plcell/koac041. PubMed DOI PMC

Zhang L., Hua C., Janocha D., Fliegmann J., Nürnberger T. Plant cell surface immune receptors—Novel insights into function and evolution. Curr. Opin. Plant Biol. 2023;74:102384. doi: 10.1016/j.pbi.2023.102384. PubMed DOI

Duggan C., Moratto E., Savage Z., Hamilton E., Adachi H., Wu C.H., Leary A.Y., Tumtas Y., Rothery S.M., Maqbool A., et al. Dynamic localization of a helper NLR at the plant-pathogen interface underpins pathogen recognition. Proc. Natl. Acad. Sci. USA. 2021;118:e2104997118. doi: 10.1073/pnas.2104997118. PubMed DOI PMC

Waheed A., Haxim Y., Islam W., Kahar G., Liu X., Zhang D. Role of pathogen’s effectors in understanding host-pathogen interaction. Biochim. Biophys. Acta BBA-Mol. Cell Res. 2022;1869:119347. doi: 10.1016/j.bbamcr.2022.119347. PubMed DOI

Locci F., Parker J.E. Plant NLR immunity activation and execution: A biochemical perspective. Open Biol. 2024;14:230387. doi: 10.1098/rsob.230387. PubMed DOI PMC

Ngou B.P.M., Ahn H.K., Ding P., Jones J.D.G. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature. 2021;592:110–115. doi: 10.1038/s41586-021-03315-7. PubMed DOI

Yuan M., Jiang Z., Bi G., Nomura K., Liu M., Wang Y., Cai B., Zhou J.-M., He S.J., Xin X.-F. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature. 2021;592:105–109. doi: 10.1038/s41586-021-03316-6. PubMed DOI PMC

Yu N.-N., Park G. Nitric Oxide in Fungi: Production and Function. J. Fungi. 2024;10:155. doi: 10.3390/jof10020155. PubMed DOI PMC

Harris J.M., Balint-Kurti P., Bede J.C., Day B., Gold S., Goss E.M., Grenville-Briggs L.J., Jones K.M., Wang A., Wang Y., et al. What are the Top 10 Unanswered Questions in Molecular Plant-Microbe Interactions? Mol. Plant-Microbe Interact. 2020;33:1354–1365. doi: 10.1094/MPMI-08-20-0229-CR. PubMed DOI

Tsai H.-H., Wang J., Geldner N., Zhou F. Spatiotemporal control of root immune responses during microbial colonization. Curr. Opin. Plant Biol. 2023;74:102369. doi: 10.1016/j.pbi.2023.102369. PubMed DOI

Chowdhury S., Basu A., Kundu S. Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Sci. Rep. 2017;7:17251. doi: 10.1038/s41598-017-17248-7. PubMed DOI PMC

Zhou J.-M., Zhang Y. Plant immunity: Danger perception and signaling. Cell. 2020;181:978–989. doi: 10.1016/j.cell.2020.04.028. PubMed DOI

Wan W.-L., Kim S.-T., Castel B., Charoennit N., Chae E. Genetics of autoimmunity in plants: An evolutionary genetics perspective. New Phytol. 2021;229:1215–1233. doi: 10.1111/nph.16947. PubMed DOI

Thoms D., Liang Y., Haney C.H. Maintaining symbiotic homeostasis: How do plants engage with beneficial microorganisms while at the same time restricting pathogens? Mol. Plant-Microbe Interact. 2021;34:462–469. doi: 10.1094/MPMI-11-20-0318-FI. PubMed DOI

Shah S., Chen C., Sun Y., Wang D., Nawaz T., El-Kahtany K., Fahad S. Mechanisms of nitric oxide involvement in plant-microbe interaction and its enhancement of stress resistance. Plant Stress. 2023;10:100191. doi: 10.1016/j.stress.2023.100191. DOI

Piterková J., Petřivalský M., Luhová L., Mieslerová B., Sedlářová M., Lebeda A. Local and systemic production of nitric oxide in tomato responses to powdery mildew infection. Mol. Plant Pathol. 2009;10:501–513. doi: 10.1111/j.1364-3703.2009.00551.x. PubMed DOI PMC

Jedelská T., Sedlářová M., Lochman J., Činčalová L., Luhová L., Petřivalský M. Protein S-nitrosation differentially modulates tomato responses to infection by hemi-biotrophic oomycetes of Phytophthora spp. Hortic. Res. 2021;8:34. doi: 10.1038/s41438-021-00469-3. PubMed DOI PMC

Khan E.A., Aftab S., Hasanuzzaman M. Unraveling the importance of nitric oxide in plant-microbe interaction. Plant Stress. 2023;10:100258. doi: 10.1016/j.stress.2023.100258. DOI

Wang J., Hu M., Wang J., Qi J., Han Z., Wang G., Qi Y., Wang H.W., Zhou J.M., Chai J. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science. 2019;364:eaav5870. doi: 10.1126/science.aav5870. PubMed DOI

Ma S., Lapin D., Liu L., Sun Y., Song W., Zhang X., Logemann E., Yu D., Wang J., Jirschitzka J., et al. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science. 2020;370:eabe3069. doi: 10.1126/science.abe3069. PubMed DOI

Corpas F.J., Gonzalez-Gordo S., Palma J.M. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. J. Exp. Bot. 2021;72:830–847. doi: 10.1093/jxb/eraa440. PubMed DOI

Lee D., Lal N.K., Lin Z.-J.D., Ma S., Liu J., Castro B., Toruño T., Dinesh-Kumar S.P., Coaker G. Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD. Nat. Commun. 2020;11:1838. doi: 10.1038/s41467-020-15601-5. PubMed DOI PMC

Cui B., Pan Q., Cui W., Wang Y., Loake V.I.P., Yuan S., Liu F., Loake G.J. S-nitrosylation of a receptor-like cytoplasmic kinase regulates plant immunity. Sci. Adv. 2024;10:eadk3126. doi: 10.1126/sciadv.adk3126. PubMed DOI PMC

Thor K., Jiang S., Michard E., George J., Scherzer S., Huang S., Dindas J., Derbyshire P., Leitão N., DeFalco T.A., et al. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature. 2020;585:569–573. doi: 10.1038/s41586-020-2702-1. PubMed DOI PMC

Wang Q., Cang X., Yan H., Zhang Z., Li W., He J., Zhang M., Lou L., Wang R., Chang M. Activating plant immunity: The hidden dance of intracellular Ca2+ stores. New Phytol. 2024;242:2430–2439. doi: 10.1111/nph.19717. PubMed DOI

Yun B.-W., Feechan A., Yin M., Saidi N.B.B., le Bihan T., Yu M., Moore J.W., Kang J.G., Kwon E., Spoel S.H., et al. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature. 2011;478:264–268. doi: 10.1038/nature10427. PubMed DOI

Corpas F.J., Palma J.M. Assessing nitric oxide (NO) in higher plants: An outline. Nitrogen. 2020;1:12–20. doi: 10.3390/nitrogen1010003. DOI

Han Z., Xiong D., Schneiter R., Tian C. The function of plant PR1 and other members of the CAP protein superfamily in plant-pathogen interactions. Mol. Plant Pathol. 2023;24:651–668. doi: 10.1111/mpp.13320. PubMed DOI PMC

Mengel A., Ageeva A., Georgii E., Bernhardt J., Wu K., Durner J., Lindermayr C. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases. Plant Physiol. 2017;173:1434–1452. doi: 10.1104/pp.16.01734. PubMed DOI PMC

Guan Y., Gajewska J., Sobieszczuk-Nowicka E., Floryszak-Wieczorek J., Hartman S., Arasimowicz-Jelonek M. The effect of nitrosative stress on histone H3 and H4 acetylation in Phytophthora infestans life cycle. Plant Physiol. Biochem. 2024;216:109129. doi: 10.1016/j.plaphy.2024.109129. PubMed DOI

Courtois C., Besson A., Dahan J., Bourque S., Dobrowolska G., Pugin A., Wendehenne D. Nitric oxide signalling in plants: Interplays with Ca2+ and protein kinases. J. Exp. Bot. 2008;59:155–163. doi: 10.1093/jxb/erm197. PubMed DOI

Mulaudzi T., Ludidi N., Ruzvidzo O., Morse M., Hendricks N., Iwuoha E., Gehring C. Identification of a novel Arabidopsis thaliana nitric oxide-binding molecule with guanylate cyclase activity in vitro. FEBS Lett. 2011;585:2693–2697. doi: 10.1016/j.febslet.2011.07.023. PubMed DOI

Wendehenne D., Pugin A., Klessig D.F., Durner J. Nitric oxide: Comparative synthesis and signaling in animal and plant cells. Trends Plant Sci. 2001;6:177–183. doi: 10.1016/S1360-1385(01)01893-3. PubMed DOI

Liu R., Kang Y., Chen L. NO binds to the distal site of haem in the fully activated soluble guanylate cyclase. Nitric Oxide. 2023;134–135:17–22. doi: 10.1016/j.niox.2023.03.002. PubMed DOI

Gross I., Durner J. In Search of Enzymes with a Role in 3′, 5′-Cyclic Guanosine Monophosphate Metabolism in Plants. Front. Plant Sci. 2016;7:576. doi: 10.3389/fpls.2016.00576. PubMed DOI PMC

Rahman H., Wang X.-Y., Xu Y.-P., He Y.-H., Cai X.-Z. Characterization of tomato protein kinases embedding guanylate cyclase catalytic center motif. Sci. Rep. 2020;10:4078. doi: 10.1038/s41598-020-61000-7. PubMed DOI PMC

Sedlářová M., Binarová P., Lebeda A. Changes in microtubular alignment in Lactuca spp. (Asteraceae) epidermal cells during early stages of infection by Bremia lactucae (Peronosporaceae) Phyton-Ann. Rei Bot. 2001;41:21–33.

Hardham A.R. Microtubules and biotic interactions. Plant J. 2013;75:278–289. doi: 10.1111/tpj.12171. PubMed DOI

Li P., Day B. Battlefield cytoskeleton: Turning the tide on plant immunity. Mol. Plant-Microbe Interact. 2019;32:25–34. doi: 10.1094/MPMI-07-18-0195-FI. PubMed DOI PMC

Kumar S., Jeevaraj T., Yunus M.H., Chakraborty S., Chakraborty N. The plant cytoskeleton takes center stage in abiotic stress responses and resilience. Plant Cell Environ. 2023;46:5–22. doi: 10.1111/pce.14450. PubMed DOI

Blume Y.B., Krasylenko Y.A., Demchuk O.M., Yemets A.I. Tubulin tyrosine nitration regulates microtubule organization in plant cells. Front. Plant Sci. 2013;4:530. doi: 10.3389/fpls.2013.00530. PubMed DOI PMC

Aslan M., Ryan T.M., Townes T.M., Coward L., Kirk M.C., Barnes S., Alexander C.B., Rosenfeld S.S., Freeman B.A. Nitric Oxide-dependent Generation of Reactive Species in Sickle Cell Disease: Actin tyrosine nitration induces defective cytoskeletal polymerization. J. Biol. Chem. 2003;278:4194–4204. doi: 10.1074/jbc.M208916200. PubMed DOI

Leontovyčová H., Kalachova T., Janda M. Disrupted actin: A novel player in pathogen attack sensing? New Phytol. 2020;227:1605–1609. doi: 10.1111/nph.16584. PubMed DOI

Leontovyčová H., Kalachova T., Trdá L., Pospíchalová R., Lamparová L., Dobrev P.I., Malínská K., Burketová L., Valentová O., Janda M. Actin depolymerization is able to increase plant resistance against pathogens via activation of salicylic acid signalling pathway. Sci. Rep. 2019;9:10397. doi: 10.1038/s41598-019-46465-5. PubMed DOI PMC

Calabrese E.J., Agathokleous E. Nitric oxide, hormesis and plant biology. Sci. Total Environ. 2023;866:161299. doi: 10.1016/j.scitotenv.2022.161299. PubMed DOI

Krasuska U., Ciacka K., Andryka-Dudek P., Bogatek R., Gniazdowska A. “Nitrosative Door” in Seed Dormancy Alleviation and Germination. Signal. Commun. Plants. 2015;23:215–237. doi: 10.1007/978-3-319-10079-1_11. DOI

Kasten D., Mithöfer A., Georgii E., Lang H., Durner J., Gaupels F. Nitrite is the driver, phytohormones are modulators while NO and H2O2 act as promoters of NO2-induced cell death. J. Exp. Bot. 2016;67:6337–6349. doi: 10.1093/jxb/erw401. PubMed DOI

Kandhol N., Singh V.P., Pandey S., Sharma S., Zhao L., Corpas F.J., Chen Z.-H., White J.C., Tripathi D.K. Nanoscale materials and NO-ROS homeostasis in plants: Trilateral dynamics. Trends Plant Sci. 2024;29:1310–1318. doi: 10.1016/j.tplants.2024.06.009. PubMed DOI

Tan L., He C. Advances in inorganic-based colloidal nanovehicles functionalized for nitric oxide delivery. Colloids Surf. B Biointerfaces. 2021;199:111508. doi: 10.1016/j.colsurfb.2020.111508. PubMed DOI

do Carmo G.C., Iastrenski L.F., Debiasi T.V., da Silva R.C., Gomes D.G., Pelegrino M.T., Bianchini E., Stolf-Moreira R., Pimenta J.A., Seabra A.B., et al. Nanoencapsulation improves the protective effects of a nitric oxide donor on drought-stressed Heliocarpus popayanensis seedlings. Ecotoxicol. Environ. Saf. 2021;225:112713. doi: 10.1016/j.ecoenv.2021.112713. PubMed DOI

Gomes D.G., Debiasi T.V., Pelegrino M.T., Pereira R.M., Ondrasek G., Batista B.L., Seabra A.B., Oliveira H.C. Soil Treatment with Nitric Oxide-Releasing Chitosan Nanoparticles Protects the Root System and Promotes the Growth of Soybean Plants under Copper Stress. Plants. 2022;11:3245. doi: 10.3390/plants11233245. PubMed DOI PMC

Silveira N.M., Seabra A.B., Marcos F.C.C., Pelegrino M.T., Machado E.C., Ribeiro R.V. Encapsulation of S-nitrosoglutathione into chitosan nanoparticles improves drought tolerance of sugarcane plants. Nitric Oxide. 2019;84:38–44. doi: 10.1016/j.niox.2019.01.004. PubMed DOI

da Veiga J.C., Silveira N.M., Seabra A.B., Bron I.U. Exploring the power of nitric oxide and nanotechnology for prolonging postharvest shelf-life and enhancing fruit quality. Nitric Oxide. 2024;142:26–37. doi: 10.1016/j.niox.2023.11.002. PubMed DOI

da Veiga J.C., Silveira N.M., Seabra A.B., Pieretti J.C., Boza Y., Jacomino A.P., Filho J.C.Z., Campagnoli V.P., Cia P., Bron I.U. Spraying with encapsulated nitric oxide donor reduces weight loss and oxidative damage in papaya fruit. Nitric Oxide. 2024;150:37–46. doi: 10.1016/j.niox.2024.07.004. PubMed DOI

Lowry G.V., Giraldo J.P., Steinmetz N.F., Avellan A., Demirer G.S., Ristroph K.D., Wang G.J., Hendren C.O., Alabi C.A., Caparco A., et al. Towards realizing nano-enabled precision delivery in plants. Nat. Nanotechnol. 2024;19:1255–1269. doi: 10.1038/s41565-024-01667-5. PubMed DOI

Oliveira H.C., Seabra A.B., Kondak S., Adedokun O.P., Kolbert Z. Multilevel approach to plant-nanomaterial relationships: From cells to living ecosystems. J. Exp. Bot. 2023;74:3406–3424. doi: 10.1093/jxb/erad107. PubMed DOI PMC

Singh A., Rajput V.D., Varshney A., Ghazaryan K., Minkina T. Small Tech, Big Impact: Agri-nanotechnology Journey to Optimize Crop Protection and Production for Sustainable Agriculture. Plant Stress. 2023;10:100253. doi: 10.1016/j.stress.2023.100253. DOI

Wang H., Jafir M., Irfan M., Ahmad T., Zia-ur-Rehman M., Usman M., Rizwan M., Hamoud Y.A., Shaghaleh H. Emerging trends to replace pesticides with nanomaterials: Recent experiences and future perspectives for ecofriendly environment. J. Environ. Manag. 2024;360:121178. doi: 10.1016/j.jenvman.2024.121178. PubMed DOI

Prats E., Carver T.L., Mur L.A. Pathogen-derived nitric oxide influences formation of the appressorium infection structure in the phytopathogenic fungus Blumeria graminis. Res. Microbiol. 2008;159:476–480. doi: 10.1016/j.resmic.2008.04.001. PubMed DOI

Turrion-Gomez J.L., Benito E.P. Flux of nitric oxide between the necrotrophic pathogen Botrytis cinerea and the host plant. Mol. Plant Pathol. 2011;12:606–616. doi: 10.1111/j.1364-3703.2010.00695.x. PubMed DOI PMC

Samalova M., Johnson J., Illes M., Kelly S., Fricker M., Gurr S. Nitric oxide generated by the rice blast fungus Magnaporthe oryzae drives plant infection. New Phytol. 2013;197:207–222. doi: 10.1111/j.1469-8137.2012.04368.x. PubMed DOI

Sedlářová M., Kubienová L., Drábková Trojanová Z., Luhová L., Lebeda A., Petřivalský M. Chapter Thirteen—The Role of Nitric Oxide in Development and Pathogenesis of Biotrophic Phytopathogens—Downy and Powdery Mildews. Adv. Bot. Res. 2016;77:263–283. doi: 10.1016/bs.abr.2015.10.002. DOI

Sarkar A., Chakraborty N., Acharya K. Chitosan nanoparticles mitigate Alternaria leaf spot disease of chilli in nitric oxide dependent way. Plant Physiol. Biochem. 2022;180:64–73. doi: 10.1016/j.plaphy.2022.03.038. PubMed DOI

Zhong Y., Wu X., Zhang L., Zhang Y., Wei L., Liu Y. The roles of nitric oxide in improving postharvest fruits quality: Crosstalk with phytohormones. Food Chem. 2024;455:139977. doi: 10.1016/j.foodchem.2024.139977. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...