Progress in Plant Nitric Oxide Studies: Implications for Phytopathology and Plant Protection
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.01.01/00/22_008/0004581
ERDF Programme Johannes Amos Comenius
PubMed
40076711
PubMed Central
PMC11899914
DOI
10.3390/ijms26052087
PII: ijms26052087
Knihovny.cz E-zdroje
- Klíčová slova
- nanomaterials, nitric oxide, phytopathogens, plant immunity, stress signaling,
- MeSH
- nemoci rostlin * MeSH
- oxid dusnatý * metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostliny * metabolismus mikrobiologie MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- oxid dusnatý * MeSH
- regulátory růstu rostlin MeSH
Nitric oxide (NO) is a gaseous free radical known to modulate plant metabolism through crosstalk with phytohormones (especially ABA, SA, JA, and ethylene) and other signaling molecules (ROS, H2S, melatonin), and to regulate gene expression (by influencing DNA methylation and histone acetylation) as well as protein function through post-translational modifications (cysteine S-nitrosation, metal nitrosation, tyrosine nitration, nitroalkylation). Recently, NO has gained attention as a molecule promoting crop resistance to stress conditions. Herein, we review innovations from the NO field and nanotechnology on an up-to-date phytopathological background.
Zobrazit více v PubMed
Freh N., Gao J., Petersen M., Panstruga R. Plant autoimmunity-fresh insights into an old phenomenon. Plant Physiol. 2022;188:1419–1434. doi: 10.1093/plphys/kiab590. PubMed DOI PMC
Arasimowicz-Jelonek M., Floryszak-Wieczorek J., Suarez S., Doctorovich F., Sobieszczuk-Nowicka E., Bruce King S., Milczarek G., Rębiś T., Gajewska J., Jagodzik P., et al. Discovery of endogenous nitroxyl as a new redox player in Arabidopsis thaliana. Nat. Plants. 2023;9:36–44. doi: 10.1038/s41477-022-01301-z. PubMed DOI PMC
Kolbert Z., Barroso J.B., Boscari A., Corpas F.J., Gupta K.J., Hancock J.T., Lindermayr C., Palma J.M., Petřivalský M., Wendehenne D., et al. Interorgan, intraorgan and interplant communication mediated by nitric oxide and related species. New Phytol. 2024;244:786–797. doi: 10.1111/nph.20085. PubMed DOI
Zhang Y., Wang R., Wang X., Zhao C., Shen H., Yang L. Nitric Oxide Regulates Seed Germination by Integrating Multiple Signalling Pathways. Int. J. Mol. Sci. 2023;24:9052. doi: 10.3390/ijms24109052. PubMed DOI PMC
Kumari R., Kapoor P., Mir B.A., Singh M., Parrey Z.A., Rakhra G., Parihar P., Khan M.N., Rakhra G. Unlocking the versatility of nitric oxide in plants and insights into its molecular interplays under biotic and abiotic stress. Nitric Oxide. 2024;150:1–17. doi: 10.1016/j.niox.2024.07.002. PubMed DOI
Corpas F.J. NO and H2S Contribute to Crop Resilience against Atmospheric Stressors. Int. J. Mol. Sci. 2024;25:3509. doi: 10.3390/ijms25063509. PubMed DOI PMC
Freschi L. Nitric oxide and phytohormone interactions: Current status and perspectives. Front. Plant Sci. 2013;4:398. doi: 10.3389/fpls.2013.00398. PubMed DOI PMC
Simontacchi M., Galatro A., Ramos-Artuso F., Santa-María G.E. Plant Survival in a Changing Environment: The Role of Nitric Oxide in Plant Responses to Abiotic Stress. Front. Plant Sci. 2015;6:977. doi: 10.3389/fpls.2015.00977. PubMed DOI PMC
Graska J., Fidler J., Gietler M., Prabucka B., Nykiel M., Labudda M. Nitric Oxide in Plant Functioning: Metabolism, Signaling, and Responses to Infestation with Ecdysozoa Parasites. Biology. 2023;12:927. doi: 10.3390/biology12070927. PubMed DOI PMC
Khan M., Ali S., Al Azzawi T.N.I., Yun B.-W. Nitric Oxide Acts as a Key Signaling Molecule in Plant Development under Stressful Conditions. Int. J. Mol. Sci. 2023;24:4782. doi: 10.3390/ijms24054782. PubMed DOI PMC
Hussain A., Faheem B., Jang H.-S., Lee D.-S., Mun B.-G., Rolly N.K., Yun B.-W. Melatonin–Nitric Oxide Crosstalk in Plants and the Prospects of NOMela as a Nitric Oxide Donor. Int. J. Mol. Sci. 2024;25:8535. doi: 10.3390/ijms25158535. PubMed DOI PMC
Seabra A.B., Silveira N.M., Ribeiro R.V., Pieretti J.C., Barroso J.B., Corpas F.J., Palma J.M., Hancock J.T., Petřivalský M., Gupta K.J., et al. Nitric oxide-releasing nanomaterials: From basic research to potential biotechnological applications in agriculture. New Phytol. 2022;234:1119–1125. doi: 10.1111/nph.18073. PubMed DOI
Stamler J.S., Singel D.J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992;258:1898–1902. doi: 10.1126/science.1281928. PubMed DOI
Thomas D.D. Breathing new life into nitric oxide signaling: A brief overview of the interplay between oxygen and nitric oxide. Redox Biol. 2015;5:225–233. doi: 10.1016/j.redox.2015.05.002. PubMed DOI PMC
Mur L.A., Mandon J., Persijn S., Cristescu S.M., Moshkov I.E., Novikova G.V., Hall M.A., Harren F.J.M., Hebelstrup K.H., Gupta K.J. Nitric oxide in plants: An assessment of the current state of knowledge. AoB Plants. 2013;5:pls052. doi: 10.1093/aobpla/pls052. PubMed DOI PMC
Allagulova C.R., Lubyanova A.R., Avalbaev A.M. Multiple Ways of Nitric Oxide Production in Plants and Its Functional Activity under Abiotic Stress Conditions. Int. J. Mol. Sci. 2023;24:11637. doi: 10.3390/ijms241411637. PubMed DOI PMC
Rockel P., Strube F., Rockel A., Wildt J., Kaiser W.M. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J. Exp. Bot. 2002;53:103–110. doi: 10.1093/jexbot/53.366.103. PubMed DOI
Planchet E., Kaiser W.M. Nitric oxide production in plants. Plant Signal. Behav. 2006;2:46–51. doi: 10.4161/psb.1.2.2435. PubMed DOI PMC
Kolbert Z., Ortega L., Erdei L. Involvement of nitrate reductase (NR) in osmotic stress-induced NO generation of Arabidopsis thaliana L. roots. J. Plant Physiol. 2010;167:77–80. doi: 10.1016/j.jplph.2009.08.013. PubMed DOI
Lombardo M.C., Lamattina L. Nitric oxide is essential for vesicle formation and trafficking in Arabidopsis root hair growth. J. Exp. Bot. 2012;63:4875–4885. doi: 10.1093/jxb/ers166. PubMed DOI
Mohn M.A., Thaqi B., Fischer-Schrader K. Isoform-specific NO synthesis by Arabidopsis thaliana nitrate reductase. Plants. 2019;8:67. doi: 10.3390/plants8030067. PubMed DOI PMC
Reda M., Kabała K., Stanisławski J., Szczepski K., Janicka M. Regulation of NO-generating system activity in cucumber root response to cold. Int. J. Mol. Sci. 2025;26:1599. doi: 10.3390/ijms26041599. PubMed DOI PMC
Stöhr C., Stremlau S. Formation and possible roles of nitric oxide in plant roots. J. Exp. Bot. 2006;57:463–470. doi: 10.1093/jxb/erj058. PubMed DOI
Chamizo-Ampudia A., Sanz-Luque E., Llamas Á., Ocaña-Calahorro F., Mariscal V., Carreras A., Barroso J.B., Galván A., Fernández E. A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas. Plant Cell Environ. 2016;39:2097–2107. doi: 10.1111/pce.12739. PubMed DOI
Maiber L., Koprivova A., Bender D., Kopriva S., Fischer-Schrader K. Characterization of the amidoxime reducing components ARC1 and ARC2 from Arabidopsis thaliana. FEBS J. 2022;289:5656–5669. doi: 10.1111/febs.16450. PubMed DOI
Millar T.M., Stevens C.R., Benjamin N., Eisenthal R., Harrison R., Blake D.R. Xanthine oxidoreductase catalyses the reduction of nitrates and nitrite to nitric oxide under hypoxic conditions. FEBS Lett. 1998;427:225–228. doi: 10.1016/S0014-5793(98)00430-X. PubMed DOI
Barroso J.B., Corpas F.J., Carreras A., Sandalio L.M., Valderrama R., Palma J., Lupiáñez J.A., del Rıo L.A. Localization of nitric-oxide synthase in plant peroxisomes. J. Biol. Chem. 1999;274:36729–36733. doi: 10.1074/jbc.274.51.36729. PubMed DOI
Kumari A., Kaladhar V.C., Yadav N., Singh P., Reddy K., Gupta K.J. Nitric oxide regulates mitochondrial biogenesis in plants. Plant Cell Environ. 2023;46:2492–2506. doi: 10.1111/pce.14637. PubMed DOI
Stöhr C., Ullrich W.R. Generation and possible roles of NO in plant roots and their apoplastic space. J. Exp. Bot. 2002;53:2293–2303. doi: 10.1093/jxb/erf110. PubMed DOI
Bethke P.C., Badger M.R., Jones R.L. Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell. 2004;16:332–341. doi: 10.1105/tpc.017822. PubMed DOI PMC
Cooney R.V., Harwood P.J., Custer L.J., Franke A.A. Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids. Environ. Health Perspect. 1994;102:460–462. doi: 10.1289/ehp.94102460. PubMed DOI PMC
Jeandroz S., Wipf D., Stuehr D.J., Lamattina L., Melkonian M., Tian Z., Zhu Y., Carpenter E.J., Wong G.K.-S., Wendehenne D. Occurrence, structure, and evolution of nitric oxide synthase–like proteins in the plant kingdom. Sci. Signal. 2016;9:re2. doi: 10.1126/scisignal.aad4403. PubMed DOI
Foresi N., Correa-Aragunde N., Parisi G., Calo G., Salerno G., Lamattina L. Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell. 2010;22:3816–3830. doi: 10.1105/tpc.109.073510. PubMed DOI PMC
Correa-Aragunde N., Foresi N., Del Castello F., Lamattina L. A singular nitric oxide synthase with a globin domain found in Synechococcus PCC 7335 mobilizes N from arginine to nitrate. Sci. Rep. 2018;8:12505. doi: 10.1038/s41598-018-30889-6. PubMed DOI PMC
Rümer S., Gupta K.J., Kaiser W.M. Plant cells oxidize hydroxylamines to NO. J. Exp. Bot. 2009;60:2065–2072. doi: 10.1093/jxb/erp077. PubMed DOI PMC
Wimalasekera R., Tebartz F., Scherer G.F. Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci. 2011;181:593–603. doi: 10.1016/j.plantsci.2011.04.002. PubMed DOI
Groß F., Rudolf E.E., Thiele B., Durner J., Astier J. Copper amine oxidase 8 regulates arginine-dependent nitric oxide production in Arabidopsis thaliana. J. Exp. Bot. 2017;68:2149–2162. doi: 10.1093/jxb/erx105. PubMed DOI PMC
López-Gómez P., Buezo J., Urra M., Cornejo A., Esteban R., de Los Reyes J.F., Urarte E., Rodríguez-Dobreva E., Chamizo-Ampudia A., Eguaras A., et al. A new oxidative pathway of nitric oxide production from oximes in plants. Mol. Plant. 2024;17:178–198. doi: 10.1016/j.molp.2023.12.009. PubMed DOI
Liao W., Igamberdiev A.U., Palma J.M. Advances in Nitric Oxide Signalling and Metabolism in Plants. Int. J. Mol. Sci. 2023;24:6397. doi: 10.3390/ijms24076397. PubMed DOI PMC
Liu Y., Liu Z., Wu X., Fang H., Huang D., Pan X., Liao W. Role of protein S-nitrosylation in plant growth and development. Plant Cell Rep. 2024;43:204. doi: 10.1007/s00299-024-03290-z. PubMed DOI
Corpas F.J., González-Gordo S., Palma J.M. Protein nitration: A connecting bridge between nitric oxide (NO) and plant stress. Plant Stress. 2021;2:100026. doi: 10.1016/j.stress.2021.100026. DOI
León J. Protein tyrosine nitration in plant nitric oxide signaling. Front. Plant Sci. 2022;13:859374. doi: 10.3389/fpls.2022.859374. PubMed DOI PMC
Bartesaghi S., Ferrer-Sueta G., Peluffo G., Valez V., Zhang H., Kalyanaraman B., Radi R. Protein tyrosine nitration in hydrophilic and hydrophobic environments. Amino Acids. 2007;32:501–515. doi: 10.1007/s00726-006-0425-8. PubMed DOI
Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem. Biophys. Res. Commun. 2003;305:776–783. doi: 10.1016/S0006-291X(03)00814-3. PubMed DOI
Begara-Morales J.C., Sánchez-Calvo B., Chaki M., Valderrama R., Mata-Pérez C., López-Jaramillo J., Padilla M.N., Carreras A., Corpas F.J., Barroso J.B. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J. Exp. Bot. 2014;65:527–538. doi: 10.1093/jxb/ert396. PubMed DOI PMC
Begara-Morales J.C., Sánchez-Calvo B., Chaki M., Mata-Pérez C., Valderrama R., Padilla M.N., López-Jaramillo J., Luque F., Corpas F.J., Barroso J.B. Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. J. Exp. Bot. 2015;66:5983–5996. doi: 10.1093/jxb/erv306. PubMed DOI PMC
Holzmeister C., Gaupels F., Geerlof A., Sarioglu H., Sattler M., Durner J., Lindermayr C. Differential inhibition of Arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration. J. Exp. Bot. 2015;66:989–999. doi: 10.1093/jxb/eru458. PubMed DOI PMC
Boutin C., Clément C., Rivoal J. Post-Translational Modifications to Cysteine Residues in Plant Proteins and Their Impact on the Regulation of Metabolism and Signal Transduction. Int. J. Mol. Sci. 2024;25:9845. doi: 10.3390/ijms25189845. PubMed DOI PMC
Lindermayr C., Saalbach G., Durner J. Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol. 2005;137:921–930. doi: 10.1104/pp.104.058719. PubMed DOI PMC
Kovacs I., Ageeva A., König E.-E., Lindermayr C. Chapter Two—S-Nitrosylation of Nuclear Proteins: New Pathways in Regulation of Gene Expression. Adv. Bot. Res. 2016;77:15–39. doi: 10.1016/bs.abr.2015.10.003. DOI
Ageeva-Kieferle A., Rudolf E.E., Lindermayr C. Redox-Dependent Chromatin Remodeling: A New Function of Nitric Oxide as Architect of Chromatin Structure in Plants. Front. Plant Sci. 2019;10:625. doi: 10.3389/fpls.2019.00625. PubMed DOI PMC
Borrowman S., Kapuganti J.G., Loake G.J. Expanding roles for S-nitrosylation in the regulation of plant immunity. Free Radic. Biol. Med. 2023;194:357–368. doi: 10.1016/j.freeradbiomed.2022.12.009. PubMed DOI
González-Gordo S., López-Jaramillo J., Palma J.M., Corpas F.J. Soybean (Glycine max L.) Lipoxygenase 1 (LOX 1) is modulated by nitric oxide and hydrogen sulfide: An in vitro approach. Int. J. Mol. Sci. 2023;24:8001. doi: 10.3390/ijms24098001. PubMed DOI PMC
Durner J., Gow A.J., Stamler J.S., Glazebrook J. Ancient origins of nitric oxide signaling in biological systems. Proc. Natl. Acad. Sci. USA. 1999;96:14206–14207. doi: 10.1073/pnas.96.25.14206. PubMed DOI PMC
Hess D.T., Matsumoto A., Kim S.O., Marshall H.E., Stamler J.S. Protein S-nitrosylation: Purview and parameters. Nat. Rev. Mol. Cell Biol. 2005;6:150–166. doi: 10.1038/nrm1569. PubMed DOI
Liu L., Hausladen A., Zeng M., Que L., Heitman J., Stamler J.S. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature. 2001;410:490–494. doi: 10.1038/35068596. PubMed DOI
Jahnová J., Luhová L., Petřivalský M. S-nitrosoglutathione reductase—The master regulator of protein S-nitrosation in plant NO signaling. Plants. 2019;8:48. doi: 10.3390/plants8020048. PubMed DOI PMC
Kneeshaw S., Gelineau S., Tada Y., Loake G.J., Spoel S.H. Selective protein denitrosylation activity of thioredoxin-h5 modulates plant immunity. Mol. Cell. 2014;56:153–162. doi: 10.1016/j.molcel.2014.08.003. PubMed DOI
Jedelská T., Luhová L., Petřivalský M. Thioredoxins: Emerging players in the regulation of protein S-nitrosation in plants. Plants. 2020;9:1426. doi: 10.3390/plants9111426. PubMed DOI PMC
Treffon P., Vierling E. Focus on nitric oxide homeostasis: Direct and indirect enzymatic regulation of protein denitrosation reactions in plants. Antioxidants. 2022;11:1411. doi: 10.3390/antiox11071411. PubMed DOI PMC
Treffon P., Rossi J., Gabellini G., Trost P., Zaffagnini M., Vierling E. Quantitative proteome profiling of a S-nitrosoglutathione reductase (GSNOR) null mutant reveals a new class of enzymes involved in nitric oxide homeostasis in plants. Front. Plant Sci. 2021;12:787435. doi: 10.3389/fpls.2021.787435. PubMed DOI PMC
Stomberski C.T., Anand P., Venetos N.M., Hausladen A., Zhou H.L., Premont R.T., Stamler J.S. AKR1A1 is a novel mammalian S-nitroso-glutathione reductase. J. Biol. Chem. 2019;294:18285–18293. doi: 10.1074/jbc.RA119.011067. PubMed DOI PMC
Krishnamurthy P., Pothiraj R., Suthanthiram B., Somasundaram S.M., Subbaraya U. Phylogenomic classification and synteny network analyses deciphered the evolutionary landscape of aldo–keto reductase (AKR) gene superfamily in the plant kingdom. Gene. 2022;816:146169. doi: 10.1016/j.gene.2021.146169. PubMed DOI
Yu J., Sun H., Zhang J., Hou Y., Zhang T., Kang J., Wang Z., Yang Q., Long R. Analysis of aldo–keto reductase gene family and their responses to salt, drought, and abscisic acid stresses in Medicago truncatula. Int. J. Mol. Sci. 2020;21:754. doi: 10.3390/ijms21030754. PubMed DOI PMC
Niranjan V., Uttarkar A., Dadi S., Dawane A., Vargheese A., Kumar J.H.G., Makarla U., Ramu V.S. Stress-induced detoxification enzymes in rice have broad substrate affinity. ACS Omega. 2021;6:3399–3410. doi: 10.1021/acsomega.0c05961. PubMed DOI PMC
Javidi M.R., Maali-Amiri R., Poormazaheri H., Niaraki M.S., Kariman K. Cold stress-induced changes in metabolism of carbonyl compounds and membrane fatty acid composition in chickpea. Plant Physiol. Biochem. 2022;192:10–19. doi: 10.1016/j.plaphy.2022.09.031. PubMed DOI
Lamba K., Kumar M., Singh V., Chaudhary L., Gupta V. Transcriptome analysis for heat stress related genes in wheat genotype WH-730. Cereal Res. Commun. 2024:1–13. doi: 10.1007/s42976-024-00595-3. DOI
Guan X., Yu L., Wang A. Genome-Wide Identification and Characterization of Aldo-Keto Reductase (AKR) Gene Family in Response to Abiotic Stresses in Solanum lycopersicum. Int. J. Mol. Sci. 2023;24:1272. doi: 10.3390/ijms24021272. PubMed DOI PMC
Yadav S., Preethi V., Dadi S., Seth C.S., Chandrashekar B.K., Vemanna R.S. Small chemical molecules regulating the phytohormone signalling alter the plant’s physiological processes to improve stress adaptation, growth and productivity. Physiol. Mol. Biol. Plants. 2024;30:1593–1610. doi: 10.1007/s12298-024-01514-w. PubMed DOI PMC
Fujii J., Homma T., Miyata S., Takahashi M. Pleiotropic actions of aldehyde reductase (AKR1A) Metabolites. 2021;11:343. doi: 10.3390/metabo11060343. PubMed DOI PMC
Treffon P., Vierling E. Disrupted nitric oxide homeostasis impacts fertility through multiple processes including protein quality control. Plant Physiol. 2025;197:kiae609. doi: 10.1093/plphys/kiae609. PubMed DOI
Hancock J.T., Veal D. Nitric oxide, other reactive signalling compounds, redox, and reductive stress. J. Exp. Bot. 2021;72:819–829. doi: 10.1093/jxb/eraa331. PubMed DOI
Gupta K.J., Hancock J.T., Petřivalský M., Kolbert Z., Lindermayr C., Durner J., Barroso J.B., Palma J.M., Brouquisse R., Wendehenne D., et al. Recommendations on terminology and experimental best practice associated with plant nitric oxide research. New Phytol. 2020;225:1828–1834. doi: 10.1111/nph.16157. PubMed DOI
Broniowska K.A., Diers A.R., Hogg N. S-nitrosoglutathione. Biochim. Biophys. Acta BBA-Gen. Subj. 2013;1830:3173–3181. doi: 10.1016/j.bbagen.2013.02.004. PubMed DOI PMC
Foyer C.H., Noctor G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 2011;155:2–18. doi: 10.1104/pp.110.167569. PubMed DOI PMC
Noctor G., Cohen M., Trémulot L., Châtel-Innocenti G., Van Breusegem F., Mhamdi A. Glutathione: A key modulator of plant defence and metabolism through multiple mechanisms. J. Exp. Bot. 2024;75:erae194. doi: 10.1093/jxb/erae194. PubMed DOI
Di Fino L., Arruebarrena Di Palma A., Perk E.A., García-Mata C., Schopfer F.J., Laxalt A.M. Nitro-fatty acids: Electrophilic signaling molecules in plant physiology. Planta. 2021;254:120. doi: 10.1007/s00425-021-03777-z. PubMed DOI PMC
Jouhet J., Alves E., Boutté Y., Darnet S., Domergue F., Durand T., Fischer P., Fouillen L., Grube M., Joubès J., et al. Plant and algal lipidomes: Analysis, composition, and their societal significance. Prog. Lipid Res. 2024;96:101290. doi: 10.1016/j.plipres.2024.101290. PubMed DOI
Mata-Pérez C., Sánchez-Calvo B., Padilla M.N., Begara-Morales J.C., Luque F., Melguizo M., Jiménez-Ruiz J., Fierro-Risco J., Peñas-Sanjuán A., Valderrama R., et al. Nitro-Fatty Acids in Plant Signaling: Nitro-Linolenic Acid Induces the Molecular Chaperone Network in Arabidopsis. Plant Physiol. 2016;170:686–701. doi: 10.1104/pp.15.01671. PubMed DOI PMC
Mata-Pérez C., Sánchez-Calvo B., Padilla M.N., Begara-Morales J.C., Valderrama R., Corpas F.J., Barroso J.B. Nitro-fatty acids in plant signaling: New key mediators of nitric oxide metabolism. Redox Biol. 2017;11:554–561. doi: 10.1016/j.redox.2017.01.002. PubMed DOI PMC
Vollár M., Feigl G., Oláh D., Horváth A., Molnár Á., Kúsz N., Ördög A., Csupor D., Kolbert Z. Nitro-Oleic Acid in Seeds and Differently Developed Seedlings of Brassica napus L. Plants. 2020;9:406. doi: 10.3390/plants9030406. PubMed DOI PMC
Begara-Morales J.C., Mata-Pérez C., Padilla M.N., Chaki M., Valderrama R., Aranda-Caño L., Barroso J.B. Role of electrophilic nitrated fatty acids during development and response to abiotic stress processes in plants. J. Exp. Bot. 2021;72:917–927. doi: 10.1093/jxb/eraa517. PubMed DOI
Aranda-Caño L., Valderrama R., Chaki M., Begara-Morales J.C., Melguizo M., Barroso J.B. Nitrated fatty-acids distribution in storage biomolecules during Arabidopsis thaliana development. Antioxidants. 2022;11:1869. doi: 10.3390/antiox11101869. PubMed DOI PMC
Delledonne M., Xia Y., Dixon R., Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature. 1998;394:585–588. doi: 10.1038/29087. PubMed DOI
Arasimowicz M., Floryszak-Wieczorek J. Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci. 2007;172:876–887. doi: 10.1016/j.plantsci.2007.02.005. DOI
Scheler C., Durner J., Astier J. Nitric oxide and reactive oxygen species in plant biotic interactions. Curr. Opin. Plant Biol. 2013;16:534–539. doi: 10.1016/j.pbi.2013.06.020. PubMed DOI
Sytykiewicz H., Czerniewicz P., Ruszczyńska M., Kmieć K. The Interplay of Nitric Oxide and Nitrosative Modifications in Maize: Implications for Aphid Herbivory and Drought Stress. Int. J. Mol. Sci. 2024;25:11280. doi: 10.3390/ijms252011280. PubMed DOI PMC
Du B., Haensch R., Alfarraj S., Rennenberg H. Strategies of plants to overcome abiotic and biotic stresses. Biol. Rev. 2024;99:1524–1536. doi: 10.1111/brv.13079. PubMed DOI
Jones J.D.G., Dangl J.L. The plant immune system. Nature. 2006;444:323–329. doi: 10.1038/nature05286. PubMed DOI
Ngou B.P.M., Ding P., Jones J.D.G. Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell. 2022;34:1447–1478. doi: 10.1093/plcell/koac041. PubMed DOI PMC
Zhang L., Hua C., Janocha D., Fliegmann J., Nürnberger T. Plant cell surface immune receptors—Novel insights into function and evolution. Curr. Opin. Plant Biol. 2023;74:102384. doi: 10.1016/j.pbi.2023.102384. PubMed DOI
Duggan C., Moratto E., Savage Z., Hamilton E., Adachi H., Wu C.H., Leary A.Y., Tumtas Y., Rothery S.M., Maqbool A., et al. Dynamic localization of a helper NLR at the plant-pathogen interface underpins pathogen recognition. Proc. Natl. Acad. Sci. USA. 2021;118:e2104997118. doi: 10.1073/pnas.2104997118. PubMed DOI PMC
Waheed A., Haxim Y., Islam W., Kahar G., Liu X., Zhang D. Role of pathogen’s effectors in understanding host-pathogen interaction. Biochim. Biophys. Acta BBA-Mol. Cell Res. 2022;1869:119347. doi: 10.1016/j.bbamcr.2022.119347. PubMed DOI
Locci F., Parker J.E. Plant NLR immunity activation and execution: A biochemical perspective. Open Biol. 2024;14:230387. doi: 10.1098/rsob.230387. PubMed DOI PMC
Ngou B.P.M., Ahn H.K., Ding P., Jones J.D.G. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature. 2021;592:110–115. doi: 10.1038/s41586-021-03315-7. PubMed DOI
Yuan M., Jiang Z., Bi G., Nomura K., Liu M., Wang Y., Cai B., Zhou J.-M., He S.J., Xin X.-F. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature. 2021;592:105–109. doi: 10.1038/s41586-021-03316-6. PubMed DOI PMC
Yu N.-N., Park G. Nitric Oxide in Fungi: Production and Function. J. Fungi. 2024;10:155. doi: 10.3390/jof10020155. PubMed DOI PMC
Harris J.M., Balint-Kurti P., Bede J.C., Day B., Gold S., Goss E.M., Grenville-Briggs L.J., Jones K.M., Wang A., Wang Y., et al. What are the Top 10 Unanswered Questions in Molecular Plant-Microbe Interactions? Mol. Plant-Microbe Interact. 2020;33:1354–1365. doi: 10.1094/MPMI-08-20-0229-CR. PubMed DOI
Tsai H.-H., Wang J., Geldner N., Zhou F. Spatiotemporal control of root immune responses during microbial colonization. Curr. Opin. Plant Biol. 2023;74:102369. doi: 10.1016/j.pbi.2023.102369. PubMed DOI
Chowdhury S., Basu A., Kundu S. Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Sci. Rep. 2017;7:17251. doi: 10.1038/s41598-017-17248-7. PubMed DOI PMC
Zhou J.-M., Zhang Y. Plant immunity: Danger perception and signaling. Cell. 2020;181:978–989. doi: 10.1016/j.cell.2020.04.028. PubMed DOI
Wan W.-L., Kim S.-T., Castel B., Charoennit N., Chae E. Genetics of autoimmunity in plants: An evolutionary genetics perspective. New Phytol. 2021;229:1215–1233. doi: 10.1111/nph.16947. PubMed DOI
Thoms D., Liang Y., Haney C.H. Maintaining symbiotic homeostasis: How do plants engage with beneficial microorganisms while at the same time restricting pathogens? Mol. Plant-Microbe Interact. 2021;34:462–469. doi: 10.1094/MPMI-11-20-0318-FI. PubMed DOI
Shah S., Chen C., Sun Y., Wang D., Nawaz T., El-Kahtany K., Fahad S. Mechanisms of nitric oxide involvement in plant-microbe interaction and its enhancement of stress resistance. Plant Stress. 2023;10:100191. doi: 10.1016/j.stress.2023.100191. DOI
Piterková J., Petřivalský M., Luhová L., Mieslerová B., Sedlářová M., Lebeda A. Local and systemic production of nitric oxide in tomato responses to powdery mildew infection. Mol. Plant Pathol. 2009;10:501–513. doi: 10.1111/j.1364-3703.2009.00551.x. PubMed DOI PMC
Jedelská T., Sedlářová M., Lochman J., Činčalová L., Luhová L., Petřivalský M. Protein S-nitrosation differentially modulates tomato responses to infection by hemi-biotrophic oomycetes of Phytophthora spp. Hortic. Res. 2021;8:34. doi: 10.1038/s41438-021-00469-3. PubMed DOI PMC
Khan E.A., Aftab S., Hasanuzzaman M. Unraveling the importance of nitric oxide in plant-microbe interaction. Plant Stress. 2023;10:100258. doi: 10.1016/j.stress.2023.100258. DOI
Wang J., Hu M., Wang J., Qi J., Han Z., Wang G., Qi Y., Wang H.W., Zhou J.M., Chai J. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science. 2019;364:eaav5870. doi: 10.1126/science.aav5870. PubMed DOI
Ma S., Lapin D., Liu L., Sun Y., Song W., Zhang X., Logemann E., Yu D., Wang J., Jirschitzka J., et al. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science. 2020;370:eabe3069. doi: 10.1126/science.abe3069. PubMed DOI
Corpas F.J., Gonzalez-Gordo S., Palma J.M. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. J. Exp. Bot. 2021;72:830–847. doi: 10.1093/jxb/eraa440. PubMed DOI
Lee D., Lal N.K., Lin Z.-J.D., Ma S., Liu J., Castro B., Toruño T., Dinesh-Kumar S.P., Coaker G. Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD. Nat. Commun. 2020;11:1838. doi: 10.1038/s41467-020-15601-5. PubMed DOI PMC
Cui B., Pan Q., Cui W., Wang Y., Loake V.I.P., Yuan S., Liu F., Loake G.J. S-nitrosylation of a receptor-like cytoplasmic kinase regulates plant immunity. Sci. Adv. 2024;10:eadk3126. doi: 10.1126/sciadv.adk3126. PubMed DOI PMC
Thor K., Jiang S., Michard E., George J., Scherzer S., Huang S., Dindas J., Derbyshire P., Leitão N., DeFalco T.A., et al. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature. 2020;585:569–573. doi: 10.1038/s41586-020-2702-1. PubMed DOI PMC
Wang Q., Cang X., Yan H., Zhang Z., Li W., He J., Zhang M., Lou L., Wang R., Chang M. Activating plant immunity: The hidden dance of intracellular Ca2+ stores. New Phytol. 2024;242:2430–2439. doi: 10.1111/nph.19717. PubMed DOI
Yun B.-W., Feechan A., Yin M., Saidi N.B.B., le Bihan T., Yu M., Moore J.W., Kang J.G., Kwon E., Spoel S.H., et al. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature. 2011;478:264–268. doi: 10.1038/nature10427. PubMed DOI
Corpas F.J., Palma J.M. Assessing nitric oxide (NO) in higher plants: An outline. Nitrogen. 2020;1:12–20. doi: 10.3390/nitrogen1010003. DOI
Han Z., Xiong D., Schneiter R., Tian C. The function of plant PR1 and other members of the CAP protein superfamily in plant-pathogen interactions. Mol. Plant Pathol. 2023;24:651–668. doi: 10.1111/mpp.13320. PubMed DOI PMC
Mengel A., Ageeva A., Georgii E., Bernhardt J., Wu K., Durner J., Lindermayr C. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases. Plant Physiol. 2017;173:1434–1452. doi: 10.1104/pp.16.01734. PubMed DOI PMC
Guan Y., Gajewska J., Sobieszczuk-Nowicka E., Floryszak-Wieczorek J., Hartman S., Arasimowicz-Jelonek M. The effect of nitrosative stress on histone H3 and H4 acetylation in Phytophthora infestans life cycle. Plant Physiol. Biochem. 2024;216:109129. doi: 10.1016/j.plaphy.2024.109129. PubMed DOI
Courtois C., Besson A., Dahan J., Bourque S., Dobrowolska G., Pugin A., Wendehenne D. Nitric oxide signalling in plants: Interplays with Ca2+ and protein kinases. J. Exp. Bot. 2008;59:155–163. doi: 10.1093/jxb/erm197. PubMed DOI
Mulaudzi T., Ludidi N., Ruzvidzo O., Morse M., Hendricks N., Iwuoha E., Gehring C. Identification of a novel Arabidopsis thaliana nitric oxide-binding molecule with guanylate cyclase activity in vitro. FEBS Lett. 2011;585:2693–2697. doi: 10.1016/j.febslet.2011.07.023. PubMed DOI
Wendehenne D., Pugin A., Klessig D.F., Durner J. Nitric oxide: Comparative synthesis and signaling in animal and plant cells. Trends Plant Sci. 2001;6:177–183. doi: 10.1016/S1360-1385(01)01893-3. PubMed DOI
Liu R., Kang Y., Chen L. NO binds to the distal site of haem in the fully activated soluble guanylate cyclase. Nitric Oxide. 2023;134–135:17–22. doi: 10.1016/j.niox.2023.03.002. PubMed DOI
Gross I., Durner J. In Search of Enzymes with a Role in 3′, 5′-Cyclic Guanosine Monophosphate Metabolism in Plants. Front. Plant Sci. 2016;7:576. doi: 10.3389/fpls.2016.00576. PubMed DOI PMC
Rahman H., Wang X.-Y., Xu Y.-P., He Y.-H., Cai X.-Z. Characterization of tomato protein kinases embedding guanylate cyclase catalytic center motif. Sci. Rep. 2020;10:4078. doi: 10.1038/s41598-020-61000-7. PubMed DOI PMC
Sedlářová M., Binarová P., Lebeda A. Changes in microtubular alignment in Lactuca spp. (Asteraceae) epidermal cells during early stages of infection by Bremia lactucae (Peronosporaceae) Phyton-Ann. Rei Bot. 2001;41:21–33.
Hardham A.R. Microtubules and biotic interactions. Plant J. 2013;75:278–289. doi: 10.1111/tpj.12171. PubMed DOI
Li P., Day B. Battlefield cytoskeleton: Turning the tide on plant immunity. Mol. Plant-Microbe Interact. 2019;32:25–34. doi: 10.1094/MPMI-07-18-0195-FI. PubMed DOI PMC
Kumar S., Jeevaraj T., Yunus M.H., Chakraborty S., Chakraborty N. The plant cytoskeleton takes center stage in abiotic stress responses and resilience. Plant Cell Environ. 2023;46:5–22. doi: 10.1111/pce.14450. PubMed DOI
Blume Y.B., Krasylenko Y.A., Demchuk O.M., Yemets A.I. Tubulin tyrosine nitration regulates microtubule organization in plant cells. Front. Plant Sci. 2013;4:530. doi: 10.3389/fpls.2013.00530. PubMed DOI PMC
Aslan M., Ryan T.M., Townes T.M., Coward L., Kirk M.C., Barnes S., Alexander C.B., Rosenfeld S.S., Freeman B.A. Nitric Oxide-dependent Generation of Reactive Species in Sickle Cell Disease: Actin tyrosine nitration induces defective cytoskeletal polymerization. J. Biol. Chem. 2003;278:4194–4204. doi: 10.1074/jbc.M208916200. PubMed DOI
Leontovyčová H., Kalachova T., Janda M. Disrupted actin: A novel player in pathogen attack sensing? New Phytol. 2020;227:1605–1609. doi: 10.1111/nph.16584. PubMed DOI
Leontovyčová H., Kalachova T., Trdá L., Pospíchalová R., Lamparová L., Dobrev P.I., Malínská K., Burketová L., Valentová O., Janda M. Actin depolymerization is able to increase plant resistance against pathogens via activation of salicylic acid signalling pathway. Sci. Rep. 2019;9:10397. doi: 10.1038/s41598-019-46465-5. PubMed DOI PMC
Calabrese E.J., Agathokleous E. Nitric oxide, hormesis and plant biology. Sci. Total Environ. 2023;866:161299. doi: 10.1016/j.scitotenv.2022.161299. PubMed DOI
Krasuska U., Ciacka K., Andryka-Dudek P., Bogatek R., Gniazdowska A. “Nitrosative Door” in Seed Dormancy Alleviation and Germination. Signal. Commun. Plants. 2015;23:215–237. doi: 10.1007/978-3-319-10079-1_11. DOI
Kasten D., Mithöfer A., Georgii E., Lang H., Durner J., Gaupels F. Nitrite is the driver, phytohormones are modulators while NO and H2O2 act as promoters of NO2-induced cell death. J. Exp. Bot. 2016;67:6337–6349. doi: 10.1093/jxb/erw401. PubMed DOI
Kandhol N., Singh V.P., Pandey S., Sharma S., Zhao L., Corpas F.J., Chen Z.-H., White J.C., Tripathi D.K. Nanoscale materials and NO-ROS homeostasis in plants: Trilateral dynamics. Trends Plant Sci. 2024;29:1310–1318. doi: 10.1016/j.tplants.2024.06.009. PubMed DOI
Tan L., He C. Advances in inorganic-based colloidal nanovehicles functionalized for nitric oxide delivery. Colloids Surf. B Biointerfaces. 2021;199:111508. doi: 10.1016/j.colsurfb.2020.111508. PubMed DOI
do Carmo G.C., Iastrenski L.F., Debiasi T.V., da Silva R.C., Gomes D.G., Pelegrino M.T., Bianchini E., Stolf-Moreira R., Pimenta J.A., Seabra A.B., et al. Nanoencapsulation improves the protective effects of a nitric oxide donor on drought-stressed Heliocarpus popayanensis seedlings. Ecotoxicol. Environ. Saf. 2021;225:112713. doi: 10.1016/j.ecoenv.2021.112713. PubMed DOI
Gomes D.G., Debiasi T.V., Pelegrino M.T., Pereira R.M., Ondrasek G., Batista B.L., Seabra A.B., Oliveira H.C. Soil Treatment with Nitric Oxide-Releasing Chitosan Nanoparticles Protects the Root System and Promotes the Growth of Soybean Plants under Copper Stress. Plants. 2022;11:3245. doi: 10.3390/plants11233245. PubMed DOI PMC
Silveira N.M., Seabra A.B., Marcos F.C.C., Pelegrino M.T., Machado E.C., Ribeiro R.V. Encapsulation of S-nitrosoglutathione into chitosan nanoparticles improves drought tolerance of sugarcane plants. Nitric Oxide. 2019;84:38–44. doi: 10.1016/j.niox.2019.01.004. PubMed DOI
da Veiga J.C., Silveira N.M., Seabra A.B., Bron I.U. Exploring the power of nitric oxide and nanotechnology for prolonging postharvest shelf-life and enhancing fruit quality. Nitric Oxide. 2024;142:26–37. doi: 10.1016/j.niox.2023.11.002. PubMed DOI
da Veiga J.C., Silveira N.M., Seabra A.B., Pieretti J.C., Boza Y., Jacomino A.P., Filho J.C.Z., Campagnoli V.P., Cia P., Bron I.U. Spraying with encapsulated nitric oxide donor reduces weight loss and oxidative damage in papaya fruit. Nitric Oxide. 2024;150:37–46. doi: 10.1016/j.niox.2024.07.004. PubMed DOI
Lowry G.V., Giraldo J.P., Steinmetz N.F., Avellan A., Demirer G.S., Ristroph K.D., Wang G.J., Hendren C.O., Alabi C.A., Caparco A., et al. Towards realizing nano-enabled precision delivery in plants. Nat. Nanotechnol. 2024;19:1255–1269. doi: 10.1038/s41565-024-01667-5. PubMed DOI
Oliveira H.C., Seabra A.B., Kondak S., Adedokun O.P., Kolbert Z. Multilevel approach to plant-nanomaterial relationships: From cells to living ecosystems. J. Exp. Bot. 2023;74:3406–3424. doi: 10.1093/jxb/erad107. PubMed DOI PMC
Singh A., Rajput V.D., Varshney A., Ghazaryan K., Minkina T. Small Tech, Big Impact: Agri-nanotechnology Journey to Optimize Crop Protection and Production for Sustainable Agriculture. Plant Stress. 2023;10:100253. doi: 10.1016/j.stress.2023.100253. DOI
Wang H., Jafir M., Irfan M., Ahmad T., Zia-ur-Rehman M., Usman M., Rizwan M., Hamoud Y.A., Shaghaleh H. Emerging trends to replace pesticides with nanomaterials: Recent experiences and future perspectives for ecofriendly environment. J. Environ. Manag. 2024;360:121178. doi: 10.1016/j.jenvman.2024.121178. PubMed DOI
Prats E., Carver T.L., Mur L.A. Pathogen-derived nitric oxide influences formation of the appressorium infection structure in the phytopathogenic fungus Blumeria graminis. Res. Microbiol. 2008;159:476–480. doi: 10.1016/j.resmic.2008.04.001. PubMed DOI
Turrion-Gomez J.L., Benito E.P. Flux of nitric oxide between the necrotrophic pathogen Botrytis cinerea and the host plant. Mol. Plant Pathol. 2011;12:606–616. doi: 10.1111/j.1364-3703.2010.00695.x. PubMed DOI PMC
Samalova M., Johnson J., Illes M., Kelly S., Fricker M., Gurr S. Nitric oxide generated by the rice blast fungus Magnaporthe oryzae drives plant infection. New Phytol. 2013;197:207–222. doi: 10.1111/j.1469-8137.2012.04368.x. PubMed DOI
Sedlářová M., Kubienová L., Drábková Trojanová Z., Luhová L., Lebeda A., Petřivalský M. Chapter Thirteen—The Role of Nitric Oxide in Development and Pathogenesis of Biotrophic Phytopathogens—Downy and Powdery Mildews. Adv. Bot. Res. 2016;77:263–283. doi: 10.1016/bs.abr.2015.10.002. DOI
Sarkar A., Chakraborty N., Acharya K. Chitosan nanoparticles mitigate Alternaria leaf spot disease of chilli in nitric oxide dependent way. Plant Physiol. Biochem. 2022;180:64–73. doi: 10.1016/j.plaphy.2022.03.038. PubMed DOI
Zhong Y., Wu X., Zhang L., Zhang Y., Wei L., Liu Y. The roles of nitric oxide in improving postharvest fruits quality: Crosstalk with phytohormones. Food Chem. 2024;455:139977. doi: 10.1016/j.foodchem.2024.139977. PubMed DOI