Disrupted actin: a novel player in pathogen attack sensing?
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32259281
DOI
10.1111/nph.16584
Knihovny.cz E-zdroje
- Klíčová slova
- actin cytoskeleton, latrunculin B, plant immunity, plant-microbe interaction, salicylic acid (SA),
- MeSH
- aktiny * MeSH
- kyselina salicylová * MeSH
- mikrofilamenta MeSH
- nemoci rostlin MeSH
- regulátory růstu rostlin MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny * MeSH
- kyselina salicylová * MeSH
- regulátory růstu rostlin MeSH
The actin cytoskeleton is widely involved in plant immune responses. The majority of studies show that chemical disruption of the actin cytoskeleton increases plant susceptibility to pathogen infection. Similarly, several pathogens have adopted this as a virulence strategy and produce effectors that affect cytoskeleton integrity. Such effectors either exhibit actin-depolymerizing activity themselves or prevent actin polymerization. Is it thus possible for plants to recognize the actin's status and launch a counterattack? Recently we showed that chemical depolymerization of actin filaments can trigger resistance to further infection via the specific activation of salicylic acid (SA) signalling. This is accompanied by several defence-related, but SA-independent, effects (e.g. callose deposition, gene expression), relying on vesicular trafficking and phospholipid metabolism. These data suggest that the role of actin in plant-pathogen interactions is more complex than previously believed. It raises the question of whether plants have evolved a mechanism of sensing pathological actin disruption that eventually triggers defence responses. If so, what is the molecular basis of it? Otherwise, why does actin depolymerization specifically influence SA content but not any other phytohormone? Here we propose an updated model of actin's role in plant-microbe interactions and suggest some future directions of research to be conducted in this area.
Zobrazit více v PubMed
Ahrens S, Zelenay S, Sancho D, Hanč P, Kjaer S, Feest C, Fletcher G, Durkin C, Postigo A, Skehel M et al. 2012. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36: 635-645.
Badet T, Leger O, Barascud M, Voisin D, Sadon P, Vincent R, Le Ru A, Balague C, Roby D, Raffaele S. 2019. Expression polymorphism at the ARPC4 locus links the actin cytoskeleton with quantitative disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. New Phytologist 222: 480-496.
Badet T, Peyraud R, Mbengue M, Navaud O, Derbyshire M, Oliver RP, Barbacci A, Raffaele S. 2017. Codon optimization underpins generalist parasitism in fungi. eLife 6: 22472.
Cacas JL, Gerbeau-Pissot P, Fromentin J, Cantrel C, Thomas D, Jeannette E, Kalachova T, Mongrand S, Simon-Plas F, Ruelland E. 2017. Diacylglycerol kinases activate tobacco NADPH oxidase-dependent oxidative burst in response to cryptogein. Plant, Cell & Environment 40: 585-598.
Cheong MS, Kirik A, Kim JG, Frame K, Kirik V, Mudgett MB. 2014. AvrBsT acetylates Arabidopsis ACIP1, a protein that associates with microtubules and is required for immunity. PLoS Pathogens 10: e1003952.
Choi HW, Klessig DF. 2016. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biology 16: 232.
Choi HW, Wang L, Powell AF, Strickler SR, Wang D, Dempsey DA, Schroeder FC, Klessig DF. 2019. A genome-wide screen for human salicylic acid (SA)-binding proteins reveals targets through which SA may influence development of various diseases. Scientific Reports 9: 13084.
Cooper JA, Sept D. 2008. New insights into mechanism and regulation of actin capping protein. International Review of Cell and Molecular Biology 267: 183-206.
Erickson JL, Adlung N, Lampe C, Bonas U, Schattat MH. 2018. The Xanthomonas effector XopL uncovers the role of microtubules in stromule extension and dynamics in Nicotiana benthamiana. Plant Journal 93: 856-870.
Gully K, Pelletier S, Guillou MC, Ferrand M, Aligon S, Pokotylo I, Perrin A, Vergne E, Fagard M, Ruelland E et al. 2019. The SCOOP12 peptide regulates defense response and root elongation in Arabidopsis thaliana. Journal of Experimental Botany 70: 1349-1365.
Harterink M, da Silva ME, Will L, Turan J, Ibrahim A, Lang AE, van Battum EY, Pasterkamp RJ, Kapitein LC, Kudryashov D et al. 2017. DeActs: genetically encoded tools for perturbing the actin cytoskeleton in single cells. Nature Methods 14: 479-482.
Henty-Ridilla JL, Li J, Day B, Staiger CJ. 2014. ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in Arabidopsis. Plant Cell 26: 340-352.
Henty-Ridilla JL, Shimono M, Li J, Chang JH, Day B, Staiger CJ. 2013. The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns. PLoS Pathogens 9: e1003290.
Jelenska J, Kang Y, Greenberg JT. 2014. Plant pathogenic bacteria target the actin microfilament network involved in the trafficking of disease defense components. Bioarchitecture 4: 149-153.
Jones JD, Dangl JL. 2006. The plant immune system. Nature 444: 323-329.
Kalachova T, Iakovenko O, Kretinin S, Kravets V. 2013. Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade. Plant Physiology and Biochemistry 66: 127-133.
Kalachova T, Janda M, Šašek V, Ortmannová J, Nováková P, Dobrev IP, Kravets V, Guivarc’h A, Moura D, Burketová L et al. 2019. Identification of salicylic acid-independent responses in an Arabidopsis phosphatidylinositol 4-kinase beta double mutant. Annals of Botany 125:775-784.
Kang Y, Jelenska J, Cecchini NM, Li Y, Lee MW, Kovar DR, Greenberg JT. 2014. HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis. PLoS Pathogens 10: e1004232.
Kumar AS, Park E, Nedo A, Alqarni A, Ren L, Hoban K, Modla S, McDonald JH, Kambhamettu C, Dinesh-Kumar SP et al. 2018. Stromule extension along microtubules coordinated with actin-mediated anchoring guides perinuclear chloroplast movement during innate immunity. eLife 7: e23625.
Lee AH, Hurley B, Felsensteiner C, Yea C, Ckurshumova W, Bartetzko V, Wang PW, Quach V, Lewis JD, Liu YC et al. 2012. A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion. PLoS Pathogens 8: e1002523.
Leontovycova H, Kalachova T, Trda L, Pospichalova R, Lamparova L, Dobrev PI, Malinska K, Burketova L, Valentova O, Janda M. 2019. Actin depolymerization is able to increase plant resistance against pathogens via activation of salicylic acid signalling pathway. Scientific Reports 9: 10397.
Li J, Cao L, Staiger CJ. 2017. Capping protein modulates actin remodeling in response to reactive oxygen species during plant innate immunity. Plant Physiology 173: 1125-1136.
Li J, Henty-Ridilla JL, Staiger BH, Day B, Staiger CJ. 2015. Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity. Nature Communications 6: 7206.
Li P, Day B. 2019. Battlefield cytoskeleton: turning the tide on plant immunity. Molecular Plant-Microbe Interactions 32: 25-34.
Manohar M, Tian M, Moreau M, Park SW, Choi HW, Fei Z, Friso G, Asif M, Manosalva P, von Dahl CC et al. 2014. Identification of multiple salicylic acid-binding proteins using two high throughput screens. Frontiers in Plant Science 5: 777.
Matouskova J, Janda M, Fiser R, Sasek V, Kocourkova D, Burketova L, Duskova J, Martinec J, Valentova O. 2014. Changes in actin dynamics are involved in salicylic acid signaling pathway. Plant Science 223: 36-44.
Medina-Puche L, Tan H, Dogra V, Wu M, Rosas-Diaz T, Wang L, Ding X, Zhang D, Fu X, Kim C et al. 2019. A novel pathway linking plasma membrane and chloroplasts is co-opted by pathogens to suppress salicylic acid-dependent defences. BioRxiv. doi: 10.1101/837955.
Pernier J, Shekhar S, Jegou A, Guichard B, Carlier MF. 2016. Profilin interaction with actin filament barbed end controls dynamic instability, capping, branching, and motility. Developmental Cell 36: 201-214.
Pleskot R, Potocky M, Pejchar P, Linek J, Bezvoda R, Martinec J, Valentova O, Novotna Z, Zarsky V. 2010. Mutual regulation of plant phospholipase D and the actin cytoskeleton. The Plant Journal 62: 494-507.
Pluharova K, Leontovycova H, Stoudkova V, Pospichalova R, Marsik P, Kloucek P, Starodubtseva A, Iakovenko O, Krckova Z, Valentova O et al. 2019. "Salicylic acid mutant collection" as a tool to explore the role of salicylic acid in regulation of plant growth under a changing environment. International Journal of Molecular Sciences 20: 6365.
Pokotylo I, Kravets V, Ruelland E. 2019. Salicylic acid binding proteins (SABPs): the hidden forefront of salicylic acid signalling. International Journal of Molecular Sciences 20: 4377.
Porter K, Day B. 2016. From filaments to function: the role of the plant actin cytoskeleton in pathogen perception, signaling and immunity. Journal of Integrative Plant Biology 58: 299-311.
Rate DN, Cuenca JV, Bowman GR, Guttman DS, Greenberg JT. 1999. The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. The Plant Cell 11: 1695-1708.
Sassmann S, Rodrigues C, Milne SW, Nenninger A, Allwood E, Littlejohn GR, Talbot NJ, Soeller C, Davies B, Hussey PJ et al. 2018. An immune-responsive cytoskeletal-plasma membrane feedback loop in plants. Current Biology 28: 2136-2144.e7.
Schmidt SM, Panstruga R. 2007. Cytoskeleton functions in plant-microbe interactions. Physiological and Molecular Plant Pathology 71: 135-148.
Shimono M, Lu YJ, Porter K, Kvitko BH, Henty-Ridilla J, Creason A, He SY, Chang JH, Staiger CJ, Day B. 2016. The Pseudomonas syringae type III Effector HopG1 induces actin remodeling to promote symptom development and susceptibility during infection. Plant Physiology 171: 2239-2255.
Slajcherova K, Fiserova J, Fischer L, Schwarzerova K. 2012. Multiple actin isotypes in plants: diverse genes for diverse roles? Frontiers in Plant Science 3: 226.
Srinivasan N, Gordon O, Ahrens S, Franz A, Deddouche S, Chakravarty P, Phillips D, Yunus AA, Rosen MK, Valente RS et al. 2016. Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in Drosophila melanogaster. eLife 5: e19662.
Sun H, Qiao Z, Chua KP, Tursic A, Liu X, Gao YG, Mu Y, Hou X, Miao Y. 2018. Profilin negatively regulates formin-mediated actin assembly to modulate PAMP-triggered plant immunity. Current Biology 28: 1882-1895.
Tang C, Deng L, Chang D, Chen S, Wang X, Kang Z. 2015. TaADF3, an actin-depolymerizing factor, negatively modulates wheat resistance against Puccinia striiformis. Frontiers in Plant Science 6: 1214.
Vilches Barro A, Stockle D, Thellmann M, Ruiz-Duarte P, Bald L, Louveaux M, von Born P, Denninger P, Goh T, Fukaki H et al. 2019. Cytoskeleton dynamics are necessary for early events of lateral root initiation in Arabidopsis. Current Biology 29: 2443-2454.
Wang C, Liu Y, Li SS, Han GZ. 2015. Insights into the origin and evolution of the plant hormone signaling machinery. Plant Physiology 167: 872-886.
Yi H, Richards EJ. 2008. Phenotypic instability of Arabidopsis alleles affecting a disease Resistance gene cluster. BMC Plant Biology 8: 36.
Progress in Plant Nitric Oxide Studies: Implications for Phytopathology and Plant Protection
Bundling up the Role of the Actin Cytoskeleton in Primary Root Growth