Excessive reactive oxygen species induce transcription-dependent replication stress
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36997515
PubMed Central
PMC10063555
DOI
10.1038/s41467-023-37341-y
PII: 10.1038/s41467-023-37341-y
Knihovny.cz E-zdroje
- MeSH
- DNA vazebné proteiny * metabolismus MeSH
- DNA MeSH
- hydroxymočovina farmakologie MeSH
- lidé MeSH
- reaktivní formy kyslíku MeSH
- replikace DNA * MeSH
- S fáze genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA vazebné proteiny * MeSH
- DNA MeSH
- hydroxymočovina MeSH
- reaktivní formy kyslíku MeSH
Elevated levels of reactive oxygen species (ROS) reduce replication fork velocity by causing dissociation of the TIMELESS-TIPIN complex from the replisome. Here, we show that ROS generated by exposure of human cells to the ribonucleotide reductase inhibitor hydroxyurea (HU) promote replication fork reversal in a manner dependent on active transcription and formation of co-transcriptional RNA:DNA hybrids (R-loops). The frequency of R-loop-dependent fork stalling events is also increased after TIMELESS depletion or a partial inhibition of replicative DNA polymerases by aphidicolin, suggesting that this phenomenon is due to a global replication slowdown. In contrast, replication arrest caused by HU-induced depletion of deoxynucleotides does not induce fork reversal but, if allowed to persist, leads to extensive R-loop-independent DNA breakage during S-phase. Our work reveals a link between oxidative stress and transcription-replication interference that causes genomic alterations recurrently found in human cancer.
Faculty of Science Charles University Prague Prague Czech Republic
Genome Engineering Laboratory School of Life Sciences University of Westminster London UK
Institute of Molecular Cancer Research University of Zurich Zurich Switzerland
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
School of Life Sciences University of Bedfordshire Luton UK
School of Medicine University of California San Francisco San Francisco CA USA
Zobrazit více v PubMed
Zeman MK, Cimprich KA. Causes and consequences of replication stress. Nat. Cell Biol. 2014;16:2–9. doi: 10.1038/ncb2897. PubMed DOI PMC
Eklund H, Uhlin U, Ardh MFA, Logan DT, Nordlund PA. Structure and function of the radical enzyme ribonucleotide reductase. Prog. Biophys. Mol. Biol. 2001;77:177–268. doi: 10.1016/S0079-6107(01)00014-1. PubMed DOI
Osborn AJ, Elledge SJ, Zou L. Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol. 2002;12:509–516. doi: 10.1016/S0962-8924(02)02380-2. PubMed DOI
Toledo LI, et al. XATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell. 2013;155:1088–1103. doi: 10.1016/j.cell.2013.10.043. PubMed DOI
Bai G, et al. HLTF Promotes Fork Reversal, Limiting Replication Stress Resistance and Preventing Multiple Mechanisms of Unrestrained DNA Synthesis. Mol. Cell. 2020;78:1237–1251.e7. doi: 10.1016/j.molcel.2020.04.031. PubMed DOI PMC
Dubacq C, et al. Role of the iron mobilization and oxidative stress regulons in the genomic response of yeast to hydroxyurea. Mol. Genet. Genom. 2006;275:114–124. doi: 10.1007/s00438-005-0077-5. PubMed DOI
Davies BW, et al. Hydroxyurea Induces Hydroxyl Radical-Mediated Cell Death in Escherichia coli. Mol. Cell. 2009;36:845–860. doi: 10.1016/j.molcel.2009.11.024. PubMed DOI PMC
Hoffman EA, McCulley A, Haarer B, Arnak R, Feng W. Break-seq reveals hydroxyurea-induced chromosome fragility as a result of unscheduled conflict between DNA replication and transcription. Genome Res. 2015;25:402–412. doi: 10.1101/gr.180497.114. PubMed DOI PMC
Huang ME, et al. DNA replication inhibitor hydroxyurea alters Fe-S centers by producing reactive oxygen species in vivo. Sci. Rep. 2016;6:29361. doi: 10.1038/srep29361. PubMed DOI PMC
Somyajit K, et al. Redox-sensitive alteration of replisome architecture safeguards genome integrity. Science. 2017;358:797–802. doi: 10.1126/science.aao3172. PubMed DOI
Zellweger R, et al. Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J. Cell Biol. 2015;208:563–579. doi: 10.1083/jcb.201406099. PubMed DOI PMC
Vujanovic M, et al. Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity. Mol. Cell. 2017;67:882–890. doi: 10.1016/j.molcel.2017.08.010. PubMed DOI PMC
Chappidi N, et al. Fork Cleavage-Religation Cycle and Active Transcription Mediate Replication Restart after Fork Stalling at Co-transcriptional R-Loops. Mol. Cell. 2020;77:528–541. doi: 10.1016/j.molcel.2019.10.026. PubMed DOI
Hamperl S, Cimprich KA. The contribution of co-transcriptional RNA: DNA hybrid structures to DNA damage and genome instability. DNA Repair. 2014;19:84–94. doi: 10.1016/j.dnarep.2014.03.023. PubMed DOI PMC
Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA. Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses. Cell. 2017;170:774–786 e19. doi: 10.1016/j.cell.2017.07.043. PubMed DOI PMC
Magis AD, et al. DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc. Natl Acad. Sci. 2019;116:816–825. doi: 10.1073/pnas.1810409116. PubMed DOI PMC
Wu W, et al. RTEL1 suppresses G-quadruplex-associated R-loops at difficult-to-replicate loci in the human genome. Nat. Struct. Mol. Biol. 2020;27:424–437. doi: 10.1038/s41594-020-0408-6. PubMed DOI
Mijic S, et al. Replication fork reversal triggers fork degradation in BRCA2-defective cells. Nat. Commun. 2017;8:859. doi: 10.1038/s41467-017-01164-5. PubMed DOI PMC
Taglialatela A, et al. Restoration of Replication Fork Stability in BRCA1- and BRCA2-Deficient Cells by Inactivation of SNF2-Family Fork Remodelers. Mol. Cell. 2017;68:414–430. doi: 10.1016/j.molcel.2017.09.036. PubMed DOI PMC
Somyajit K, et al. Homology-directed repair protects the replicating genome from metabolic assaults. Dev. Cell. 2021;56:461–477. doi: 10.1016/j.devcel.2021.01.011. PubMed DOI
Rageul J, et al. SDE2 integrates into the TIMELESS-TIPIN complex to protect stalled replication forks. Nat. Commun. 2020;11:5495. doi: 10.1038/s41467-020-19162-5. PubMed DOI PMC
Barlow JH, et al. Identification of Early Replicating Fragile Sites that Contribute to Genome Instability. Cell. 2013;152:620–632. doi: 10.1016/j.cell.2013.01.006. PubMed DOI PMC
Zellweger R, Lopes M. Dynamic Architecture of Eukaryotic DNA Replication Forks In Vivo, Visualized by Electron Microscopy. Methods Mol. Biol. 2018;1672:261–294. doi: 10.1007/978-1-4939-7306-4_19. PubMed DOI
Teloni F, et al. Efficient Pre-mRNA Cleavage Prevents Replication-Stress-Associated Genome Instability. Mol. Cell. 2019;73:670–683. doi: 10.1016/j.molcel.2018.11.036. PubMed DOI PMC
Barroso S. The yeast and human FACT chromatin- reorganizing complexes solve R-loop- mediated transcription – replication conflicts. Genes Dev. 2014;28:735–748. doi: 10.1101/gad.234070.113. PubMed DOI PMC
Kanagaraj R, et al. Integrated genome and transcriptome analyses reveal the mechanism of genome instability in ataxia with oculomotor apraxia 2. Proc. Natl Acad. Sci. U.S.A. 2022;119:e2114314119. doi: 10.1073/pnas.2114314119. PubMed DOI PMC
Boleslavska B, et al. DDX17 helicase promotes resolution of R-loop-mediated transcription – replication conflicts in human cells. Nucleic Acids Res. 2022;50:12274–12290. doi: 10.1093/nar/gkac1116. PubMed DOI PMC
Teng Y, et al. ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB. Nat. Commun. 2018;9:4115. doi: 10.1038/s41467-018-06586-3. PubMed DOI PMC
Roy D, Zhang Z, Lu Z, Hsieh C-L, Lieber MR. Competition between the RNA Transcript and the Nontemplate DNA Strand during R-Loop Formation In Vitro: a Nick Can Serve as a Strong R-Loop Initiation Site. Mol. Cell. Biol. 2010;30:146–159. doi: 10.1128/MCB.00897-09. PubMed DOI PMC
Berti M, et al. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat. Struct. Mol. Biol. 2013;20:347–354. doi: 10.1038/nsmb.2501. PubMed DOI PMC
Sollier J, et al. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol. Cell. 2014;56:777–785. doi: 10.1016/j.molcel.2014.10.020. PubMed DOI PMC
Vesela E, Chroma K, Turi Z, Mistrik M. Common chemical inductors of replication stress: Focus on cell-based studies. Biomolecules. 2017;7:19. doi: 10.3390/biom7010019. PubMed DOI PMC
Ying S, et al. MUS81 promotes common fragile site expression. Nat. Cell Biol. 2013;15:1001–1007. doi: 10.1038/ncb2773. PubMed DOI
Carter SB. Effects of cytochalasins on mammalian cells. Nature. 1967;213:261–264. doi: 10.1038/213261a0. PubMed DOI
Maréchal A, Zou L. RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res. 2015;25:9–23. doi: 10.1038/cr.2014.147. PubMed DOI PMC
Gan W, et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev. 2011;25:2041–2056. doi: 10.1101/gad.17010011. PubMed DOI PMC
Tuduri S, et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat. Cell Biol. 2009;11:1315–1324. doi: 10.1038/ncb1984. PubMed DOI PMC
Lang KS, et al. Replication-Transcription Conflicts Generate R-Loops that Orchestrate Bacterial Stress Survival and Pathogenesis. Cell. 2017;170:787–799. doi: 10.1016/j.cell.2017.07.044. PubMed DOI PMC
Helmrich A, Ballarino M, Tora L. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell. 2011;44:966–977. doi: 10.1016/j.molcel.2011.10.013. PubMed DOI
Minocherhomji S, et al. Replication stress activates DNA repair synthesis in mitosis. Nature. 2015;528:286–290. doi: 10.1038/nature16139. PubMed DOI
Matsuzaki K, Borel V, Adelman CA, Schindler D, Boulton SJ. FANCJ suppresses microsatellite instability and lymphomagenesis independent of the fanconi anemia pathway. Genes Dev. 2015;29:2532–2546. doi: 10.1101/gad.272740.115. PubMed DOI PMC
Okamoto Y, et al. FANCD2 protects genome stability by recruiting RNA processing enzymes to resolve R-loops during mild replication stress. FEBS J. 2019;286:139–150. doi: 10.1111/febs.14700. PubMed DOI
Mehta KPM, et al. CHK1 phosphorylates PRIMPOL to promote replication stress tolerance. Sci. Adv. 2022;8:314. doi: 10.1126/sciadv.abm0314. PubMed DOI PMC
Liu B, Alberts BM. Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science. 1995;267:1131–1137. doi: 10.1126/science.7855590. PubMed DOI
Macheret M, Halazonetis TD. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress. Nature. 2018;555:112–116. doi: 10.1038/nature25507. PubMed DOI PMC
Weyemi U, et al. ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene. 2012;31:1117–1129. doi: 10.1038/onc.2011.327. PubMed DOI PMC
Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat. Rev. Cancer. 2011;11:85–95. doi: 10.1038/nrc2981. PubMed DOI
Pritsos CA, Sartorelli AC. Generation of Reactive Oxygen Radicals through Bioactivation of Mitomycin Antibiotics1. Cancer Res. 1986;46:3528–3532. PubMed
Miyajima A, et al. Role of reactive oxygen species in cis-dichlorodiammineplatinum-induced cytotoxicity on bladder cancer cells. Br. J. Cancer. 1997;76:206–210. doi: 10.1038/bjc.1997.363. PubMed DOI PMC
Ruysscher DD, et al. Radiotherapy toxicity. Nat. Rev. Dis. Prim. 2019;5:13. doi: 10.1038/s41572-019-0064-5. PubMed DOI
Mouron S, et al. Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat. Struct. Mol. Biol. 2013;20:1383–1389. doi: 10.1038/nsmb.2719. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI