Texture and Differential Stress Development in W/Ni-Co Composite after Rotary Swaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-15479S
Grantová Agentura České Republiky
LM2015056
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018120
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32604904
PubMed Central
PMC7345766
DOI
10.3390/ma13122869
PII: ma13122869
Knihovny.cz E-zdroje
- Klíčová slova
- neutron diffraction, residual stress, rotary swaging, texture, tungsten heavy alloys,
- Publikační typ
- časopisecké články MeSH
Knowledge of texture and residual stresses in tungsten heavy pseudoalloys is substantial for the microstructure optimization. These characteristics were determined in cold and warm rotary swaged W/NiCo composite with help of neutron diffraction. The results were discussed in view of the observed microstructure and mechanical properties. The investigated bars consisted of tungsten agglomerates (bcc lattice) surrounded by NiCo-based matrix (fcc lattice). No preferential crystallographic orientation was found in the as-sintered bar. A strong texture was formed in both the tungsten agglomerates (<101> fiber texture parallel to the swaging axis) and in the NiCo-based matrix (<111> fiber texture) after rotary swaging. Although usually of double-fiber texture, the <001> fiber of the fcc structures was nearly missing in the matrix. Further, the cold-swaged bar exhibited substantially stronger texture for both phases which corresponds to the higher measured ultimate tensile strength. The residual stress differences were employed for characterization of the stress state of the bars. The largest residual stress difference (≈400 MPa) was found at the center of the bar deformed at room temperature. The hoop stresses were non-symmetrical with respect to the swaging axis, which was likely caused by the elliptical cross section of the as-sintered bar.
Zobrazit více v PubMed
Kocich R., Kunčická L., Dohnalík D., Macháčková A., Šofer M. Cold rotary swaging of a tungsten heavy alloy: Numerical and experimental investigations. Int. J. Refract. Met. Hard Mater. 2016;61:264–272. doi: 10.1016/j.ijrmhm.2016.10.005. DOI
Kim D.-K., Lee S., Baek W.H. Microstructural study of adiabatic shear bands formed by high-speed impact in a tungsten heavy alloy penetrator. Mater. Sci. Eng. A. 1998;249:197–205. doi: 10.1016/S0921-5093(98)00565-6. DOI
Durlu N., Çalışkan N.K., Bor Ş. Effect of swaging on microstructure and tensile properties of W–Ni–Fe alloys. Int. J. Refract. Met. Hard Mater. 2014;42:126–131. doi: 10.1016/j.ijrmhm.2013.08.013. DOI
Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C., Hlaváč L.M. Effect of thermomechanical processing via rotary swaging on properties and residual stress within tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI
Kiran U.R., Panchal A., Sankaranarayana M., Rao G.N., Nandy T. Effect of alloying addition and microstructural parameters on mechanical properties of 93% tungsten heavy alloys. Mater. Sci. Eng. A. 2015;640:82–90. doi: 10.1016/j.msea.2015.05.046. DOI
Guo W., Liu J., Yang J., Li S. Effect of initial temperature on dynamic recrystallization of tungsten and matrix within adiabatic shear band of tungsten heavy alloy. Mater. Sci. Eng. A. 2011;528:6248–6252. doi: 10.1016/j.msea.2011.04.080. DOI
Wei Z.G., Hu S.S., Li Y.C., Fan C.S. Dynamic properties and ballistic performance of pre-torqued tungsten heavy alloys. In: Niekerk C.V., editor. Proceeding of the 17th International Symposium on Ballistics. Volume 3. The South Africa Ballistics Organization; Midrand, South Africa: 1998. pp. 391–398.
Zhou X.Q., Li S.K., Liu J.X., Wang Y.C., Wang X. Self-sharpening behavior during ballistic impact of the tungsten heavy alloy rod penetrators processed by hot hydrostatic extrusion and hot torsion. Mater. Sci. Eng. A. 2010;527:4881–4886.
Kunčická L., Kocich R., Ryukhtin V., Cullen J.C., Lavery N. Study of structure of naturally aged aluminium after twist channel angular pressing. Mater. Charact. 2019;152:94–100. doi: 10.1016/j.matchar.2019.03.045. DOI
Kocich R., Kunčická L., Macháčková A. Twist Channel Multi-Angular Pressing (TCMAP) as a method for increasing the efficiency of SPD. IOP Conf. Series: Mater. Sci. Eng. 2014;63:012006. doi: 10.1088/1757-899X/63/1/012006. DOI
Asgari M., Fereshteh-Saniee F., Pezeshki S.M., Barati M. Non-equal channel angular pressing (NECAP) of AZ80 Magnesium alloy: Effects of process parameters on strain homogeneity, grain refinement and mechanical properties. Mater. Sci. Eng. A. 2016;678:320–328. doi: 10.1016/j.msea.2016.09.102. DOI
Kocich R., Kunčická L., Král P., Macháčková A. Sub-structure and mechanical properties of twist channel angular pressed aluminium. Mater. Charact. 2016;119:75–83. doi: 10.1016/j.matchar.2016.07.020. DOI
Yuan Y., Ma A., Gou X., Jiang J., Arhin G., Song D., Liu H. Effect of heat treatment and deformation temperature on the mechanical properties of ECAP processed ZK60 magnesium alloy. Mater. Sci. Eng. A. 2016;677:125–132. doi: 10.1016/j.msea.2016.09.037. DOI
Hlaváč L.M., Kocich R., Gembalová L., Jonšta P., Hlaváčová I.M. AWJ cutting of copper processed by ECAP. Int. J. Adv. Manuf. Technol. 2015;86:885–894. doi: 10.1007/s00170-015-8236-2. DOI
De Vincentis N.S., Kliauga A., Ferrante M., Avalos M., Brokmeier H.-G., Bolmaro R.E. Evaluation of microstructure anisotropy on room and medium temperature ECAP deformed F138 steel. Mater. Charact. 2015;107:98–111. doi: 10.1016/j.matchar.2015.06.035. DOI
Levin Z.S., Srivastava A., Foley D.C., Hartwig K.T. Fracture in annealed and severely deformed tungsten. Mater. Sci. Eng. A. 2018;734:244–254. doi: 10.1016/j.msea.2018.05.004. DOI
Wu Y.-C., Hou Q., Luo L., Zan X., Zhu X., Li P., Xu Q., Cheng J., Luo G., Chen J. Preparation of ultrafine-grained/nanostructured tungsten materials: An overview. J. Alloy. Compd. 2019;779:926–941. doi: 10.1016/j.jallcom.2018.11.279. DOI
Kocich R., Kunčická L., Král P., Lowe T.C. Texture, deformation twinning and hardening in a newly developed Mg–Dy–Al–Zn–Zr alloy processed with high pressure torsion. Mater. Des. 2016;90:1092–1099. doi: 10.1016/j.matdes.2015.11.062. DOI
Ma Y., Zhang J., Liu W., Yue P., Huang B. Microstructure and dynamic mechanical properties of tungsten-based alloys in the form of extruded rods via microwave heating. Int. J. Refract. Met. Hard Mater. 2014;42:71–76. doi: 10.1016/j.ijrmhm.2013.08.003. DOI
Gong X., Fan J., Ding F., Song M., Huang B., Tian J. Microstructure and highly enhanced mechanical properties of fine-grained tungsten heavy alloy after one-pass rapid hot extrusion. Mater. Sci. Eng. A. 2011;528:3646–3652. doi: 10.1016/j.msea.2011.01.070. DOI
Fortuna-Zalesna E., Zielinski W., Sikorski K., Kurzydlowski K. TEM characterization of the microstructure of a tungsten heavy alloy. Mater. Chem. Phys. 2003;81:469–471. doi: 10.1016/S0254-0584(03)00055-5. DOI
Das J., Rao G.A., Pabi S.K., Sankaranarayana M., Nandy T. Thermo-mechanical processing, microstructure and tensile properties of a tungsten heavy alloy. Mater. Sci. Eng. A. 2014;613:48–59. doi: 10.1016/j.msea.2014.06.072. DOI
Levin Z.S., Hartwig K.T. Hardness and microstructure of tungsten heavy alloy subjected to severe plastic deformation and post-processing heat treatment. Mater. Sci. Eng. A. 2015;635:94–101. doi: 10.1016/j.msea.2015.02.025. DOI
Meyer L.W., Hockauf M., Hohenwarter A., Schneider S. Ultimate Strength of a Tungsten Heavy Alloy after Severe Plastic Deformation at Quasi-Static and Dynamic Loading. Mater. Sci. Forum. 2008;584:405–410. doi: 10.4028/www.scientific.net/MSF.584-586.405. DOI
Li P., Sun D.Z., Wang X., Xue K.M., Hua R., Wu Y.C. Microstructure and thermal stability of sintered pure tungsten processed by multiple direction compression. Trans. Nonferrous Met. Soc. China. 2018;28:461–468. doi: 10.1016/S1003-6326(18)64679-5. DOI
Kocich R., Kunčická L., Král P., Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018;160:828–835. doi: 10.1016/j.matdes.2018.10.027. DOI
Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI
Macháčková A., Krátká L., Petrmichl R., Kunčická L., Kocich R. Affecting Structure Characteristics of Rotary Swaged Tungsten Heavy Alloy Via Variable Deformation Temperature. Mater. 2019;12:4200. doi: 10.3390/ma12244200. PubMed DOI PMC
Kestens L.A., Pirgazi H. Texture formation in metal alloys with cubic crystal structures. Mater. Sci. Technol. 2016;32:1303–1315. doi: 10.1080/02670836.2016.1231746. DOI
Kostorz G. Treatise on materials science and technology. In: Kostorz G., editor. Neutron Scattering. Volume 15. Academic Press; New York, NY, USA: 1979. pp. 227–289.
Hutchings M., Withers P.J., Holden T., Lorentzen T. Introduction to the Characterization of Residual Stress by Neutron Diffraction. Informa UK Limited; Colchester, UK: 2005.
Beran P., Ivanov S., Nordblad P., Middey S., Nag A., Sarma D., Ray S., Mathieu R. Neutron powder diffraction study of Ba3ZnRu2-xIrxO9 (x = 0, 1, 2) with 6H-type perovskite structure. Solid State Sci. 2015;50:58–64. doi: 10.1016/j.solidstatesciences.2015.10.011. DOI
HK4 - Strain Scanner. [(accessed on 30 April 2020)]; Available online: http://www.ujf.cas.cz/en/departments/department-of-neutron-physics/instruments/lvr15/HK4.html.
Kunčická L., Kocich R., Hervoches C., Macháčková A. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy. Mater. Sci. Eng. A. 2017;704:25–31. doi: 10.1016/j.msea.2017.07.096. DOI
Garces G., Bruno G., Wanner A. Residual stresses in deformed random-planar aluminium/Saffil® short-fibre composites. Mater. Sci. Eng. A. 2006;417:73–81. doi: 10.1016/j.msea.2005.10.069. DOI
Strunz P., Kunčická L., Beran P., Kocich R., Hervoches C. Correlating Microstrain and Activated Slip Systems with Mechanical Properties within Rotary Swaged WNiCo Pseudoalloy. Materials. 2020;13:208. doi: 10.3390/ma13010208. PubMed DOI PMC
Fundenberger J.J., Beausir B. JTEX - Software for Texture Analysis. Université de Lorraine; Metz, France: 2015.
Withers P.J., Bhadeshia H.K.D.H. Residual stress, Part 1 – Measurement techniques. Mater. Sci. Technol. 2001;17:355.
Ekbom L., Antonsson T. Tungsten heavy alloy: Deformation texture and recrystallization of tungsten particles. Int. J. Refract. Met. Hard Mater. 2002;20:375–379. doi: 10.1016/S0263-4368(02)00035-5. DOI
Engler O., Randle V. Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping. CRC Press, Taylor&Francis Group; Boca Raton, FL, USA: 2010. p. 156.
Mecking H. Textures in Metals. In: Wenk H.R., editor. Preferred Orientation in Deformed Metal and Rocks: An introduction to Modern Texture Analysis. Academic Press Inc.; Orlando, FL, USA: 1985. p. 280.
Beaudoin A.J., Engler O. Deformation textures. In: Martin J.W., editor. Concise Encyclopedia of the Structure of Materials. Elsevier; Amsterdam, The Netherlands: 2007. p. 169.
Fernández P., Bruno G., González-Doncel G. Macro and micro-residual stress distribution in 6061 Al-15 vol.% SiCw under different heat treatment conditions. Compos. Sci. Technol. 2006;66:1738–1748.
Fernández R., Cabeza S., Mishurova T., Fernández-Castrillo P., González-Doncel G., Bruno G. Residual stress and yield strength evolution with annealing treatments in an age-hardenable aluminum alloy matrix composite. Mater. Sci. Eng. A. 2018;731:344–350. doi: 10.1016/j.msea.2018.06.031. DOI
Cazacu O., Revil-Baudard B., Chandola N. A yield criterion for cubic single crystals. Int. J. Solids Struct. 2018;151:9–19. doi: 10.1016/j.ijsolstr.2017.04.006. DOI
Mechanical Behavior of Oxide Dispersion Strengthened Steel Directly Consolidated by Rotary Swaging
Structural Phenomena Introduced by Rotary Swaging: A Review