Mechanical Behavior of Oxide Dispersion Strengthened Steel Directly Consolidated by Rotary Swaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SP2024/089
VŠB-Technical University of Ostrava
22-11949S
Czech Science Foundation
PubMed
39410402
PubMed Central
PMC11477536
DOI
10.3390/ma17194831
PII: ma17194831
Knihovny.cz E-zdroje
- Klíčová slova
- direct consolidation, microhardness, microstructure, oxide dispersion strengthening, rotary swaging,
- Publikační typ
- časopisecké články MeSH
Among the main benefits of powder-based materials is the possibility of combining different constituents to achieve enhanced properties of the fabricated bulk material. The presented study characterizes the micro- and sub-structures and related mechanical properties of ferritic steel strengthened with a fine dispersion of nano-sized Y2O3 oxide particles. Unlike the typical method of preparation via rolling, the material presented herein was fabricated by direct consolidation from a mixture of powders using the versatile method of hot rotary swaging. The mechanical properties were evaluated at room temperature and also at 1300 °C to document the suitability of the prepared steel for high-temperature applications. The results showed that the imposed shear strain, i.e., swaging ratio, is a crucial parameter influencing the microstructure and, thus, material behavior. The workpiece subjected to the swaging ratio of 1.4 already exhibited a sufficiently consolidated structure with ultra-fine grains and featured high room-temperature microhardness values (up to 690 HV0.5), as well as a relatively high maximum flow stress (~88 MPa) when deformed at the temperature of 1300 °C with the strain rate of 0.5 s-1. However, the dispersion of oxides within this sample exhibited local inhomogeneities. Increasing the swaging ratio to 2.5 substantially contributed to the homogenization of the distribution of the Y2O3 oxide particles, which resulted in increased homogeneity of mechanical properties (lower deviations from the average values), but their lower absolute values due to the occurrence of nucleating nano-sized recrystallized grains.
Faculty of Civil Engineering Brno University of Technology Veveří 331 95 602 00 Brno Czech Republic
Institute of Physics of Materials Czech Academy of Sciences Žižkova 22 616 00 Brno Czech Republic
Zobrazit více v PubMed
Kuranova N.N., Makarov V.V., Pushin V.G., Ustyugov Y.M. Influence of Heat Treatment and Deformation on the Structure, Phase Transformation, and Mechanical Behavior of Bulk TiNi-Based Alloys. Metals. 2022;12:2188. doi: 10.3390/met12122188. DOI
Gordienko A.I., Malikov A.G., Volochaev M.N., Panyukhina A.D. Influence of Chemical Composition and Thermomechanical Treatment of Low-Carbon Steels on the Microstructure and Mechanical Properties of Their Laser Welded Joints. Mater. Sci. Eng. A. 2022;839:142845. doi: 10.1016/j.msea.2022.142845. DOI
Radionova L.V., Perevozchikov D.V., Makoveckii A.N., Eremin V.N., Akhmedyanov A.M., Rushchits S.V. Study on the Hot Deformation Behavior of Stainless Steel AISI 321. Materials. 2022;15:4057. doi: 10.3390/ma15124057. PubMed DOI PMC
Kunčická L., Kocich R., Lowe T.C. Advances in Metals and Alloys for Joint Replacement. Prog. Mater. Sci. 2017;88:232–280. doi: 10.1016/j.pmatsci.2017.04.002. DOI
Macháčková A., Krátká L., Petrmichl R., Kunčická L., Kocich R. Affecting Structure Characteristics of Rotary Swaged Tungsten Heavy Alloy via Variable Deformation Temperature. Materials. 2019;12:4200. doi: 10.3390/ma12244200. PubMed DOI PMC
Kunčická L., Kocich R. Optimizing Electric Conductivity of Innovative Al-Cu Laminated Composites via Thermomechanical Treatment. Mater. Des. 2022;215:110441. doi: 10.1016/j.matdes.2022.110441. DOI
Tikhonova M., Kaibyshev R., Belyakov A. Microstructure and Mechanical Properties of Austenitic Stainless Steels after Dynamic and Post-Dynamic Recrystallization Treatment. Adv. Eng. Mater. 2018;20:1700960. doi: 10.1002/adem.201700960. DOI
Wang X., Kustov S., Van Humbeeck J. A Short Review on the Microstructure, Transformation Behavior and Functional Properties of NiTi Shape Memory Alloys Fabricated by Selective Laser Melting. Materials. 2018;11:1683. doi: 10.3390/ma11091683. PubMed DOI PMC
Maznichevskii A.N., Goikhenberg Y.N., Sprikut R.V. Electron-Microscopy Investigation of Excess-Phase Precipitates Affecting the Intergranular Corrosion of Chromium–Nickel Austenitic Steels. Phys. Met. Metallogr. 2021;122:362–369. doi: 10.1134/S0031918X2103011X. DOI
Zhurerova L.G., Rakhadilov B.K., Popova N.A., Kylyshkanov M.K., Buranich V.V., Pogrebnjak A.D. Effect of the PEN/C Surface Layer Modification on the Microstructure, Mechanical and Tribological Properties of the 30CrMnSiA Mild-Carbon Steel. J. Mater. Res. Technol. 2020;9:291–300. doi: 10.1016/j.jmrt.2019.10.057. DOI
Ukai S., Hatakeyama K., Mizuta S., Fujiwara M., Okuda T. Consolidation Process Study of 9Cr-ODS Martensitic Steels. J. Nucl. Mater. 2002;307–311:758–762. doi: 10.1016/S0022-3115(02)01044-9. DOI
Sagaradze V.V., Kozlov K.A., Kataeva N.V. Oxide-Dispersion Strengthened Radiation-Resistant Steels. Phys. Met. Metallogr. 2018;119:1350–1353. doi: 10.1134/S0031918X18130112. DOI
Raman L., Gothandapani K., Murty B.S. Austenitic Oxide Dispersion Strengthened Steels: A Review. Def. Sci. J. 2016;66:316. doi: 10.14429/dsj.66.10205. DOI
Macháčková A., Kocich R., Bojko M., Kunčická L., Polko K. Numerical and Experimental Investigation of Flue Gases Heat Recovery via Condensing Heat Exchanger. Int. J. Heat Mass Transf. 2018;124:1321–1333. doi: 10.1016/j.ijheatmasstransfer.2018.04.051. DOI
Verma L., Dabhade V.V. Synthesis of Fe-15Cr-2W Oxide Dispersion Strengthened (ODS) Steel Powders by Mechanical Alloying. Powder Technol. 2023;425:118554. doi: 10.1016/j.powtec.2023.118554. DOI
Meng B., Xiong Y., Zhong W., Duan S., Li H. Progressive Collapse Behaviour of Composite Substructure with Large Rectangular Beam-Web Openings. Eng. Struct. 2023;295:116861. doi: 10.1016/j.engstruct.2023.116861. DOI
Gerasimidis S., Ellingwood B. Twenty Years of Advances in Disproportionate Collapse Research and Best Practices since 9/11/2001. J. Struct. Eng. 2023;149:02022002. doi: 10.1061/JSENDH.STENG-12056. DOI
Razumovskii I., Bokstein B., Logacheva A., Logachev I., Razumovsky M. Cohesive Strength and Structural Stability of the Ni-Based Superalloys. Materials. 2021;15:200. doi: 10.3390/ma15010200. PubMed DOI PMC
Dmitrieva A., Mukin D., Sorokin I., Stankevich S., Klimova-Korsmik O. Laser-Directed Energy Deposition of Ni-Based Superalloys with a High Content of γ’-Phase Using Induction Heating. Mater. Lett. 2023;353:135217. doi: 10.1016/j.matlet.2023.135217. DOI
Atrazhev V.V., Burlatsky S.F., Dmitriev D.V., Furrer D., Kuzminyh N.Y., Lomaev I.L., Novikov D.L., Stolz S., Reynolds P. The Mechanism of Grain Boundary Serration and Fan-Type Structure Formation in Ni-Based Superalloys. Metall. Mater. Trans. A. 2020;51:3648–3657. doi: 10.1007/s11661-020-05790-5. DOI
Sundar R.S., Deevi S.C. High-Temperature Strength and Creep Resistance of FeAl. Mater. Sci. Eng. A. 2003;357:124–133. doi: 10.1016/S0921-5093(03)00261-2. DOI
Miller M.K., Hoelzer D.T., Kenik E.A., Russell K.F. Stability of Ferritic MA/ODS Alloys at High Temperatures. Intermetallics. 2005;13:387–392. doi: 10.1016/j.intermet.2004.07.036. DOI
Ramar A., Schäublin R. Analysis of Hardening Limits of Oxide Dispersion Strengthened Steel. J. Nucl. Mater. 2013;432:323–333. doi: 10.1016/j.jnucmat.2012.07.024. DOI
Schaeublin R., Leguey T., Spätig P., Baluc N., Victoria M. Microstructure and Mechanical Properties of Two ODS Ferritic/Martensitic Steels. J. Nucl. Mater. 2002;307–311:778–782. doi: 10.1016/S0022-3115(02)01193-5. DOI
Ates H., Turker M., Kurt A. Effect of Friction Pressure on the Properties of Friction Welded MA956 Iron-Based Superalloy. Mater. Des. 2007;28:948–953. doi: 10.1016/j.matdes.2005.09.015. DOI
Zhang Z., Saleh T.A., Maloy S.A., Anderoglu O. Microstructure Evolution in MA956 Neutron Irradiated in ATR at 328 °C to 4.36 Dpa. J. Nucl. Mater. 2020;533:152094. doi: 10.1016/j.jnucmat.2020.152094. DOI
Wilshire B., Lieu T.D. Deformation and Damage Processes during Creep of Incoloy MA957. Mater. Sci. Eng. A. 2004;386:81–90. doi: 10.1016/S0921-5093(04)00969-4. DOI
Miller M., Hoelzer D., Kenik E., Russell K. Nanometer Scale Precipitation in Ferritic MA/ODS Alloy MA957. J. Nucl. Mater. 2004;329–333:338–341. doi: 10.1016/j.jnucmat.2004.04.085. DOI
Capdevila C., Miller M.K., Russell K.F., Chao J., González-Carrasco J.L. Phase Separation in PM 2000TM Fe-Base ODS Alloy: Experimental Study at the Atomic Level. Mater. Sci. Eng. A. 2008;490:277–288. doi: 10.1016/j.msea.2008.01.029. DOI
Tang Q., Hoshino T., Ukai S., Leng B., Hayashi S., Wang Y. Refinement of Oxide Particles by Addition of Hf in Ni-0.5 Mass%Al-1 Mass%Y2O3 Alloys. Mater. Trans. 2010;51:2019–2024. doi: 10.2320/matertrans.M2010163. DOI
Ngala W.O., Maier H.J. Creep–Fatigue Interaction of the ODS Superalloy PM 1000. Mater. Sci. Eng. A. 2009;510–511:429–433. doi: 10.1016/j.msea.2008.06.056. DOI
Lu C., Lu Z., Wang X., Xie R., Li Z., Higgins M., Liu C., Gao F., Wang L. Enhanced Radiation-Tolerant Oxide Dispersion Strengthened Steel and Its Microstructure Evolution under Helium-Implantation and Heavy-Ion Irradiation. Sci. Rep. 2017;7:40343. doi: 10.1038/srep40343. PubMed DOI PMC
Allen T.R., Gan J., Cole J.I., Miller M.K., Busby J.T., Shutthanandan S., Thevuthasan S. Radiation Response of a 9 Chromium Oxide Dispersion Strengthened Steel to Heavy Ion Irradiation. J. Nucl. Mater. 2008;375:26–37. doi: 10.1016/j.jnucmat.2007.11.001. DOI
Fu A., Liu B., Liu B., Cao Y., Wang J., Liao T., Li J., Fang Q., Liaw P.K., Liu Y. A Novel Cobalt-Free Oxide Dispersion Strengthened Medium-Entropy Alloy with Outstanding Mechanical Properties and Irradiation Resistance. J. Mater. Sci. Technol. 2023;152:190–200. doi: 10.1016/j.jmst.2022.11.061. DOI
Wang Y., Wang B., Luo L., Oliveira J.P., Li B., Yan H., Liu T., Zhao J., Wang L., Su Y., et al. Effects of Process Atmosphere on Additively Manufactured FeCrAl Oxide Dispersion Strengthened Steel: Printability, Microstructure and Tensile Properties. Mater. Sci. Eng. A. 2023;882:145438. doi: 10.1016/j.msea.2023.145438. DOI
Staltsov M.S., Chernov I.I., Bogachev I.A., Kalin B.A., Olevsky E.A., Lebedeva L.J., Nikitina A.A. Optimization of Mechanical Alloying and Spark-Plasma Sintering Regimes to Obtain Ferrite–Martensitic ODS Steel. Nucl. Mater. Energy. 2016;9:360–366. doi: 10.1016/j.nme.2016.08.020. DOI
Sagaradze V.V., Litvinov A.V., Shabashov V.A., Vil’danova N.F., Mukoseev A.G., Kozlov K.A. New Method of Mechanical Alloying of ODS Steels Using Iron Oxides. Phys. Met. Metallogr. 2006;101:566–576. doi: 10.1134/S0031918X06060081. DOI
Owusu-Mensah M., Jublot-Leclerc S., Gentils A., Baumier C., Ribis J., Borodin V.A. In Situ TEM Thermal Annealing of High Purity Fe10wt%Cr Alloy Thin Foils Implanted with Ti and O Ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2019;461:219–225. doi: 10.1016/j.nimb.2019.10.009. DOI
Xu H., Lu Z., Wang D., Liu C. Effect of Zirconium Addition on the Microstructure and Mechanical Properties of 15Cr-ODS Ferritic Steels Consolidated by Hot Isostatic Pressing. Fusion Eng. Des. 2017;114:33–39. doi: 10.1016/j.fusengdes.2016.11.011. DOI
Shulga A.V. A Comparative Study of the Mechanical Properties and the Behavior of Carbon and Boron in Stainless Steel Cladding Tubes Fabricated by PM HIP and Traditional Technologies. J. Nucl. Mater. 2013;434:133–140. doi: 10.1016/j.jnucmat.2012.11.008. DOI
Hary B., Logé R., Ribis J., Mathon M.-H., Van Der Meer M., Baudin T., de Carlan Y. Strain-Induced Dissolution of Y–Ti–O Nano-Oxides in a Consolidated Ferritic Oxide Dispersion Strengthened (ODS) Steel. Materialia. 2018;4:444–448. doi: 10.1016/j.mtla.2018.11.002. DOI
Li Y., Zhang J., Shan Y., Yan W., Shi Q., Yang K., Shen J., Nagasasa T., Muroga T., Yang H., et al. Anisotropy in Creep Properties and Its Microstructural Origins of 12Cr Oxide Dispersion Strengthened Ferrite Steels. J. Nucl. Mater. 2019;517:307–314. doi: 10.1016/j.jnucmat.2019.01.049. DOI
Wang Y., Lin J., Liu B., Chen Y., Li D., Wang H., Shen Y. Nanosized Oxide Phases in Oxide-Dispersion-Strengthened Steel PM2000. Philos. Mag. 2021;101:2514–2527. doi: 10.1080/14786435.2021.1979677. DOI
Leng B., Ukai S., Sugino Y., Tang Q., Narita T., Hayashi S., Wan F., Ohtsuka S., Kaito T. Recrystallization Texture of Cold-Rolled Oxide Dispersion Strengthened Ferritic Steel. ISIJ Int. 2011;51:951–957. doi: 10.2355/isijinternational.51.951. DOI
Wu S., Li J., Li C., Li Y., Xiong L., Liu S. Preliminary Study on the Fabrication of 14Cr-ODS FeCrAl Alloy by Powder Forging. J. Mater. Sci. Technol. 2021;83:49–57. doi: 10.1016/j.jmst.2020.12.032. DOI
Kumar D., Prakash U., Dabhade V.V., Laha K., Sakthivel T. High Yttria Ferritic ODS Steels through Powder Forging. J. Nucl. Mater. 2017;488:75–82. doi: 10.1016/j.jnucmat.2016.12.043. DOI
Li Y., Shen J., Li F., Yang H., Kano S., Matsukawa Y., Satoh Y., Fu H., Abe H., Muroga T. Effects of Fabrication Processing on the Microstructure and Mechanical Properties of Oxide Dispersion Strengthening Steels. Mater. Sci. Eng. A. 2016;654:203–212. doi: 10.1016/j.msea.2015.12.032. DOI
Jayasankar K., Pandey A., Mishra B.K., Das S. In-Situ Formation of Complex Oxide Precipitates during Processing of Oxide Dispersion Strengthened Ferritic Steels. Fusion Eng. Des. 2016;102:14–20. doi: 10.1016/j.fusengdes.2015.11.004. DOI
Böhmermann F., Hasselbruch H., Herrmann M., Riemer O., Mehner A., Zoch H.-W., Kuhfuss B. Dry Rotary Swaging–Approaches for Lubricant Free Process Design. Int. J. Precis. Eng. Manuf. Technol. 2015;2:325–331. doi: 10.1007/s40684-015-0039-2. DOI
Kunčická L., Kocich R. Effect of Activated Slip Systems on Dynamic Recrystallization during Rotary Swaging of Electro-Conductive Al-Cu Composites. Mater. Lett. 2022;321:10–13. doi: 10.1016/j.matlet.2022.132436. DOI
Strunz P., Kunčická L., Beran P., Kocich R., Hervoches C. Correlating Microstrain and Activated Slip Systems with Mechanical Properties within Rotary Swaged WNiCo Pseudoalloy. Materials. 2020;13:208. doi: 10.3390/ma13010208. PubMed DOI PMC
Kunčická L., Kocich R., Németh G., Dvořák K., Pagáč M. Effect of Post Process Shear Straining on Structure and Mechanical Properties of 316 L Stainless Steel Manufactured via Powder Bed Fusion. Addit. Manuf. 2022;59:103128. doi: 10.1016/j.addma.2022.103128. DOI
Kocich R., Szurman I., Kursa M., Fiala J. Investigation of Influence of Preparation and Heat Treatment on Deformation Behaviour of the Alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI
Hlaváč L.M., Kocich R., Gembalová L., Jonšta P., Hlaváčová I.M. AWJ Cutting of Copper Processed by ECAP. Int. J. Adv. Manuf. Technol. 2016;86:885–894. doi: 10.1007/s00170-015-8236-2. DOI
Kocich R., Greger M., Macháčková A. Finite Element Investigation of Influence of Selected Factors on ECAP Process; Proceedings of the METAL 2010: 19th International Metallurgical and Materials Conference; Roznov pod Radhostem, Czech Republic. 18–20 May 2010; pp. 166–171.
Valiev R.Z., Straumal B., Langdon T.G. Using Severe Plastic Deformation to Produce Nanostructured Materials with Superior Properties. Annu. Rev. Mater. Res. 2022;52:357–382. doi: 10.1146/annurev-matsci-081720-123248. DOI
Lim S.J., Choi H.J., Yoon D.J., Jeong H.G., Lee C.H. Product Geometry for Process Parameter during Rotary Swaging Process as Chipless Forming Process. Mater. Sci. Forum. 2007;544–545:439–442. doi: 10.4028/www.scientific.net/MSF.544-545.439. DOI
Kocich R., Kunčická L. Optimizing Structure and Properties of Al/Cu Laminated Conductors via Severe Shear Strain. J. Alloys Compd. 2023;953:170124. doi: 10.1016/j.jallcom.2023.170124. DOI
Kuhfuss B., Moumi E., Piwek V. Micro Rotary Swaging: Process Limitations and Attempts to Their Extension. Microsyst. Technol. 2008;14:1995–2000. doi: 10.1007/s00542-008-0633-0. DOI
Chen X., Liu C., Jiang S., Chen Z., Wan Y. Fabrication of Nanocrystalline High-Strength Magnesium−Lithium Alloy by Rotary Swaging. Adv. Eng. Mater. 2022;24:2100666. doi: 10.1002/adem.202100666. DOI
Chen X., Liu C., Wan Y., Jiang S., Han X., Chen Z. Formation of Nanocrystalline AZ31B Mg Alloys via Cryogenic Rotary Swaging. J. Magnes. Alloys. 2023;11:1580–1591. doi: 10.1016/j.jma.2021.11.021. DOI
Suryanarayana C. Mechanical Alloying: A Critical Review. Mater. Res. Lett. 2022;10:619–647. doi: 10.1080/21663831.2022.2075243. DOI
Kocich R., Kunčická L., Benč M. Development of Microstructure and Properties within Oxide Dispersion Strengthened Steel Directly Consolidated by Hot Rotary Swaging. Mater. Lett. 2023;353:135276. doi: 10.1016/j.matlet.2023.135276. DOI
Mao X., Oh K.H., Jang J. Evolution of Ultrafine Grained Microstructure and Nano-Sized Semi-Coherent Oxide Particles in Austenitic Oxide Dispersion Strengthened Steel. Mater. Charact. 2016;117:91–98. doi: 10.1016/j.matchar.2016.04.022. DOI
Xu R., Geng Z., Wu Y., Chen C., Ni M., Li D., Zhang T., Huang H., Liu F., Li R., et al. Microstructure and Mechanical Properties of In-Situ Oxide-Dispersion-Strengthened NiCrFeY Alloy Produced by Laser Powder Bed Fusion. Adv. Powder Mater. 2022;1:100056. doi: 10.1016/j.apmate.2022.100056. DOI
Verlinden B., Driver J., Samajdar I., Doherty R.D. Thermo-Mechanical Processing of Metallic Materials. Elsevier; Amsterdam, The Netherlands: 2007.
Chou T.S. Recrystallisation Behaviour and Grain Structure in Mechanically Alloyed Oxide Dispersion Strengthened MA956 Steel. Mater. Sci. Eng. A. 1997;223:78–90. doi: 10.1016/S0921-5093(96)10473-1. DOI
Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and Residual Stress within Rotary Swaged Cu/Al Clad Composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. DOI
Strunz P., Kocich R., Canelo-Yubero D., Macháčková A., Beran P., Krátká L. Texture and Differential Stress Development in W/Ni-Co Composite after Rotary Swaging. Materials. 2020;13:2869. doi: 10.3390/ma13122869. PubMed DOI PMC
Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C.T., Hlaváč L.M. Effect of Thermomechanical Processing via Rotary Swaging on Properties and Residual Stress within Tungsten Heavy Alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI
Bartsch M., Wasilkowska A., Czyrska-Filemonowicz A., Messerschmidt U. Dislocation Dynamics in the Oxide Dispersion Strengthened Alloy INCOLOY MA956. Mater. Sci. Eng. A. 1999;272:152–162. doi: 10.1016/S0921-5093(99)00471-2. DOI