Correlating Microstrain and Activated Slip Systems with Mechanical Properties within Rotary Swaged WNiCo Pseudoalloy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-15479S
Grantová Agentura České Republiky
LM2015056
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015074
Ministerstvo Školství, Mládeže a Tělovýchovy
OPCZ.02.1.01/0.0/0.0/16_013/0001812
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31947796
PubMed Central
PMC6982249
DOI
10.3390/ma13010208
PII: ma13010208
Knihovny.cz E-zdroje
- Klíčová slova
- dislocations, microstrain, neutron diffraction, rotary swaging, tungsten,
- Publikační typ
- časopisecké články MeSH
Due to their superb mechanical properties and high specific mass, tungsten heavy alloys are used in demanding applications, such as kinetic penetrators, gyroscope rotors, or radiation shielding. However, their structure, consisting of hard tungsten particles embedded in a soft matrix, makes the deformation processing a challenging task. This study focused on the characterization of deformation behavior during thermomechanical processing of a WNiCo tungsten heavy alloy (THA) via the method of rotary swaging at various temperatures. Emphasis is given to microstrain development and determination of the activated slip systems and dislocation density via neutron diffraction. The analyses showed that the grains of the NiCo2W matrix refined significantly after the deformation treatments. The microstrain was higher in the cold swaged sample (44.2 × 10-4). Both the samples swaged at 20 °C and 900 °C exhibited the activation of edge dislocations with <111> {110} or <110> {111} slip systems, and/or screw dislocations with <110> slip system in the NiCo2W matrix. Dislocation densities were determined and the results were correlated with the final mechanical properties of the swaged bars.
European Spallation Source ERIC 225 92 Lund Sweden
Nuclear Physics Institute of the CAS 250 68 Řež Czech Republic
Zobrazit více v PubMed
Kocich R., Kunčická L., Dohnalík D., Macháčková A., Šofer M. Cold rotary swaging of a tungsten heavy alloy: Numerical and experimental investigations. Int. J. Refract. Met. Hard Mater. 2016;61:264–272. doi: 10.1016/j.ijrmhm.2016.10.005. DOI
Durlu N., Caliskan N.K., Sakir B. Effect of swaging on microstructure and tensile properties of W-Ni-Fe alloys. Int. J. Refract. Met. Hard Mater. 2014;42:126–131. doi: 10.1016/j.ijrmhm.2013.08.013. DOI
Chen B., Cao S., Xu H., Jin Y., Li S., Xiao B. Effect of processing parameters on microstructure and mechanical properties of 90W–6Ni–4Mn heavy alloy. Int. J. Refract. Met. Hard Mater. 2015;48:293–300. doi: 10.1016/j.ijrmhm.2014.09.024. DOI
Liu J., Li S., Fan A., Sun H. Effect of fibrous orientation on dynamic mechanical properties and susceptibility to adiabatic shear band of tungsten heavy alloy fabricated through hot-hydrostatic extrusion. Mater. Sci. Eng. A. 2008;487:235–242. doi: 10.1016/j.msea.2007.10.012. DOI
Liu J., Li S., Zhou X., Wang Y., Yang J. Dynamic Recrystallization in the Shear Bands of Tungsten Heavy Alloy Processed by Hot-Hydrostatic Extrusion and Hot Torsion. Rare Met. Mater. Eng. 2011;40:957–960. doi: 10.1016/S1875-5372(11)60040-4. DOI
Kunčická L., Kocich R., Hervoches C., Macháčková A. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy. Mater. Sci. Eng. A. 2017;704:25–31. doi: 10.1016/j.msea.2017.07.096. DOI
Jinglian F., Xing G., Meigui Q., Tao L., Shukui L., Jiamin T. Dynamic Behavior and Adiabatic Shear Bands in Fine-Grained W-Ni-Fe Alloy under High Strain Rate Compression. Rare Met. Mater. Eng. 2009;38:2069–2074. doi: 10.1016/S1875-5372(10)60061-6. DOI
Zhigang W., Shisheng H., Yongchi L., Cunshan F. Dynamic Properties and Ballistic Performance of Pre-Torqued Tungsten Heavy Alloys; Proceedings of the 17th International Symposium on Ballistics; Midrand, South Africa. 23–27 March 1998; pp. 391–398.
Xiaoqing Z., Shukui L., Jinxu L., Yingchun W., Xing W. Self-sharpening behavior during ballistic impact of the tungsten heavy alloy rod penetrators processed by hot-hydrostatic extrusion and hot torsion. Mater. Sci. Eng. A. 2010;527:4881–4886. doi: 10.1016/j.msea.2010.04.050. DOI
Kocich R., Kunčická L., Král P., Macháčková A. Sub-structure and mechanical properties of twist channel angular pressed aluminium. Mater. Charact. 2016;119:75–83. doi: 10.1016/j.matchar.2016.07.020. DOI
Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of strain path on severely deformed aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI
Yuan Y., Ma A., Gou X., Jiang J., Arhin G., Song D., Liu H. Effect of heat treatment and deformation temperature on the mechanical properties of ECAP processed ZK60 magnesium alloy. Mater. Sci. Eng. A. 2016;677:125–132. doi: 10.1016/j.msea.2016.09.037. DOI
Lukac P., Kocich R., Greger M., Padalka O., Szaraz Z. Microstructure of AZ31 and AZ61 Mg alloys prepared by rolling and ECAP. Kov. Mater. 2007;45:115–120.
Hlaváč L.M., Kocich R., Gembalová L., Jonšta P., Hlaváčová I.M. AWJ cutting of copper processed by ECAP. Int. J. Adv. Manuf. Technol. 2016;86:885–894. doi: 10.1007/s00170-015-8236-2. DOI
Levin Z.S., Srivastava A., Foley D.C., Hartwig K.T. Fracture in annealed and severely deformed tungsten. Mater. Sci. Eng. A. 2018;734:244–254. doi: 10.1016/j.msea.2018.05.004. DOI
Wu Y., Hou Q., Luo L., Zan X., Zhu X., Li P., Xu Q., Cheng J., Luo G., Chen J. Preparation of ultrafine-grained/nanostructured tungsten materials: An overview. J. Alloys Compd. 2019;779:926–941. doi: 10.1016/j.jallcom.2018.11.279. DOI
Kocich R., Kunčická L., Král P., Lowe T.C. Texture, deformation twinning and hardening in a newly developed Mg–Dy–Al–Zn–Zr alloy processed with high pressure torsion. Mater. Des. 2016;90:1092–1099. doi: 10.1016/j.matdes.2015.11.062. DOI
Ma Y., Zhang J., Liu W., Yue P., Huang B. Microstructure and dynamic mechanical properties of tungsten-based alloys in the form of extruded rods via microwave heating. Int. J. Refract. Met. Hard Mater. 2014;42:71–76. doi: 10.1016/j.ijrmhm.2013.08.003. DOI
Gong X., Fan J.L., Ding F., Song M., Huang B.Y., Tian J.M. Microstructure and highly enhanced mechanical properties of fine-grained tungsten heavy alloy after one-pass rapid hot extrusion. Mater. Sci. Eng. A. 2011;528:3646–3652. doi: 10.1016/j.msea.2011.01.070. DOI
Fortuna E., Zielinski W., Sikorski K., Kurzydlowski K.J. TEM characterization of the microstructure of a tungsten heavy alloy. Mater. Chem. Phys. 2003;81:469–471. doi: 10.1016/S0254-0584(03)00055-5. DOI
Yu Y., Zhang W., Chen Y., Wang E. Effect of swaging on microstructure and mechanical properties of liquid-phase sintered 93W-4.9(Ni, Co)-2.1Fe alloy. Int. J. Refract. Met. Hard Mater. 2014;44:103–108. doi: 10.1016/j.ijrmhm.2014.01.016. DOI
Kocich R., Kunčická L., Král P., Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018;160:828–835. doi: 10.1016/j.matdes.2018.10.027. DOI
Kiran U.R., Panchal A., Sankaranarayana M., Nandy T.K. Tensile and impact behavior of swaged tungsten heavy alloys processed by liquid phase sintering. Int. J. Refract. Met. Hard Mater. 2013;37:1–11. doi: 10.1016/j.ijrmhm.2012.10.002. DOI
Kunčická L., Kocich R. Deformation behaviour of Cu-Al clad composites produced by rotary swaging. IOP Conf. Ser. Mater. Sci. Eng. 2018;369:012029.
Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and residual stress within rotary swaged Cu/Al clad composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. DOI
Kunčická L., Lowe T.C., Davis C.F., Kocich R., Pohludka M. Synthesis of an Al/Al2O3 composite by severe plastic deformation. Mater. Sci. Eng. A. 2015;646:234–241. doi: 10.1016/j.msea.2015.08.075. DOI
Beran P., Ivanov S.A., Nordblad P., Middey S., Nag A., Sarma D.D., Ray S., Mathieu R. Neutron powder diffraction study of Ba3ZnRu2-xIrxO9 (x = 0, 1, 2) with 6H-type perovskite structure. Solid State Sci. 2015;50:58–64. doi: 10.1016/j.solidstatesciences.2015.10.011. DOI
Davydov V., Lukáš P., Strunz P., Kužel R. Single-Line Diffraction Profile Analysis Method Used for Evaluation of Microstructural Parameters in the Plain Ferritic Steel upon Tensile Straining. Mater. Sci. Forum. 2008;571:181–188. doi: 10.4028/www.scientific.net/MSF.571-572.181. DOI
Beausir B., Fundenberger J.J. Analysis Tools for Electron and X-ray Diffraction, ATEX–Software. [(accessed on 22 May 2019)]; Available online: www.atex-software.eu.
Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter. 1993;192:55–69. doi: 10.1016/0921-4526(93)90108-I. DOI
Williamson G., Hall W. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1:22–31. doi: 10.1016/0001-6160(53)90006-6. DOI
Stephens P.W. Phenomenological model of anisotropic peak broadening in powder diffraction. J. Appl. Crystallogr. 1999;32:281–289. doi: 10.1107/S0021889898006001. DOI
Rodriguez-Carvajal J., Fernandez-Diaz M.T., Martinez J.L. Neutron diffraction study on structural and magnetic properties of La2NiO4. J. Phys. Condens. Matter. 1991;3:3215–3234. doi: 10.1088/0953-8984/3/19/002. DOI
Mittemeijer E.J., Welzel U. The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Z. Für Krist. 2008;223:552–560.
Kužel R. Kinematical diffraction by distorted crystals–dislocation X-ray line broadening. Z. Für Krist. Cryst. Mater. 2007;222:136–149. doi: 10.1524/zkri.2007.222.3-4.136. DOI
Borbély A., Dragomir-Cernatescu J., Ribárik G., Ungár T. Computer program ANIZC for the calculation of diffraction contrast factors of dislocations in elastically anisotropic cubic, hexagonal and trigonal crystals. J. Appl. Crystallogr. 2003;36:160–162. doi: 10.1107/S0021889802021581. DOI
Ungár T., Borbély A. The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis. Appl. Phys. Lett. 1996;69:3173–3175. doi: 10.1063/1.117951. DOI
Ledbetter H., Kim S. Monocrystal Elastic Constants and Derived Properties of the Cubic and the Hexagonal Elements. Academic Press; Cambridge, MA, USA: 2001. pp. 97–106. Handbook of Elastic Properties of Solids, Fluids, and Gases. DOI
Leamy H.J., Warlimont H. The Elastic Behaviour of Ni–Co Alloys. Phys. Status Solidi B. 1970;37:523–534. doi: 10.1002/pssb.19700370203. DOI
Russell A., Lee K.L. Structure-Property Relations in Nonferrous Metals. 1st ed. John Wiley & Sons, Inc.; New York, NY, USA: 2005.
Rodney D., Ventelon L., Clouet E., Pizzagalli L., Willaime F. Ab initio modeling of dislocation core properties in metals and semiconductors. Acta Mater. 2017;124:633–659. doi: 10.1016/j.actamat.2016.09.049. DOI
Wilkens M. The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles. Phys. Status Solidi. 1970;2:359–370. doi: 10.1002/pssa.19700020224. DOI
Krivoglaz M.A., Martynenko O.V., Ryaboshapka K. Influence of correlation in dislocation arrangement on the X-ray diffraction by deformed crystals. Fiz. Met. Met. 1983;55:5–17.
Scardi P., Leoni M., Dong Y.H. Whole diffraction pattern-fitting of polycrystalline fcc materials based on microstructure. Eur. Phys. J. B. 2000;18:23–30. doi: 10.1007/s100510070073. DOI
Ungár T., Gubicza J., Ribárik G., Borbély A. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals. J. Appl. Cryst. 2001;34:298–310. doi: 10.1107/S0021889801003715. DOI
Vermeulen A.C., Delhez R., de Keijser T.H., Mittemeijer E.J. Changes in the densities of dislocations on distinct slip systems during stress relaxation in thin aluminium layers: The interpretation of x-ray diffraction line broadening and line shift. J. Appl. Phys. 1995;77:5026–5049. doi: 10.1063/1.359312. DOI
Gong X., Fan J.L., Ding F., Song M., Huang B.Y. Effect of tungsten content on microstructure and quasi-static tensile fracture characteristics of rapidly hot-extruded W–Ni–Fe alloys. Int. J. Refract. Met. Hard Mater. 2012;30:71–77. doi: 10.1016/j.ijrmhm.2011.06.014. DOI
Katavić B., Odanović Z., Burzić M. Investigation of the rotary swaging and heat treatment on the behavior of W- and γ-phases in PM 92.5W-5Ni-2.5Fe-0.26Co heavy alloy. Mater. Sci. Eng. A. 2008;492:337–345. doi: 10.1016/j.msea.2008.05.021. DOI
Kiran U.R., Khaple S.K., Sankaranarayana M., Nageswara Rao G.V.S., Nandy T.K. Effect of swaging and aging heat treatment on microstructure and mechanical properties of tungsten heavy alloy. Mater. Today Proc. 2018;5:3914–3918. doi: 10.1016/j.matpr.2017.11.647. DOI
Kumari A., Sankaranarayana M., Nandy T.K. On structure property correlation in high strength tungsten heavy alloys. Int. J. Refract. Met. Hard Mater. 2017;67:18–31. doi: 10.1016/j.ijrmhm.2017.05.002. DOI
Mechanical Behavior of Oxide Dispersion Strengthened Steel Directly Consolidated by Rotary Swaging
Structural Phenomena Introduced by Rotary Swaging: A Review
(Sub)structure Development in Gradually Swaged Electroconductive Bars
Special Issue: Mechanical Properties in Progressive Mechanically Processed Metallic Materials
Texture and Differential Stress Development in W/Ni-Co Composite after Rotary Swaging
Effects of Sintering Conditions on Structures and Properties of Sintered Tungsten Heavy Alloy