Correlating Microstrain and Activated Slip Systems with Mechanical Properties within Rotary Swaged WNiCo Pseudoalloy

. 2020 Jan 03 ; 13 (1) : . [epub] 20200103

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31947796

Grantová podpora
19-15479S Grantová Agentura České Republiky
LM2015056 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015074 Ministerstvo Školství, Mládeže a Tělovýchovy
OPCZ.02.1.01/0.0/0.0/16_013/0001812 Ministerstvo Školství, Mládeže a Tělovýchovy

Due to their superb mechanical properties and high specific mass, tungsten heavy alloys are used in demanding applications, such as kinetic penetrators, gyroscope rotors, or radiation shielding. However, their structure, consisting of hard tungsten particles embedded in a soft matrix, makes the deformation processing a challenging task. This study focused on the characterization of deformation behavior during thermomechanical processing of a WNiCo tungsten heavy alloy (THA) via the method of rotary swaging at various temperatures. Emphasis is given to microstrain development and determination of the activated slip systems and dislocation density via neutron diffraction. The analyses showed that the grains of the NiCo2W matrix refined significantly after the deformation treatments. The microstrain was higher in the cold swaged sample (44.2 × 10-4). Both the samples swaged at 20 °C and 900 °C exhibited the activation of edge dislocations with <111> {110} or <110> {111} slip systems, and/or screw dislocations with <110> slip system in the NiCo2W matrix. Dislocation densities were determined and the results were correlated with the final mechanical properties of the swaged bars.

Zobrazit více v PubMed

Kocich R., Kunčická L., Dohnalík D., Macháčková A., Šofer M. Cold rotary swaging of a tungsten heavy alloy: Numerical and experimental investigations. Int. J. Refract. Met. Hard Mater. 2016;61:264–272. doi: 10.1016/j.ijrmhm.2016.10.005. DOI

Durlu N., Caliskan N.K., Sakir B. Effect of swaging on microstructure and tensile properties of W-Ni-Fe alloys. Int. J. Refract. Met. Hard Mater. 2014;42:126–131. doi: 10.1016/j.ijrmhm.2013.08.013. DOI

Chen B., Cao S., Xu H., Jin Y., Li S., Xiao B. Effect of processing parameters on microstructure and mechanical properties of 90W–6Ni–4Mn heavy alloy. Int. J. Refract. Met. Hard Mater. 2015;48:293–300. doi: 10.1016/j.ijrmhm.2014.09.024. DOI

Liu J., Li S., Fan A., Sun H. Effect of fibrous orientation on dynamic mechanical properties and susceptibility to adiabatic shear band of tungsten heavy alloy fabricated through hot-hydrostatic extrusion. Mater. Sci. Eng. A. 2008;487:235–242. doi: 10.1016/j.msea.2007.10.012. DOI

Liu J., Li S., Zhou X., Wang Y., Yang J. Dynamic Recrystallization in the Shear Bands of Tungsten Heavy Alloy Processed by Hot-Hydrostatic Extrusion and Hot Torsion. Rare Met. Mater. Eng. 2011;40:957–960. doi: 10.1016/S1875-5372(11)60040-4. DOI

Kunčická L., Kocich R., Hervoches C., Macháčková A. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy. Mater. Sci. Eng. A. 2017;704:25–31. doi: 10.1016/j.msea.2017.07.096. DOI

Jinglian F., Xing G., Meigui Q., Tao L., Shukui L., Jiamin T. Dynamic Behavior and Adiabatic Shear Bands in Fine-Grained W-Ni-Fe Alloy under High Strain Rate Compression. Rare Met. Mater. Eng. 2009;38:2069–2074. doi: 10.1016/S1875-5372(10)60061-6. DOI

Zhigang W., Shisheng H., Yongchi L., Cunshan F. Dynamic Properties and Ballistic Performance of Pre-Torqued Tungsten Heavy Alloys; Proceedings of the 17th International Symposium on Ballistics; Midrand, South Africa. 23–27 March 1998; pp. 391–398.

Xiaoqing Z., Shukui L., Jinxu L., Yingchun W., Xing W. Self-sharpening behavior during ballistic impact of the tungsten heavy alloy rod penetrators processed by hot-hydrostatic extrusion and hot torsion. Mater. Sci. Eng. A. 2010;527:4881–4886. doi: 10.1016/j.msea.2010.04.050. DOI

Kocich R., Kunčická L., Král P., Macháčková A. Sub-structure and mechanical properties of twist channel angular pressed aluminium. Mater. Charact. 2016;119:75–83. doi: 10.1016/j.matchar.2016.07.020. DOI

Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of strain path on severely deformed aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI

Yuan Y., Ma A., Gou X., Jiang J., Arhin G., Song D., Liu H. Effect of heat treatment and deformation temperature on the mechanical properties of ECAP processed ZK60 magnesium alloy. Mater. Sci. Eng. A. 2016;677:125–132. doi: 10.1016/j.msea.2016.09.037. DOI

Lukac P., Kocich R., Greger M., Padalka O., Szaraz Z. Microstructure of AZ31 and AZ61 Mg alloys prepared by rolling and ECAP. Kov. Mater. 2007;45:115–120.

Hlaváč L.M., Kocich R., Gembalová L., Jonšta P., Hlaváčová I.M. AWJ cutting of copper processed by ECAP. Int. J. Adv. Manuf. Technol. 2016;86:885–894. doi: 10.1007/s00170-015-8236-2. DOI

Levin Z.S., Srivastava A., Foley D.C., Hartwig K.T. Fracture in annealed and severely deformed tungsten. Mater. Sci. Eng. A. 2018;734:244–254. doi: 10.1016/j.msea.2018.05.004. DOI

Wu Y., Hou Q., Luo L., Zan X., Zhu X., Li P., Xu Q., Cheng J., Luo G., Chen J. Preparation of ultrafine-grained/nanostructured tungsten materials: An overview. J. Alloys Compd. 2019;779:926–941. doi: 10.1016/j.jallcom.2018.11.279. DOI

Kocich R., Kunčická L., Král P., Lowe T.C. Texture, deformation twinning and hardening in a newly developed Mg–Dy–Al–Zn–Zr alloy processed with high pressure torsion. Mater. Des. 2016;90:1092–1099. doi: 10.1016/j.matdes.2015.11.062. DOI

Ma Y., Zhang J., Liu W., Yue P., Huang B. Microstructure and dynamic mechanical properties of tungsten-based alloys in the form of extruded rods via microwave heating. Int. J. Refract. Met. Hard Mater. 2014;42:71–76. doi: 10.1016/j.ijrmhm.2013.08.003. DOI

Gong X., Fan J.L., Ding F., Song M., Huang B.Y., Tian J.M. Microstructure and highly enhanced mechanical properties of fine-grained tungsten heavy alloy after one-pass rapid hot extrusion. Mater. Sci. Eng. A. 2011;528:3646–3652. doi: 10.1016/j.msea.2011.01.070. DOI

Fortuna E., Zielinski W., Sikorski K., Kurzydlowski K.J. TEM characterization of the microstructure of a tungsten heavy alloy. Mater. Chem. Phys. 2003;81:469–471. doi: 10.1016/S0254-0584(03)00055-5. DOI

Yu Y., Zhang W., Chen Y., Wang E. Effect of swaging on microstructure and mechanical properties of liquid-phase sintered 93W-4.9(Ni, Co)-2.1Fe alloy. Int. J. Refract. Met. Hard Mater. 2014;44:103–108. doi: 10.1016/j.ijrmhm.2014.01.016. DOI

Kocich R., Kunčická L., Král P., Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018;160:828–835. doi: 10.1016/j.matdes.2018.10.027. DOI

Kiran U.R., Panchal A., Sankaranarayana M., Nandy T.K. Tensile and impact behavior of swaged tungsten heavy alloys processed by liquid phase sintering. Int. J. Refract. Met. Hard Mater. 2013;37:1–11. doi: 10.1016/j.ijrmhm.2012.10.002. DOI

Kunčická L., Kocich R. Deformation behaviour of Cu-Al clad composites produced by rotary swaging. IOP Conf. Ser. Mater. Sci. Eng. 2018;369:012029.

Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and residual stress within rotary swaged Cu/Al clad composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. DOI

Kunčická L., Lowe T.C., Davis C.F., Kocich R., Pohludka M. Synthesis of an Al/Al2O3 composite by severe plastic deformation. Mater. Sci. Eng. A. 2015;646:234–241. doi: 10.1016/j.msea.2015.08.075. DOI

Beran P., Ivanov S.A., Nordblad P., Middey S., Nag A., Sarma D.D., Ray S., Mathieu R. Neutron powder diffraction study of Ba3ZnRu2-xIrxO9 (x = 0, 1, 2) with 6H-type perovskite structure. Solid State Sci. 2015;50:58–64. doi: 10.1016/j.solidstatesciences.2015.10.011. DOI

Davydov V., Lukáš P., Strunz P., Kužel R. Single-Line Diffraction Profile Analysis Method Used for Evaluation of Microstructural Parameters in the Plain Ferritic Steel upon Tensile Straining. Mater. Sci. Forum. 2008;571:181–188. doi: 10.4028/www.scientific.net/MSF.571-572.181. DOI

Beausir B., Fundenberger J.J. Analysis Tools for Electron and X-ray Diffraction, ATEX–Software. [(accessed on 22 May 2019)]; Available online: www.atex-software.eu.

Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter. 1993;192:55–69. doi: 10.1016/0921-4526(93)90108-I. DOI

Williamson G., Hall W. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1:22–31. doi: 10.1016/0001-6160(53)90006-6. DOI

Stephens P.W. Phenomenological model of anisotropic peak broadening in powder diffraction. J. Appl. Crystallogr. 1999;32:281–289. doi: 10.1107/S0021889898006001. DOI

Rodriguez-Carvajal J., Fernandez-Diaz M.T., Martinez J.L. Neutron diffraction study on structural and magnetic properties of La2NiO4. J. Phys. Condens. Matter. 1991;3:3215–3234. doi: 10.1088/0953-8984/3/19/002. DOI

Mittemeijer E.J., Welzel U. The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Z. Für Krist. 2008;223:552–560.

Kužel R. Kinematical diffraction by distorted crystals–dislocation X-ray line broadening. Z. Für Krist. Cryst. Mater. 2007;222:136–149. doi: 10.1524/zkri.2007.222.3-4.136. DOI

Borbély A., Dragomir-Cernatescu J., Ribárik G., Ungár T. Computer program ANIZC for the calculation of diffraction contrast factors of dislocations in elastically anisotropic cubic, hexagonal and trigonal crystals. J. Appl. Crystallogr. 2003;36:160–162. doi: 10.1107/S0021889802021581. DOI

Ungár T., Borbély A. The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis. Appl. Phys. Lett. 1996;69:3173–3175. doi: 10.1063/1.117951. DOI

Ledbetter H., Kim S. Monocrystal Elastic Constants and Derived Properties of the Cubic and the Hexagonal Elements. Academic Press; Cambridge, MA, USA: 2001. pp. 97–106. Handbook of Elastic Properties of Solids, Fluids, and Gases. DOI

Leamy H.J., Warlimont H. The Elastic Behaviour of Ni–Co Alloys. Phys. Status Solidi B. 1970;37:523–534. doi: 10.1002/pssb.19700370203. DOI

Russell A., Lee K.L. Structure-Property Relations in Nonferrous Metals. 1st ed. John Wiley & Sons, Inc.; New York, NY, USA: 2005.

Rodney D., Ventelon L., Clouet E., Pizzagalli L., Willaime F. Ab initio modeling of dislocation core properties in metals and semiconductors. Acta Mater. 2017;124:633–659. doi: 10.1016/j.actamat.2016.09.049. DOI

Wilkens M. The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles. Phys. Status Solidi. 1970;2:359–370. doi: 10.1002/pssa.19700020224. DOI

Krivoglaz M.A., Martynenko O.V., Ryaboshapka K. Influence of correlation in dislocation arrangement on the X-ray diffraction by deformed crystals. Fiz. Met. Met. 1983;55:5–17.

Scardi P., Leoni M., Dong Y.H. Whole diffraction pattern-fitting of polycrystalline fcc materials based on microstructure. Eur. Phys. J. B. 2000;18:23–30. doi: 10.1007/s100510070073. DOI

Ungár T., Gubicza J., Ribárik G., Borbély A. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals. J. Appl. Cryst. 2001;34:298–310. doi: 10.1107/S0021889801003715. DOI

Vermeulen A.C., Delhez R., de Keijser T.H., Mittemeijer E.J. Changes in the densities of dislocations on distinct slip systems during stress relaxation in thin aluminium layers: The interpretation of x-ray diffraction line broadening and line shift. J. Appl. Phys. 1995;77:5026–5049. doi: 10.1063/1.359312. DOI

Gong X., Fan J.L., Ding F., Song M., Huang B.Y. Effect of tungsten content on microstructure and quasi-static tensile fracture characteristics of rapidly hot-extruded W–Ni–Fe alloys. Int. J. Refract. Met. Hard Mater. 2012;30:71–77. doi: 10.1016/j.ijrmhm.2011.06.014. DOI

Katavić B., Odanović Z., Burzić M. Investigation of the rotary swaging and heat treatment on the behavior of W- and γ-phases in PM 92.5W-5Ni-2.5Fe-0.26Co heavy alloy. Mater. Sci. Eng. A. 2008;492:337–345. doi: 10.1016/j.msea.2008.05.021. DOI

Kiran U.R., Khaple S.K., Sankaranarayana M., Nageswara Rao G.V.S., Nandy T.K. Effect of swaging and aging heat treatment on microstructure and mechanical properties of tungsten heavy alloy. Mater. Today Proc. 2018;5:3914–3918. doi: 10.1016/j.matpr.2017.11.647. DOI

Kumari A., Sankaranarayana M., Nandy T.K. On structure property correlation in high strength tungsten heavy alloys. Int. J. Refract. Met. Hard Mater. 2017;67:18–31. doi: 10.1016/j.ijrmhm.2017.05.002. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...