Effects of Sintering Conditions on Structures and Properties of Sintered Tungsten Heavy Alloy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FV40286 TRIO programme
Ministerstvo Průmyslu a Obchodu
PubMed
32438710
PubMed Central
PMC7288021
DOI
10.3390/ma13102338
PII: ma13102338
Knihovny.cz E-zdroje
- Klíčová slova
- microstructure, powder metallurgy, quenching, sintering, tungsten heavy alloy,
- Publikační typ
- časopisecké články MeSH
Probably the most advantageous fabrication technology of tungsten heavy alloys enabling the achievement of required performance combines methods of powder metallurgy and processing by intensive plastic deformation. Since the selected processing conditions applied for each individual processing step affect the final structures and properties of the alloys, their optimization is of the utmost importance. This study deals with thorough investigations of the effects of sintering temperature, sintering time, and subsequent quenching in water on the structures and mechanical properties of a 93W6Ni1Co tungsten heavy alloy. The results showed that sintering at temperatures of or above 1525 °C leads to formation of structures featuring W agglomerates surrounded by the NiCo matrix. The sintering time has non-negligible effects on the microhardness of the sintered samples as it affects the diffusion and structure softening phenomena. Implementation of quenching to the processing technology results in excellent plasticity of the green sintered and quenched pieces of almost 20%, while maintaining the strength of more than 1000 MPa.
Zobrazit více v PubMed
Liu J., Li S., Zhou X., Wang Y., Yang J. Dynamic recrystallization in the shear bands of tungsten heavy alloy processed by hot-hydrostatic extrusion and hot torsion. Rare Met. Mater. Eng. 2011;40:957–960. doi: 10.1016/S1875-5372(11)60040-4. DOI
Guo W., Liu J., Yang J., Li S. Effect of initial temperature on dynamic recrystallization of tungsten and matrix within adiabatic shear band of tungsten heavy alloy. Mater. Sci. Eng. A. 2011;528:6248–6252. doi: 10.1016/j.msea.2011.04.080. DOI
Kunčická L., Kocich R., Hervoches C., Macháčková A. Study of structure and residual stresses in cold rotary swaged tungsten heavy alloy. Mater. Sci. Eng. A. 2017;704:25–31. doi: 10.1016/j.msea.2017.07.096. DOI
Senthilnathan N., Annamalai A.R., Venkatachalam G. Microstructure and mechanical properties of spark plasma sintered tungsten heavy alloys. Mater. Sci. Eng. A. 2018;710:66–73. doi: 10.1016/j.msea.2017.10.080. DOI
Iveković A., Montero Sistiaga M.L., Vanmeensel K., Kruth J.-P., Vleugels J. Effect of processing parameters on microstructure and properties of tungsten heavy alloys fabricated by SLM. Int. J. Refract. Met. Hard Mater. 2019;82:23–30. doi: 10.1016/j.ijrmhm.2019.03.020. DOI
Tkachenko S., Cizek J., Mušálek R., Dvořák K., Spotz Z., Montufar E.B., Chráska T., Křupka I., Čelko L. Metal matrix to ceramic matrix transition via feedstock processing of SPS titanium composites alloyed with high silicone content. J. Alloys Compd. 2018;764:776–788. doi: 10.1016/j.jallcom.2018.06.086. DOI
Montufar E.B., Horynová M., Casas-Luna M., Diaz-de-la-Torre S., Celko L., Klakurková L., Spotz Z., Diéguez-Trejo G., Fohlerová Z., Dvořák K., et al. Spark plasma sintering of load-bearing iron–carbon nanotube-tricalcium phosphate CerMets for orthopaedic applications. JOM. 2016;68:1134–1142. doi: 10.1007/s11837-015-1806-9. DOI
Ročňáková I., Slámečka K., Montufar E.B., Remešová M., Dyčková L., Břínek A., Jech D., Dvořák K., Čelko L., Kaiser J. Deposition of hydroxyapatite and tricalcium phosphate coatings by suspension plasma spraying: Effects of torch speed. J. Eur. Ceram. Soc. 2018;38:5489–5496. doi: 10.1016/j.jeurceramsoc.2018.08.007. DOI
Valiev R., Islamgaliev R., Alexandrov I. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI
Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. FEM simulations and comparison of the ecap and ECAP-PBP influence on Ti6Al4V alloy’s deformation behaviour; Proceedings of the 22nd International Conference on Metallurgy and Materials; Brno, Czech. 15–17 May 2013; pp. 391–396.
Thomasová M., Seiner H., Sedlák P., Frost M., Ševčík M., Szurman I., Kocich R., Drahokoupil J., Šittner P., Landa M. Evolution of macroscopic elastic moduli of martensitic polycrystalline NiTi and NiTiCu shape memory alloys with pseudoplastic straining. ACTA Mater. 2017;123:146–156. doi: 10.1016/j.actamat.2016.10.024. DOI
Kocich R., Kunčická L., Macháčková A. Twist Channel Multi-Angular Pressing (TCMAP ) as a method for increasing the efficiency of SPD. IOP Conf. Ser. Mater. Sci. Eng. 2014;63:012006. doi: 10.1088/1757-899X/63/1/012006. DOI
Kocich R., Kunčická L., Král P., Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018;160:828–835. doi: 10.1016/j.matdes.2018.10.027. DOI
Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of strain path on severely deformed aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI
Hlaváč L.M., Kocich R., Gembalová L., Jonšta P., Hlaváčová I.M. AWJ cutting of copper processed by ECAP. Int. J. Adv. Manuf. Technol. 2016;86:885–894. doi: 10.1007/s00170-015-8236-2. DOI
Kunčická L., Lowe T.C., Davis C.F., Kocich R., Pohludka M. Synthesis of an Al/Al2O3 composite by severe plastic deformation. Mater. Sci. Eng. A. 2015;646:234–241. doi: 10.1016/j.msea.2015.08.075. DOI
Kunčická L., Macháčková A., Lavery N.P., Kocich R., Cullen J.C.T., Hlaváč L.M. Effect of thermomechanical processing via rotary swaging on properties and residual stress within tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI
Yu Y., Zhang W., Chen Y., Wang E. Effect of swaging on microstructure and mechanical properties of liquid-phase sintered 93W-4.9(Ni, Co)-2.1Fe alloy. Int. J. Refract. Met. Hard Mater. 2014;44:103–108. doi: 10.1016/j.ijrmhm.2014.01.016. DOI
Wu Y., German R.M., Marx B., Bollina R., Bell M. Characteristics of densification and distortion of Ni–Cu liquid-phase sintered tungsten heavy alloy. Mater. Sci. Eng. A. 2003;344:158–167. doi: 10.1016/S0921-5093(02)00424-0. DOI
Shen J., Campbell L., Suri P., German R.M. Quantitative microstructure analysis of tungsten heavy alloys (W-Ni-Cu) during initial stage liquid phase sintering. Int. J. Refract. Met. Hard Mater. 2005;23:99–108. doi: 10.1016/j.ijrmhm.2004.10.004. DOI
Ravi Kiran U., Panchal A., Sankaranarayana M., Nageswara Rao G.V.S., Nandy T.K. Effect of alloying addition and microstructural parameters on mechanical properties of 93{%} tungsten heavy alloys. Mater. Sci. Eng. A. 2015;640:82–90. doi: 10.1016/j.msea.2015.05.046. DOI
Ryu H.J., Hong S.H., Lee S., Baek W.H. Microstructural control of and mechanical properties of mechanically alloyed tungsten heavy alloys. Met. Mater. 1999;5:185–191. doi: 10.1007/BF03026051. DOI
Jiao Z., Kang R., Dong Z., Guo J. Microstructure characterization of W-Ni-Fe heavy alloys with optimized metallographic preparation method. Int. J. Refract. Met. Hard Mater. 2019;80:114–122. doi: 10.1016/j.ijrmhm.2019.01.011. DOI
Bose A., Schuh C.A., Tobia J.C., Tuncer N., Mykulowycz N.M., Preston A., Barbati A.C., Kernan B., Gibson M.A., Krause D., et al. Traditional and additive manufacturing of a new Tungsten heavy alloy alternative. Int. J. Refract. Met. Hard Mater. 2018;73:22–28. doi: 10.1016/j.ijrmhm.2018.01.019. DOI
Upadhyaya A. Processing strategy for consolidating tungsten heavy alloys for ordnance applications. Mater. Chem. Phys. 2001;67:101–110. doi: 10.1016/S0254-0584(00)00426-0. DOI
Kocich R., Kunčická L., Dohnalík D., Macháčková A., Šofer M. Cold rotary swaging of a tungsten heavy alloy: Numerical and experimental investigations. Int. J. Refract. Met. Hard Mater. 2016;61:264–272. doi: 10.1016/j.ijrmhm.2016.10.005. DOI
Ryu H.J., Hong S.H., Kim D.-K., Lee S. Impact and dynamic deformation behavior of mechanically alloyed tungsten heavy alloy. Met. Mater. 1998;4:367–371.
Russell A., Lee K.L. Structure-Property Relations in Nonferrous Metals. 1st ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2005.
Strunz P., Kunčická L., Beran P., Kocich R., Hervoches C. Correlating microstrain and activated slip systems with mechanical properties within rotary swaged WNiCo pseudoalloy. Materials. 2020;13:208. doi: 10.3390/ma13010208. PubMed DOI PMC
Chuvil’deev V.N., Nokhrin A.V., Boldin M.S., Baranov G.V., Sakharov N.V., Belov V.Y., Lantsev E.A., Popov A.A., Melekhin N.V., Lopatin Y.G., et al. Impact of mechanical activation on sintering kinetics and mechanical properties of ultrafine-grained 95W-Ni-Fe tungsten heavy alloys. J. Alloys Compd. 2019;773:666–688. doi: 10.1016/j.jallcom.2018.09.176. DOI
Special Issue: Mechanical Properties in Progressive Mechanically Processed Metallic Materials