Influence of Aging Temperature on Mechanical Properties and Structure of M300 Maraging Steel Produced by Selective Laser Melting

. 2023 Jan 20 ; 16 (3) : . [epub] 20230120

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36769985

Grantová podpora
FSI-S-22-7957 Brno University of Technology
DZRO Military autonomous and robotic systems University of Defence Brno
APVV- SK-SRB-21-0030 Slovak Research and Development Agency

This paper deals with the study of high-strength M300 maraging steel produced using the selective laser melting method. Heat treatment consists of solution annealing and subsequent aging; the influence of the selected aging temperatures on the final mechanical properties-microhardness and compressive yield strength-and the structure of the maraging steel are described in detail. The microstructure of the samples is examined using optical and electron microscopy. The compressive test results show that the compressive yield strength increased after heat treatment up to a treatment temperature of 480 °C and then gradually decreased. The sample aged at 480 °C also exhibited the highest observed microhardness of 562 HV. The structure of this sample changed from the original melt pools to a relatively fine-grained structure with a high fraction of high-angle grain boundaries (72%).

Zobrazit více v PubMed

Laakso P., Riipinen T., Laukkanen A., Andersson T., Jokinen A., Revuelta A., Ruusuvuori K. Optimization and Simulation of SLM Process for High Density H13 Tool Steel Parts. Phys. Procedia. 2016;83:26–35. doi: 10.1016/j.phpro.2016.08.004. DOI

Kunčická L., Macháčková A., Lavery N., Kocich R., Cullen J., Hlaváč L. Effect of thermomechanical processing via rotary swaging on properties and residual stress within tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2020;87:105120. doi: 10.1016/j.ijrmhm.2019.105120. DOI

Kunčická L., Kocich R., Klečková Z. Effects of sintering conditions on structures and properties of sintered tungsten heavy alloy. Materials. 2020;13:2338. doi: 10.3390/ma13102338. PubMed DOI PMC

Latypov M., Katanov S., Cherepakhin E., Shatsov A. Interaction between metastable steel-copper pseudoalloy and hard alloy. Met. Sci. Heat Treat. 2009;51:338–342. doi: 10.1007/s11041-009-9175-z. DOI

Liu Y., Wang H., Li S., Wang S., Wang W., Hou W., Hao Y., Yang R., Zhang L. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Mater. 2017;126:58–66. doi: 10.1016/j.actamat.2016.12.052. DOI

Kranz J., Herzog D., Emmelmann C. Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4. J. Laser Appl. 2015;27:S14001. doi: 10.2351/1.4885235. DOI

Kučerová L., Burdová K., Jeníček Š., Chena I. Effect of solution annealing and precipitation hardening at 250 °C–550 °C on microstructure and mechanical properties of additively manufactured 1.2709 maraging steel. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2021;814:1. doi: 10.1016/j.msea.2021.141195. DOI

Fortunato A., Lulaj A., Melkote S., Liverani E., Ascari A., Umbrello D. Milling of maraging steel components produced by selective laser melting. Int. J. Adv. Manuf. Technol. 2017;94:1895–1902. doi: 10.1007/s00170-017-0922-9. DOI

Du W., Bai Q., Zhang B. Machining characteristics of 18Ni-300 steel in additive/subtractive hybrid manufacturing. Int. J. Adv. Manuf. Technol. 2017;95:2509–2519. doi: 10.1007/s00170-017-1364-0. DOI

Lukáč P., Kocich R., Greger M., Padalka O., Szaraz Z. Microstructure of AZ31 and AZ61 Mg alloys prepared by rolling and ECAP. Kov. Mater. 2007;45:115–120.

Kunčická L., Kocich R., Drapala J., Andreyachshenko V. FEM simulations and comparison of the ECAP and ECAP-PBP influence on ti6al4v alloy’s deformation behaviour. Mater. Sci. 2013:391–396.

Jamili A., Zarei-hanzaki A., Abedi H., Mosayebi M., Kocich R., Kunčická L. Development of fresh and fully recrystallized microstructures through friction stir processing of a rare earth bearing magnesium alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2020;775:138837. doi: 10.1016/j.msea.2019.138837. DOI

Kunčická L., Kocich R., Král P., Pohludka M., Marek M. Effect of strain path on severely deformed aluminium. Mater. Lett. 2016;180:280–283. doi: 10.1016/j.matlet.2016.05.163. DOI

Prochazka J., Pokorny Z., Dobrocky D. Service behavior of nitride layers of steels for military applications. Coatings. 2020;10:975. doi: 10.3390/coatings10100975. DOI

Studeny Z., Dobrocký D., Pokorný Z. Importance of diffusion process on fatigue life of steel. Manuf. Technol. 2017;17:94–99. doi: 10.21062/ujep/x.2017/a/1213-2489/MT/17/1/94. DOI

Sun S., Hagihara K., Nakano T. Effect of scanning strategy on texture formation in Ni-25 at.%Mo alloys fabricated by selective laser melting. Mater. Des. 2018;140:307–316. doi: 10.1016/j.matdes.2017.11.060. DOI

Prasad K., Obana M., Ishii Y., Ito A., Torizuka S. The effect of laser scanning strategies on the microstructure, texture and crystallography of grains exhibiting hot cracks in additively manufactured Hastelloy X. Mech. Mater. 2021;157:103816. doi: 10.1016/j.mechmat.2021.103816. DOI

Zhang X., Xu H., Li Z., Dong A., Du D., Lei L., Zhang G., Wang D., Zhu G., Sun B. Effect of the scanning strategy on microstructure and mechanical anisotropy of Hastelloy X superalloy produced by Laser Powder Bed Fusion. Mater. Charact. 2021;173:110951. doi: 10.1016/j.matchar.2021.110951. DOI

Wan H., Zhou Z., Li C., Chen G., Zhang G. Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting. J. Mater. Sci. Technol. 2018;34:1799–1804. doi: 10.1016/j.jmst.2018.02.002. DOI

Wan H., Zhou Z., Li C., Chen G., Zhang G. Effect of scanning strategy on mechanical properties of selective laser melted Inconel 718. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2019;753:42–48. doi: 10.1016/j.msea.2019.03.007. DOI

Amirjan M., Sakiani H. Effect of scanning strategy and speed on the microstructure and mechanical properties of selective laser melted IN718 nickel-based superalloy. Int. J. Adv. Manuf. Technol. 2019;103:1769–1780. doi: 10.1007/s00170-019-03545-0. DOI

Liu J., Li G., Sun Q., Li H., Sun J., Wang X. Understanding the effect of scanning strategies on the microstructure and crystallographic texture of Ti-6Al-4V alloy manufactured by laser powder bed fusion. J. Mater. Process. Technol. 2022;299:117366. doi: 10.1016/j.jmatprotec.2021.117366. DOI

Ali H., Ghadbeigi H., Mumtaz K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Mater. Sci. Engineering. A Struct. Mater. Prop. Microstruct. Process. 2018;712:175–187. doi: 10.1016/j.msea.2017.11.103. PubMed DOI PMC

Gushchina M., Kuzminova Y., Kudryavtsev E., Babkin K., Andreeva V., Evlashin S., Zemlyakov E. Effect of Scanning Strategy on Mechanical Properties of Ti-6Al-4V Alloy Manufactured by Laser Direct Energy Deposition. J. Mater. Eng. Perform. 2021;31:2783–2791. doi: 10.1007/s11665-021-06407-7. DOI

Guan J., Wang Q. The effect of a remelting treatment scanning strategy on the surface morphology, defect reduction mechanism, and mechanical properties of a selective laser-melted Al-based alloy. J. Mater. Sci. 2022;56:4051. doi: 10.1007/s10853-021-06761-w. DOI

Nong X., Zhou X. Effect of scanning strategy on the microstructure, texture, and mechanical properties of 15-5PH stainless steel processed by selective laser melting. Mater. Charact. 2021;174:111012. doi: 10.1016/j.matchar.2021.111012. DOI

Larimian T., Almangour B., Grzesiak D., Walunj G., Borkar T. Effect of Laser Spot Size, Scanning Strategy, Scanning Speed, and Laser Power on Microstructure and Mechanical Behavior of 316L Stainless Steel Fabricated via Selective Laser Melting. J. Mater. Eng. Perform. 2021;31:2205–2224. doi: 10.1007/s11665-021-06387-8. DOI

Marattukalam J., Karlsson D., Pacheco V., Beran P., Wiklund U., Jansson U., Hjörvarsson B., Sahlberg M. The effect of laser scanning strategies on texture, mechanical properties, and site-specific grain orientation in selective laser melted 316L SS. Mater. Des. 2020;193:108852. doi: 10.1016/j.matdes.2020.108852. DOI

Song Y., Sun Q., Guo K., Wang X., Liu J., Sun J. Effect of scanning strategies on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2020;793:139879. doi: 10.1016/j.msea.2020.139879. DOI

Larimian T., Kannan M., Grzesiak D., Almangour B., Borkar T. Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2020;770:138455. doi: 10.1016/j.msea.2019.138455. DOI

Guo L., Gu J., Gan B., Ni S., Bi Z., Wang Z., Song M. Effects of elemental segregation and scanning strategy on the mechanical properties and hot cracking of a selective laser melted FeCoCrNiMn-(N,Si) high entropy alloy. J. Alloy. Compd. 2021;865:158892. doi: 10.1016/j.jallcom.2021.158892. DOI

Liu C., Tong J., Jiang M., Chen Z., Xu G., Liao H., Wang P., Wang X., Xu M., Lao C. Effect of scanning strategy on microstructure and mechanical properties of selective laser melted reduced activation ferritic/martensitic steel. Mater. Sci. Engineering. A Struct. Mater. Prop. Microstruct. Process. 2019;766:138364. doi: 10.1016/j.msea.2019.138364. DOI

Deirmina F., Peghini N., Almangour B., Grzesiak D., Pellizzari M. Heat treatment and properties of a hot work tool steel fabricated by additive manufacturing. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2019;753:109–121. doi: 10.1016/j.msea.2019.03.027. DOI

Yao Y., Wang K., Wang X., Li L., Cai W., Kelly S., Esparragoza N., Rosser M., Yan F. Microstructural heterogeneity and mechanical anisotropy of 18Ni-330 maraging steel fabricated by selective laser melting: The effect of build orientation and height. J. Mater. Res. 2020;35:2065–2076. doi: 10.1557/jmr.2020.126. DOI

Bhardwaj T., Shukla M. Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2018;734:102–109. doi: 10.1016/j.msea.2018.07.089. DOI

Rońda N., Grzelak K., Polański M., Dworecka-wójcik J. The Influence of Layer Thickness on the Microstructure and Mechanical Properties of M300 Maraging Steel Additively Manufactured by LENS® Technology. Materials. 2022;15:603. doi: 10.3390/ma15020603. PubMed DOI PMC

Król M., Snopiński P., Hajnyš J., Pagáč M., Łukowiec D. Selective laser melting of 18Ni-300 maraging steel. Materials. 2020;13:4268. doi: 10.3390/ma13194268. PubMed DOI PMC

Mao Z., Lu X., Yang H., Niu X., Zhang L., Xie X. Processing optimization, microstructure, mechanical properties and nanoprecipitation behavior of 18Ni300 maraging steel in selective laser melting. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2022;830:142334. doi: 10.1016/j.msea.2021.142334. DOI

Casalino G., Campanelli S., Contuzzi N., Ludovico A. Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Opt. Laser Technol. 2015;65:151–158. doi: 10.1016/j.optlastec.2014.07.021. DOI

Andronov V., Šimota J., Beránek L., Blažek J., Rušar F. Optimization of Process Parameters for Additively Produced Tool Steel 1.2709 with a Layer Thickness of 100 μm. Materials. 2021;14:2852. doi: 10.3390/ma14112852. PubMed DOI PMC

Jarfors A., Matsushita T., Siafakas D., Stolt R. On the nature of the anisotropy of Maraging steel (1.2709) in additive manufacturing through powder bed laser-based fusion processing. Mater. Des. 2021;204:109608. doi: 10.1016/j.matdes.2021.109608. DOI

Kannan R., Leonard D., Nandwana P. Optimization of direct aging temperature of Ti free grade 300 maraging steel manufactured using laser powder bed fusion (LPBF) Mater. Sci. Engineering. A Struct. Mater. Prop. Microstruct. Process. 2021;817:141266. doi: 10.1016/j.msea.2021.141266. DOI

Bai Y., Yang Y., Wang D., Zhang M. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2017;703:116–123. doi: 10.1016/j.msea.2017.06.033. DOI

Tetteh F., Boakye-yiadom S. Microstructural Evolution during Heat Treatment of 3D Printed Maraging Steel. Microsc. Microanal. 2019;25:2576–2577. doi: 10.1017/S1431927619013618. DOI

Thorsteinsdóttir E., Primdahl D., Zhang Y., Jensen D., Yu T. IOP Conference Series: Materials Science and Engineering. Volume 580. IOP Publishing; Bristol, UK: 2019. Aging of 3D-printed maraging steel; p. 12047. DOI

Dvorský D., Strakosova A., Vojtech D. Heat Treatment of High-Strength 3D-Printed Maraging Steel. Diffus. Defect Data. Solid State Data. Pt. A Defect Diffus. Forum. 2020;403:67–73. doi: 10.4028/www.scientific.net/DDF.403.67. DOI

Song J., Tang Q., Feng Q., Ma S., Setchi R., Liu Y., Han Q., Fan X., Zhang M. Effect of heat treatment on microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting. Opt. Laser Technol. 2019;120:105725. doi: 10.1016/j.optlastec.2019.105725. DOI

Wu W., Wang X., Wang Q., Liu J., Zhang Y., Hua T., Jiang P. Microstructure and mechanical properties of maraging 18Ni-300 steel obtained by powder bed based selective laser melting process. Rapid Prototyp. J. 2020;26:1379–1387. doi: 10.1108/RPJ-08-2018-0189. DOI

Gao P., Jing G., Lan X., Li S., Zhou Y., Wang Y., Yang H., Wei K., Wang Z. Effect of heat treatment on microstructure and mechanical properties of Fe–Cr–Ni–Co–Mo maraging stainless steel produced by selective laser melting. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2021;814:141149. doi: 10.1016/j.msea.2021.141149. DOI

Conde F., Escobar J., Oliveira J., Béreš M., Jardini A., Bose W., Avila J. Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2019;758:192–201. doi: 10.1016/j.msea.2019.03.129. DOI

Kim D., Kim T., Ha K., Oak J., Jeon J., Park Y., Lee W. Effect of heat treatment condition on microstructural and mechanical anisotropies of selective laser melted maraging 18Ni-300 steel. Metals. 2020;10:410. doi: 10.3390/met10030410. DOI

Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and residual stress within rotary swaged Cu/Al clad composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. DOI

Kocich R., Kunčická L., Dohnalík D., Macháčková A., Šofer M. Cold rotary swaging of a tungsten heavy alloy: Numerical and experimental investigations. Int. J. Refract. Met. Hard Mater. 2016;61:264–272. doi: 10.1016/j.ijrmhm.2016.10.005. DOI

Kunčická L., Kocich R., Németh G., Dvořák K., Pagáč M. Effect of post process shear straining on structure and mechanical properties of 316 L stainless steel manufactured via powder bed fusion. Addit. Manuf. 2022;59:103128. doi: 10.1016/j.addma.2022.103128. DOI

Pitassi D. Finite Element Thermal Analysis of Metal Parts Additively Manufactured via Selective Laser Melting. IntechOpen; London, UK: 2018. DOI

Thijs L., Verhaeghe F., Craeghs T., Humbeeck J., Kruth J. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010;58:3303–3312. doi: 10.1016/j.actamat.2010.02.004. DOI

Yadroitsev I., Yadroitsava I. Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual Phys. Prototyp. 2015;10:67–76. doi: 10.1080/17452759.2015.1026045. DOI

Lavender C. Mechanical and Microstructural Properties of Maraging Steel Samples Produced by Additive Manufacturing (3D Printing) Naval Postgraduate School; Monterey, CA, USA: 2020.

Kaynak Y., Kitay O. Porosity, surface quality, microhardness and microstructure of selective laser melted 316l stainless steel resulting from finish machining. J. Manuf. Mater. Process. 2018;2:36. doi: 10.3390/jmmp2020036. DOI

Grove C., Jerram D. jPOR: An ImageJ macro to quantify total optical porosity from blue-stained thin sections. Comput. Geosci. 2011;37:1850–1859. doi: 10.1016/j.cageo.2011.03.002. DOI

Afkhami S., Javaheri V., Dabiri E., Piili H., Björk T. Effects of manufacturing parameters, heat treatment, and machining on the physical and mechanical properties of 13Cr10Ni1·7Mo2Al0·4Mn0·4Si steel processed by laser powder bed fusion. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2022;832:142402. doi: 10.1016/j.msea.2021.142402. DOI

Bai Y., Zhao C., Yang J., Hong R., Weng C., Wang H. Microstructure and machinability of selective laser melted high-strength maraging steel with heat treatment. J. Mater. Process. Technol. 2021;288:116906. doi: 10.1016/j.jmatprotec.2020.116906. DOI

Tomaz Í., Pardal J., Fonseca M. Influence of minimum quantity lubrication in the surface quality of milled maraging steel. Int. J. Adv. Manuf. Technol. 2019;104:4301–4311. doi: 10.1007/s00170-019-04262-4. DOI

Wang P., Huang P., Ng F., Sin W., Lu S., Nai M., Dong Z., Wei J. Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder. Mater. Des. 2019;168:107576. doi: 10.1016/j.matdes.2018.107576. DOI

Wang P., Song J., Nai M., Wei J. Experimental analysis of additively manufactured component and design guidelines for lightweight structures: A case study using electron beam melting. Addit. Manuf. 2020;33:101088. doi: 10.1016/j.addma.2020.101088. DOI

Bodziak S., Al-rubaie K., Valentina L., Lafratta F., Santos E., Zanatta A., Chen Y. Precipitation in 300 grade maraging steel built by selective laser melting: Aging at 510 °C for 2 h. Mater. Charact. 2019;151:73–83. doi: 10.1016/j.matchar.2019.02.033. DOI

Kunčická L., Kocich R., Kačor P., Jambor M., Jopek M. Influence of (Sub) Structure Development within Rotary Swaged Al–Cu Clad Conductors on Skin Effect during Transfer of Alternating Current. Materials. 2022;15:650. doi: 10.3390/ma15020650. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...