Optimization of Process Parameters for Additively Produced Tool Steel 1.2709 with a Layer Thickness of 100 μm
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000826
ESIF, EU Operational Programme Research, Development and Education, and from the Center of Advanced Aerospace Technology
SGS19/164/OHK2/3T/12
The development of 3D printing technology for the aerospace industry
PubMed
34073583
PubMed Central
PMC8198822
DOI
10.3390/ma14112852
PII: ma14112852
Knihovny.cz E-resources
- Keywords
- 3D printing, 3D printing parameters optimization, Direct Metal Laser Sintering (DMLS), additive manufacturing, energy density, layer thickness,
- Publication type
- Journal Article MeSH
The purpose of this study was to find and optimize the process parameters of producing tool steel 1.2709 at a layer thickness of 100 μm by DMLS (Direct Metal Laser Sintering). HPDC (High Pressure Die Casting) tools are printed from this material. To date, only layer thicknesses of 20-50 μm are used, and parameters for 100 µm were an undescribed area, according to the state of the art. Increasing the layer thickness could lead to time reduction and higher economic efficiency. The study methodology was divided into several steps. The first step was the research of the single-track 3D printing parameters for the subsequent development of a more accurate description of process parameters. Then, in the second step, volume samples were produced in two campaigns, whose porosity was evaluated by metallographic and CT (computed tomography) analysis. The main requirement for the process parameters was a relative density of the printed material of at least 99.9%, which was achieved and confirmed using the parameters for the production of the samples for the tensile test. Therefore, the results of this article could serve as a methodological procedure for optimizing the parameters to streamline the 3D printing process, and the developed parameters may be used for the productive and quality 3D printing of 1.2709 tool steel.
See more in PubMed
Zetková I. Ph.D. Thesis. University of West Bohemia; Pilsen, Czechia: 2017. Problematika Výroby Strojních Kovových Součástí 3D tiskem.
Kempen K. Ph.D. Thesis. Katholieke Universiteit Leuven; Leuven, Belgium: 2015. Expanding the materials palette for Selective Laser Melting of metals.
Sun S., Brandt M., Easton M. Additive Manufacturing Technologies. Springer; New York, NY, USA: 2017. Powder bed fusion processes; pp. 55–77.
Yap C.Y., Chua C.K., Dong Z.L., Liu Z.H., Zhang D.Q., Loh L.E., Sing S.L. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015;2:041101. doi: 10.1063/1.4935926. DOI
Pei W., Zhengying W., Zhen C., Junfeng L., Shuzhe Z., Jun D. Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder. Appl. Phys. A. 2017;123:1–5. doi: 10.1007/s00339-017-1143-7. DOI
Hitzler L., Merkel M., Hall W., Öchsner A. A Review of Metal Fabricated with Laser- and Powder-Bed Based Additive Manufacturing Techniques: Process, Nomenclature, Materials, Achievable Properties, and its Utilization in the Medical Sector. Adv. Eng. Mater. 2018;20:1700658. doi: 10.1002/adem.201700658. DOI
Karg M.C.H., Hentschel O., Ahuja B., Junker D., Hassler U., Schäperkötter C.S., Haimerl A., Arnet H., Merklein M., Schmidt M. Comparison of process characteristics and resulting microstructures of maraging steel 1.2709 in Additive Manufacturing via Laser Metal Deposition and Laser Beam Melting in Powder Bed; Proceedings of the 6th International Conference on Addtive Technologies; Nürnberg, Germany. 29–30 November 2016; pp. 39–50.
Schober J. Parametric analysis of 1.2709 maraging steel manufactured by LPBF. [(accessed on 26 March 2021)];Easychair Prepr. 2019 :1061. Available online: https://easychair.org/publications/preprint/Fg8f.
Król M., Snopiński P., Hajnyš J., Pagáč M., Łukowiec D. Selective Laser Melting of 18NI-300 Maraging Steel. Materials. 2020;13:4268. doi: 10.3390/ma13194268. PubMed DOI PMC
Mugwagwa L., Yadroitsev I., Matope S. Matope Effect of Process Parameters on Residual Stresses, Distortions, and Porosity in Selective Laser Melting of Maraging Steel 300. Metals. 2019;9:1042. doi: 10.3390/met9101042. DOI
Jarfors A.E.W., Shashidhar A.C.G.H., Yepur H.K., Steggo J., Andersson N.-E., Stolt R. Build Strategy and Impact Strength of SLM Produced Maraging Steel (1.2709) Metals. 2021;11:51. doi: 10.3390/met11010051. DOI
De Souza A.F., Al-Rubaie K.S., Marques S., Zluhan B., Santos E.C. Effect of laser speed, layer thickness, and part position on the mechanical properties of maraging 300 parts manufactured by selective laser melting. Mater. Sci. Eng. A. 2019;767:138425. doi: 10.1016/j.msea.2019.138425. DOI
Hatos I., Fekete I., Ibriksz T., Kocsis B., Nagy A.L., Hargitai H. Effect of locally increased melted layer thickness on the mechanical properties of laser sintered tool steel parts. Iop Conf. Ser. Mater. Sci. Eng. 2018;426:012014. doi: 10.1088/1757-899X/426/1/012014. DOI
Kempen K., Yasa E., Thijs L., Kruth J.-P., Van Humbeeck J. Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel. Phys. Procedia. 2011;12:255–263. doi: 10.1016/j.phpro.2011.03.033. DOI
Suzuki A., Nishida R., Takata N., Kobashi M., Kato M. Design of laser parameters for selectively laser melted maraging steel based on deposited energy density. Addit. Manuf. 2019;28:160–168. doi: 10.1016/j.addma.2019.04.018. DOI
Narvan M., Al-Rubaie K.S., Elbestawi M. Process-Structure-Property Relationships of AISI H13 Tool Steel Processed with Selective Laser Melting. Materials. 2019;12:2284. doi: 10.3390/ma12142284. PubMed DOI PMC
Wüst P., Edelmann A., Hellmann R. Areal Surface Roughness Optimization of Maraging Steel Parts Produced by Hybrid Additive Manufacturing. Materials. 2020;13:418. doi: 10.3390/ma13020418. PubMed DOI PMC
Bhardwaj T., Shukla M. Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel. Mater. Sci. Eng. A. 2018;734:102–109. doi: 10.1016/j.msea.2018.07.089. DOI
Bai Y., Yang Y., Wang D., Zhang M. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng. A. 2017;703:116–123. doi: 10.1016/j.msea.2017.06.033. DOI
Letenneur M., Kreitcberg A., Brailovski V. Optimization of Laser Powder Bed Fusion Processing Using a Combination of Melt Pool Modeling and Design of Experiment Approaches: Density Control. J. Manuf. Mater. Process. 2019;3:21. doi: 10.3390/jmmp3010021. DOI
Hatos I., Fekete I., Harangozó D., Hargitai H. Influence of Local Porosity on the Mechanical Properties of Direct Metal Laser-Sintered 1.2709 Alloy. Stroj. Vestn. J. Mech. Eng. 2020;66:351–357. doi: 10.5545/sv-jme.2020.6573. DOI
Mutua J., Nakata S., Onda T., Chen Z.-C. Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater. Des. 2018;139:486–497. doi: 10.1016/j.matdes.2017.11.042. DOI
EOS MaragingSteel MS1 Material Data Sheet. [(accessed on 26 March 2021)];2014 Germany. Available online: https://www.eos.info/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material-datasheet/werkzeugstahl_ms1_cx/ms1/ms-ms1-m280_m290_400w_material_data_sheet_05-14_en.pdf.
EOS ToolSteel 1.2709 Material Data Sheet. [(accessed on 26 March 2021)];2020 Germany. Available online: https://www.eos.info/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material-datasheet/werkzeugstahl_ms1_cx/material_datasheet_eos_toolsteel_1.2709_premium_en_2020_web.pdf.
Simson T., Koch J., Rosenthal J., Kepka M., Zetek M., Zetková I., Wolf G., Tomčík P., Kulhánek J. Mechanical Properties of 18Ni-300 maraging steel manufactured by LPBF. Procedia Struct. Integr. 2019;17:843–849. doi: 10.1016/j.prostr.2019.08.112. DOI
Kučerová L., Zetková I., Jandová A., Bystrianský M. Microstructural characterisation and in-situ straining of additive-manufactured X3NiCoMoTi 18-9-5 maraging steel. Mater. Sci. Eng. A. 2019;750:70–80. doi: 10.1016/j.msea.2019.02.041. DOI
Song J., Tang Q., Feng Q., Ma S., Setchi R., Liu Y., Han Q., Fan X., Zhang M. Effect of heat treatment on microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting. Opt. Laser Technol. 2019;120:105725. doi: 10.1016/j.optlastec.2019.105725. DOI
Casalino G., Campanelli S.L., Contuzzi N., Ludovico A.D. Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Opt. Laser Technol. 2015;65:151–158. doi: 10.1016/j.optlastec.2014.07.021. DOI
Kempen K., Thijs L. Proceedings of the 22nd Annual International Solid Freeform Fabrication Symposium: An Additive Manufacturing Conference, Austin, TX, USA, 8–10 August 2016. University of Texas; Austin, TX, USA: 2011. Process Optimization and Microstructural Analysis for Selective Laser Melting of AlSi10Mg; pp. 484–495.
Beránek L., Kroisová D., Dvořáčková Š., Urban J., Šimota J., Andronov V., Bureš L., Pelikán L. Use of computed tomography in dimensional quality control and NDT. Manuf. Technol. 2020;20:566–575.
EN ISO 6892-1 Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. [(accessed on 26 March 2021)];2019 ISO. Available online: http://goktasmetal.com/wp-content/uploads/2016/01/TS%20EN%20ISO%206892-1.pdf.
Sola A., Nouri A. Microstructural porosity in additive manufacturing: The formation and detection of pores in metal parts fabricated by powder bed fusion. J. Adv. Manuf. Process. 2019;1:e10021. doi: 10.1002/amp2.10021. DOI
Herbold E.B., Walton O., Homel M.A. Simulation of Powder Layer Deposition in Additive Manufacturing Processes Using the Discrete Element Method. U.S. Department of Energy; Office of Scientific and Technical Information; Livermore, CA, USA: 2015.
Lichovník J., Mizera O., Sadílek M., Čepová L., Zelinka J., Čep R. Influence of Tumbling Bodies on Surface Roughness and Geometric Deviations by Additive SLS technology. Manuf. Technol. 2020;20:342–346. doi: 10.21062/mft.2020.050. DOI
Blažek J. Master’s Thesis. Czech Technical University in Prague; Prague, Czechia: 2020. Process optimization of metal additive technologies.
Mechanical and Microstructural Anisotropy of Laser Powder Bed Fusion 316L Stainless Steel