Selective Laser Melting of 18NI-300 Maraging Steel

. 2020 Sep 25 ; 13 (19) : . [epub] 20200925

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32992702

In the present study, 18% Ni 300 maraging steel powder was processed using a selective laser melting (SLM) technique to study porosity variations, microstructure, and hardness using various process conditions, while maintaining a constant level of energy density. Nowadays, there is wide range of utilization of metal technologies and its products can obtain high relative density. A dilatometry study revealed that, through heating cycles, two solid-state effects took place, i.e., precipitation of intermetallic compounds and the reversion of martensite to austenite. During the cooling process, one reaction took place (i.e., martensitic transformation), which was confirmed by microstructure observation. The improvements in the Rockwell hardness of the analyzed material from 42 ± 2 to 52 ± 0.5 HRC was improved as a result of aging treatment at 480 °C for 5 h. The results revealed that the relative density increased using laser speed (340 mm/s), layer thickness (30 µm), and hatch distance (120 µm). Relative density was found approximately 99.3%. Knowledge about the influence of individual parameters in the SLM process on porosity will enable potential manufacturers to produce high quality components with desired properties.

Zobrazit více v PubMed

Pardal J.M., Tavares S.S.M., Terra V.F., Da Silva M.R., Dos Santos D.R. Modeling of precipitation hardening during the aging and overaging of 18Ni–Co–Mo–Ti maraging 300 steel. J. Alloy Compd. 2005;393:109–113. doi: 10.1016/j.jallcom.2004.09.049. DOI

Pardal J.M., Tavares S.S.M., Fonseca M.C., Abreu H.F.G., Silva J.J.M. Aging Behaviour and Mechanical Performance of 18-Ni 300 Steel Processed by Selective Laser Melting. J. Mater. Sci. 2006;41:2301–2307. doi: 10.1007/s10853-006-7170-y. DOI

Hajnys J., Pagác M., Mesícek J., Petru J., Król M. Influence of Scanning Strategy Parameters on Residual Stress in the SLM Process According to the Bridge Curvature Method for AISI 316L Stainless Steel. Materials. 2020;13:1659. doi: 10.3390/ma13071659. PubMed DOI PMC

Tan C., Zhoua K., Ma W., Zhangb P., Liub M., Kuang T. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater. Des. 2017;134:23–34. doi: 10.1016/j.matdes.2017.08.026. DOI

Bhardwaj T., Shukla M. Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel. Mater. Sci. Eng. A Struct. 2018;734:102–109. doi: 10.1016/j.msea.2018.07.089. DOI

Sroka M., Zieliński A., Mikuła J. The service life of the repair welded joint of Cr-Mo/Cr-Mo-V. Arch. Metall. Mater. 2016;61:969–974. doi: 10.1515/amm-2016-0217. DOI

Tewari R., Mazumder S., Batra I.S., Dey G.K., Banerjee S. Precipitation in 18 wt% Ni maraging steel of grade 350. Acta Mater. 2000;48:1187–1200. doi: 10.1016/S1359-6454(99)00370-5. DOI

He Y., Yang K., Qu W., Kong F., Su G. Strengthening and toughening of a 2800-MPa grade maraging steel. Mater. Lett. 2002;56:763–769. doi: 10.1016/S0167-577X(02)00610-9. DOI

He Y., Yang K., Sha W. Microstructure and mechanical properties of a 2000 MPa grade co-free maraging steel. Metall. Mater. Trans. A. 2005;36:2273–2287. doi: 10.1007/s11661-005-0100-9. DOI

Frazier W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014;23:1917–1928. doi: 10.1007/s11665-014-0958-z. DOI

Thompson S.M., Bian L., Shamsaei N., Yadollahi A. An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Addit. Manuf. 2015;8:36–62. doi: 10.1016/j.addma.2015.07.001. DOI

Shamsaei N., Yadollahi A., Bian L., Thompson S.M. An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control. Addit. Manuf. 2015;8:12–35. doi: 10.1016/j.addma.2015.07.002. DOI

Król M., Snopiński P., Czech A. The phase transitions in selective laser-melted 18-NI (300-grade) maraging steel. J. Therm. Anal. Calorim. 2020:1–8. doi: 10.1007/s10973-020-09316-4. PubMed DOI

Dziwoki A., Dulska A., Szajnar J., Król M. The Impact of Selected Geometry Parameter of Titanium Spatial Insert on the Surface Layer Formation on Grey Cast Iron. Arch. Foundry Eng. 2019;19:58–62.

Viswanathan U.K., Kutty T.R.G., Ganguly C. Dilatometric technique for evaluation of the kinetics of solid-state transformation of maraging steel. Metall. Trans. A. 1993;24:2653–2656. doi: 10.1007/BF02659489. DOI

Zaeh M.F., Branner G. Investigations on residual stresses and deformations in selective laser melting. Prod. Eng. 2010;4:35–45. doi: 10.1007/s11740-009-0192-y. DOI

Casalino G., Campanelli S.L., Contuzzi N., Ludovico A.D. Experimental investigation and statistical optimization of the selective laser melting process of a maraging steel. Opt. Laser Technol. 2015;65:151–158. doi: 10.1016/j.optlastec.2014.07.021. DOI

Suryawanshi J., Prashanth K.G., Ramamurty U. Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting. J. Alloy Compd. 2017;725:355–364. doi: 10.1016/j.jallcom.2017.07.177. DOI

Campanelli S.L., Contuzzi N., Ludovico A.D. Manufacturing of 18 Ni Marage 300 Steel Samples by Selective Laser Melting. Adv. Mater. Res. 2010;83:850–857. doi: 10.4028/www.scientific.net/AMR.83-86.850. DOI

Kempen K., Yasa E., Thijs L., Kruth J.P., Van Humbeeck J. Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel. Physcs. Proc. 2011;12:255–263. doi: 10.1016/j.phpro.2011.03.033. DOI

Bai Y., Yang Y., Wang D., Zhang M. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng. A. 2017;703:116–123. doi: 10.1016/j.msea.2017.06.033. DOI

Hopmann C., Yesildag N., Bremen S., Wissenbach K., Merkt S. Surface quality of profile extrusion dies manufactured by Selective Laser Melting. RTeJ-Forum Rapid Technol. 2015;2015:1.

ISO 3923-2 . Metallic Powders—Determination of Apparent Density—Part 2: Scott Volumeter Method. Technical Committee ISO; Geneva, Switzerland: 1981.

ISO 4497:2020 . Metallic Powders—Determination of Particle Size by Dry Sieving. Technical Committee ISO; Geneva, Switzerland: 2020.

ISO 3923-1:2018-09 . Metallic Powders–Determination of Apparent Density—Part 1 Funnel Method. Technical Committee ISO; Geneva, Switzerland: 2018.

ISO 3953:2011E . Metallic Powders—Determination of Tap Density. Technical Committee ISO; Geneva, Switzerland: 2011.

Mutua J., Nakata S., Onda T., Chen Z.C. Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater Design. 2018;139:486–497. doi: 10.1016/j.matdes.2017.11.042. DOI

Yin S., Chen C., Yan X., Feng X., Jenkins R., O’Reilly P., Liu M., Li H., Lupoi R. Selective laser melting of WC reinforced maraging steel 300: Microstructure characterization and tribological performance. Addit. Manuf. 2018;22:592–600. doi: 10.1016/j.surfcoat.2018.11.033. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace