Laser Beam Drilling of Inconel 718 and Its Effect on Mechanical Properties Determined by Static Uniaxial Tensile Testing at Room and Elevated Temperatures
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008407
Structural Funds of European Union project
PubMed
34205100
PubMed Central
PMC8199970
DOI
10.3390/ma14113052
PII: ma14113052
Knihovny.cz E-zdroje
- Klíčová slova
- Inconel 718, laser drilling, mechanical properties, microcracks, recast layer,
- Publikační typ
- časopisecké články MeSH
Particularly in the aerospace industry and its applications, recast layers and microcracks in base materials are considered to be undesirable side effects of the laser beam machining process, and can have a significant influence on the resulting material behavior and its properties. The paper deals with the evaluation of the affected areas of the Inconel 718 nickel-base superalloy after its drilling by a laser beam. In addition, measurements and analyses of the mechanical properties were performed to investigate how these material properties were affected. It is supposed that the mechanical properties of the base material will be negatively affected by this accompanying machining process phenomenon. As a verification method of the final mechanical properties of the material, static uniaxial tension tests were performed on experimental flat shape samples made of the same material (Inconel 718) and three different thicknesses (0.5/1.0/1.6 mm) which best represented the practical needs of aerospace sheet metal applications. There was one hole that was drilled with an angle of under 70° in the middle of the sample length. Additionally, there were several sets of samples for each material thickness that were drilled by both conventional and nonconventional methods to emphasize the effect of the recast layer on the base material. In total, 192 samples were evaluated within the experiment. Moreover, different tensile testing temperatures (room as 23 °C and elevated as 550 °C) were determined for all the circumstances of the individual experiments to simulate real operation load material behavior. As a result, the dependencies between the amount of the recast layer and the length of the microcracks observed after the material was machined by laser beam, and the decrease in the mechanical properties of the base material, were determined.
Zobrazit více v PubMed
Ulutan D., Ozel T. Machining induced surface integrity in titanium and nickel alloys: A review. Int. J. Mach. Tools Manuf. 2011;51:250–280. doi: 10.1016/j.ijmachtools.2010.11.003. DOI
Ding Q.Q., Bei H.B., Zhao X.B., Gao Y.F., Zhang Z. Processing, Microstructures and Mechanical Properties of a Ni-Based Single Crystal Superalloy. Crystals. 2020;10:572. doi: 10.3390/cryst10070572. DOI
Gupta M.K., Pruncu C.I., Mia M., Singh G., Singh S., Prakash C., Sood P.K., Gill H.S. Machinability Investigations of Inconel-800 Super Alloy under Sustainable Cooling Conditions. Materials. 2018;11:2088. doi: 10.3390/ma11112088. PubMed DOI PMC
Gupta M.K., Mia M., Pruncu C.I., Kapłonek W., Nadolny K., Patra K., Mikolajczyk T., Pimenov D.Y., Sarikaya M., Sharma V.S. Parametric optimization and process capability analysis for machining of nickel-based superalloy. Int. J. Adv. Manuf. Technol. 2019;102:3995–4009. doi: 10.1007/s00170-019-03453-3. DOI
Madariaga A., Arrazola P.J., Esnaola J.A., Ruiz-Hervias J., Muñoz P. Evolution of Residual Stresses Induced by Machining in a Nickel based Alloy Under Static Loading at Room Temperature. Procedia CIRP. 2014;13:175–180. doi: 10.1016/j.procir.2014.04.030. DOI
Li C., Xu X., Li Y., Tong H., Ding S., Kong Q., Zhao L. Effects of dielectric fluids on surface integrity for the recast layer in high speed EDM drilling of nickel allo. J. Alloys Compd. 2019;783:95–102. doi: 10.1016/j.jallcom.2018.12.283. DOI
Klocke F., Zeis M., Klink A., Veselovac D. Experimental Research on the Electrochemical Machining of Modern Titanium- and Nickel-based Alloys for Aero Engine Components. Procedia CIRP. 2013;6:368–372. doi: 10.1016/j.procir.2013.03.040. DOI
Pusavec F., Deshpande A., Yang S., M’Saoubi R., Kopac J., Dillon O.W., Jr., Jawahir I.S. Sustainable machining of high temperature nickel alloy—Inconel 718: Part 1—predictive performance models. J. Clean. Prod. 2014;81:255–269. doi: 10.1016/j.jclepro.2014.06.040. DOI
Pusavec F., Deshpande A., Yang S., M’Saoubi R., Kopac J., Dillon O.W., Jr., Jawahir I.S. Sustainable Machining of High Temperature Nickel Alloy–Inconel 718: Part 2-chip breakability and optimization. J. Clean. Prod. 2014;87:941–952. doi: 10.1016/j.jclepro.2014.10.085. DOI
Abu Qudeiri J.E., Saleh A., Ziout A., Mourad A.-H.I., Abidi M.H., Elkaseer A. Advanced Electric Discharge Machining of Stainless Steels: Assessment of the State of the Art, Gaps and Future Prospect. Materials. 2019;12:907. doi: 10.3390/ma12060907. PubMed DOI PMC
Patel P.R.B.S.M. A Review of Parametric Optimization of Wire Electric Discharge Machining. Indian J. Appl. Res. 2015;5:60–62.
Muthuramalingam T., Mohan B. A review on influence of electrical process parameters in EDM process. Arch. Civ. Mech. Eng. 2015;15:87–94. doi: 10.1016/j.acme.2014.02.009. DOI
Aldulaimy H.L., Hammed S. The effect of different dielectrics on material removal rate, surface roughness and white layer thickness in EDM process. Int. J. Eng. Technol. 2018;7:4455–4461.
Alshemary A., Pramanik A., Basak A., Littlefair G. Accuracy of duplex stainless steel feature generated by electrical discharge machining (EDM) Measurement. 2018;130:137–144. doi: 10.1016/j.measurement.2018.08.013. DOI
Kliuev M., Wegener K. Method of Machining Diffusors in Inconel 718 Turbine Blades for Film Cooling using EDM Drilling and Shaping. Procedia CIRP. 2020;95:511–515. doi: 10.1016/j.procir.2020.10.001. DOI
Kliuev M., Boccadoro M., Perez R., Bó W.D., Stirnimann J., Kuster F., Wegener K. EDM Drilling and Shaping of Cooling Holes in Inconel 718 Turbine Blades. Procedia CIRP. 2016;42:322–327. doi: 10.1016/j.procir.2016.02.293. DOI
Xu S.Q., Huang S., Meng X.K., Sheng J., Zhang H.F., Zhou J.Z. Thermal evolution of residual stress in IN718 alloy subjected to laser peening. Opt. Laser Eng. 2017;94:70–75. doi: 10.1016/j.optlaseng.2017.03.004. DOI
Zou Z., Guo Z., Huang Q., Yue T., Liu J., Chen X. Precision EDM of Micron-Scale Diameter Hole Array Using in-Process Wire Electro-Discharge Grinding High-Aspect-Ratio Microelectrodes. Micromachines. 2021;12:17. doi: 10.3390/mi12010017. PubMed DOI PMC
Dubey A.K., Yadava V. Laser beam machining—A review. Int. J. Mach. Tools Manuf. 2008;48:609–628. doi: 10.1016/j.ijmachtools.2007.10.017. DOI
Meijer J. Laser beam machining (LBM), state of the art and new opportunities. J. Mater. Process. Technol. 2004;149:2–17. doi: 10.1016/j.jmatprotec.2004.02.003. DOI
Sheng J., Zhnag H., Hu X.Q., Huang S. Influence of laser peening on the high-temperature fatigue life and fracture of Inconel 718 nickel-based alloy. Theor. Appl. Fract. Mech. 2020;109:102757. doi: 10.1016/j.tafmec.2020.102757. DOI
Andersson H., Persson C., Hansson T. Crack growth in In718 at high temperature. Int. J. Fatigue. 2001;23:817–827. doi: 10.1016/S0142-1123(01)00031-7. DOI
Gill A.S., Telang A., Vasudeyan V.K. Characteristics of surface layers formed on inconel 718 by laser shock peening with and without a protective coating. J. Mater. Process. Technol. 2015;225:463–472. doi: 10.1016/j.jmatprotec.2015.06.026. DOI
Kong M.C., Wang J. Surface Quality Analysis of Titanium and Nickel-based Alloys Using Picosecond Laser. Procedia CIRP. 2014;13:417–422. doi: 10.1016/j.procir.2014.04.071. DOI
Dahotre N.B., Harimkar S.P. Laser Fabrication and Machining of Materials. Springer; New York, NY, USA: 2008. p. 558.
Gautam G.D., Pandey A.K. Pulsed Nd: YAG laser beam drilling: A review. Opt. Laser Technol. 2018;100:183–215. doi: 10.1016/j.optlastec.2017.09.054. DOI
Ding K.Y., Wang L.J., Sun Z., Liu Y.K. Effect of Isothermal Heat Treatment on Mechanical Properties of WC-17Co Coatings. Rare Metal. Mater. Eng. 2014;43:2365–2369.
Zhao Z., Zhang Y., Tian B., Jia Y., Liu Y., Song K., Volinsky A.A. Co effects on Cu-Ni-Si alloys microstructure and physical properties. J. Alloys Compd. 2019;797:1327–1337. doi: 10.1016/j.jallcom.2019.05.135. DOI
Zhong Z., Gu Y., Yuan Y. Microstructural stability and mechanical properties of a newly developed Ni–Fe-base superalloy. Mater. Sci. Eng. A. 2015;622:101–107. doi: 10.1016/j.msea.2014.11.010. DOI
Raza S.S., Ahmad T., Kamran M., Zhang X., Basit M.A., Manzoor M.U., Inam A., Butt O.M., Abrar M. Effect of hot rolling on microstructures and mechanical properties of Ni base superalloy. Vacuum. 2020;174:109204. doi: 10.1016/j.vacuum.2020.109204. DOI
Shakhov R.V., Ganeev A.A., Mukhtarov S.K., Logunov A.V. Effect of heat treatment and hot working on microstructure and mechanical properties of a novel nickel base superalloy. Lett. Mater. 2018;8:494–498. doi: 10.22226/2410-3535-2018-4-494-498. DOI
Król M., Snopiński P., Hajnyš J., Pagáč M., Łukowiec D. Selective Laser Melting of 18NI-300 Maraging Steel. Materials. 2020;13:4268. doi: 10.3390/ma13194268. PubMed DOI PMC
Huang S., Sheng J., Wang W.W., Meng X.K., Lu J.Z., Hu X.Q., Zhou J.Z. Finite element and experimental analysis of elevated-temperature fatigue behavior of IN718 alloy subjected to laser peening. Int. J. Fatigue. 2020;131:105337. doi: 10.1016/j.ijfatigue.2019.105337. DOI
Morar N., Roy R., Mehnen J., Nicholls J., Gray S. The effect of trepanning speed of laser drilled acute angled cooling holes on the high temperature low cycle corrosion fatigue performance of CMSX-4 at 850 °C. Int. J. Fatigue. 2017;102:112–120. doi: 10.1016/j.ijfatigue.2017.04.017. DOI
Mirkoohi E., Ning J., Bocchini P., Fergani O., Chiang K.-N., Liang S.Y. Thermal Modeling of Temperature Distribution in Metal Additive Manufacturing Considering Effects of Build Layers, Latent Heat, and Temperature-Sensitivity of Material Properties. J. Manuf. Mater. Process. 2018;2:63. doi: 10.3390/jmmp2030063. DOI
Liu X., Wang K., Hu P., He X., Yan B., Zhao X. Formability, Microstructure and Properties of Inconel 718 Superalloy Fabricated by Selective Laser Melting Additive Manufacture Technology. Materials. 2021;14:991. doi: 10.3390/ma14040991. PubMed DOI PMC
Bandyopadhyay S., Sundar J.S., Sundararajan G., Joshi S. Geometrical features and metallurgical characteristics of Nd: YAG laser drilled holes in thick IN718 and Ti–6Al–4V sheets. J. Mater. Process. Technol. 2002;127:83–95. doi: 10.1016/S0924-0136(02)00270-4. DOI
Dhaker K.L., Pandey A.K. Experimental study of Hole Taper in Laser Trepan Drilling of Nickel Based Super alloy Sheet. Mater. Today Proc. 2018;5:23994–24004. doi: 10.1016/j.matpr.2018.10.192. DOI
Dhaker K.L., Pandey A.K., Upadhayay B. Experimental Investigation of Hole Diameter in Laser Trepan Drilling of Inconel718 Sheet. Mater. Today Proc. 2017;4:7599–7608. doi: 10.1016/j.matpr.2017.07.093. DOI
Shi W., Chen P., Li X., Ren J., Jiang H. Uncertainty Quantification of the Effects of Small Manufacturing Deviations on Film Cooling: A Fan-Shaped Hole. Aerospace. 2019;6:46. doi: 10.3390/aerospace6040046. DOI
Bunker R.S. The Effects of Manufacturing Tolerances on Gas Turbine Cooling. J. Turbomach. 2009;131:41018. doi: 10.1115/1.3072494. DOI
PRIMA North America, Inc. Laser Drilling of Cylindrical and Shaped Holes. [(accessed on 13 May 2021)]; Available online: https://slideplayer.com/slide/6880655/
Zhang Y., Faghri A. Vaporization, melting and heat conduction in the laser drilling process. Int. J. Heat Mass Transf. 1999;42:1775–1790. doi: 10.1016/S0017-9310(98)00268-3. DOI
Teixidor D., Ferrer I., Ciurana J., Özel T. Optimization of process parameters for pulsed laser milling of micro-channels on AISI H13 tool steel. Robot. Comput. Manuf. 2013;29:209–218. doi: 10.1016/j.rcim.2012.05.005. DOI
Ready J.F., Farson D.F. LIA Handbook of Laser Materials Processing: A Technical Guide. Springer; Berlin/Heidelberg, Germany: 2001. p. 715.
Sezer H., Li L., Schmidt M., Pinkerton A., Anderson B., Williams P. Effect of beam angle on HAZ, recast and oxide layer characteristics in laser drilling of TBC nickel superalloys. Int. J. Mach. Tools Manuf. 2006;46:1972–1982. doi: 10.1016/j.ijmachtools.2006.01.010. DOI
Leigh S., Sezer K., Li L., Grafton-Reed C., Cuttell M. Statistical analysis of recast formation in laser drilled acute blind holes in CMSX-4 nickel superalloy. Int. J. Adv. Manuf. Technol. 2009;43:1094–1105. doi: 10.1007/s00170-008-1789-6. DOI
Gurav M.M., Gupta U., Dabade U. Quality evaluation of precision micro holes drilled using pulsed Nd: YAG laser on aerospace nickel-based superalloy. Mater. Today Proc. 2019;19:575–582. doi: 10.1016/j.matpr.2019.07.736. DOI
Yeo C., Tam S., Jana S., Lau M.W. A technical review of the laser drilling of aerospace materials. J. Mater. Process. Technol. 1994;42:15–49. doi: 10.1016/0924-0136(94)90073-6. DOI
Amanov A., Umarov R., Amanov T. Increase in Strength and Fretting Resistance of Alloy 718 Using the Surface Modification Process. Materials. 2018;11:1366. doi: 10.3390/ma11081366. PubMed DOI PMC
Antar M., Chantzis D., Marimuthu S., Hayward P. High Speed EDM and Laser Drilling of Aerospace Alloys. Procedia CIRP. 2016;42:526–531. doi: 10.1016/j.procir.2016.02.245. DOI
Marimuthu S., Antar M., Dunleavey J. Characteristics of micro-hole formation during fibre laser drilling of aerospace superalloy. Precis. Eng. 2019;55:339–348. doi: 10.1016/j.precisioneng.2018.10.002. DOI
Kononenko T.V., Freitag C., Sovyk D., Lukhter A.B., Skvortsov K.V., Konov V.I. Influence of pulse repetition rate on percussion drilling of Ti-based alloy by picosecond laser pulses. Opt. Lasers Eng. 2018;103:65–70. doi: 10.1016/j.optlaseng.2017.12.003. DOI
Stephen A., Schrauf G., Mehrafsun S., Vollertsen F. High Speed Laser Micro Drilling for Aerospace Applications. Procedia CIRP. 2014;24:130–133. doi: 10.1016/j.procir.2014.08.002. DOI
Lin Y.H., Ping X.L., Kuang J.C., Deng Y.J. Improving the microstructure and mechanical properties of laser cladded Ni-based alloy coatings by changing their composition: A review. Rev. Adv. Mater. Sci. 2020;59:340–351. doi: 10.1515/rams-2020-0027. DOI
Winbro Group Technologies Home Page. [(accessed on 10 February 2021)]; Available online: http://www.winbrogroup.com/systems/delta.
SPI Lasers Home Page. [(accessed on 10 February 2021)]; Available online: http://www.jklasers.com/nd-yag-pulsed-lasers.