Microstructural and Mechanical Properties of Novel Co-Free Maraging Steel M789 Prepared by Additive Manufacturing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35268963
PubMed Central
PMC8910837
DOI
10.3390/ma15051734
PII: ma15051734
Knihovny.cz E-zdroje
- Klíčová slova
- LPBF, M789 steel, SLM, heat treatment, mechanical properties, microstructure, oxide inclusions,
- Publikační typ
- časopisecké články MeSH
This research aims to characterize and examine the microstructure and mechanical properties of the newly developed M789 steel, applied in additive manufacturing. The data presented herein will bring about a broader understanding of the processing−microstructure−property−performance relationships in this material based on its chemical composition and heat treatment. Samples were printed using the laser powder bed fusion (LPBF) process and then the solution was annealed at 1000 °C for 1 h, followed by aging at 500 °C for soaking times of 3, 6 and 9 h. The AM components showed a relative density of 99.1%, which arose from processing with the following parameters: laser power of 200 W, laser speed of 340 mm/s, and hatch distance of 120 µm. Optical and electron microscopy observations revealed microstructural defects, typical for LPBF processes, like voids appearing between the melted pools of different sizes with round or creviced geometries, nonmelted powder particle formation inside such cavities, and small spherical porosity that was preferentially located between the molten pools. In addition, in heat-treated conditions, AM maraging steel has combined oxide inclusions of Ti and Al (TiO2:Al2O3) that reside along the grain boundaries and secondary porosities; these may act as preferential zones for crack initiation and may increase the brittleness of the AM steel under aged conditions. Consequently, the elongation of the AM alloy was low (<3%) for both annealed and aged solution conditions. The tensile strength of AM M789 increased from 968 MPa (solution annealed) to 1500−1600 MPa after the aging process due to precipitation within the intermetallic η-phase. A tensile strength and yield point of 1607 ± 26 and 1617 ± 45 MPa were obtained, respectively, after a full heat treatment at 500 °C/6 h. The results show that 3 h aging of solution annealed AM M789 steel achieves satisfactory material properties in industrial practice. Extending the aging time of printed parts to 6 h yields slightly improved properties but may not be worth the effort, while long-term aging (9 h) was shown to even reduce quality.
Zobrazit více v PubMed
Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi: 10.1016/j.actamat.2016.07.019. DOI
DebRoy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., Wilson-Heid A., De A., Zhang W. Additive manufacturing of metallic components—process, structure and properties. Prog. Mater. Sci. 2018;92:112–224. doi: 10.1016/j.pmatsci.2017.10.001. DOI
Bandyopadhyay A., Heer B. Additive manufacturing of multi-material structures. Mater. Sci. Eng. R. 2018;129:1–16. doi: 10.1016/j.mser.2018.04.001. DOI
Hebert R.J. Metallurgical aspects of powder bed metal additive manufacturing. J. Mater. Sci. 2016;51:1165–1175. doi: 10.1007/s10853-015-9479-x. DOI
Luo J.P., Jia X., Gu R.N., Zhou P., Huang Y.J., Sun J.F., Yan M. 316L stainless steel manufactured by selective laser melting and its biocompatibility with or without hydroxyapatite coating. Metals. 2018;8:548. doi: 10.3390/met8070548. DOI
Król M., Snopiński P., Hajnyš J., Pagáč M., Łukowiec D. Selective Laser Melting of 18NI-300 Maraging Steel. Materials. 2020;13:4268. doi: 10.3390/ma13194268. PubMed DOI PMC
Lu Y.J., Ren L., Wu S.Q., Yang C.G., Lin W.L., Xiao S.L., Yang Y., Yang K., Lin J.X. CoCrWCu alloy with antibacterial activity fabricated by selective laser melting: Densification, mechanical properties, and microstructural analysis. Powder Technol. 2018;325:289–300. doi: 10.1016/j.powtec.2017.11.018. DOI
Palad R., Tian Y., Chadha K., Rodrigues S., Aranas C. Microstructural features of novel corrosion-resistant maraging steel manufactured by laser powder bed fusion. Mater. Lett. 2020;275:128026. doi: 10.1016/j.matlet.2020.128026. DOI
Turk C., Zunko H., Aumayr C., Leitner H., Kapp M. Advances in maraging steels for additive manufacturing. Berg Huettenmaenn. Monatsh. 2019;164:112–116. doi: 10.1007/s00501-019-0835-z. DOI
Tian Y., Palad R., Aranas C., Jr. Microstructural evolution and mechanical properties of a newly designed steel fabricated by laser powder bed fusion. Addit. Manuf. 2020;36:101495. doi: 10.1016/j.addma.2020.101495. DOI
Yasa E., Kempen K., Thijs L., Kruth J. Microstructure and mechanical properties of maraging steel 300 after selective laser melting; Proceedings of the 21st Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference; Austin, TX, USA. 12 August 2010; pp. 383–396.
Piekło J., Garbacz-Klempka A. Use of maraging steel 1.2709 for implementing parts of pressure mold devices with conformal cooling system. Materials. 2020;13:5533. doi: 10.3390/ma13235533. PubMed DOI PMC
Kucerova L., Burdova K., Jenícek S., Chena I. Effect of solution annealing and precipitation hardening at 250 °C–550 °C on microstructure and mechanical properties of additively manufactured 1.2709 maraging steel. Mater. Sci. Eng. A. 2021;814:141195. doi: 10.1016/j.msea.2021.141195. DOI
Data Sheet: Additive Manufacturing Powder M789 AMPO. [(accessed on 2 January 2022)]. Available online: www.voestalpine.com/bohler-edelstahl.
GKN Sinter Metals Engineering Data Sheet: Maraging Steel (Material 1.2709) [(accessed on 10 November 2021)]. Available online: www.gknsintermetals.com.
3T Additive Manufacturing Ltd Data Sheet: Maraging Steel MS1 (M300) [(accessed on 10 November 2021)]. Available online: www.3t-am.com.
Data Sheet: OSPREY® 18NI300-AM Maraging Steel for Additive Manufacturing. [(accessed on 10 November 2021)]. Available online: www.metalpowder.sandvik/en/
Sun H., Chu X., Liu Z., Gisele A.I., Zou Y. Selective laser melting of maraging steels using recycled powders: A comprehensive microstructural and mechanical investigation. Metall. Mater. Trans. A. 2021;52:1714–1722. doi: 10.1007/s11661-021-06180-1. DOI
Tian Y., Palad R., Jiang L., Dorin T., Chadha K., Aranas C., Jr. the effect of heat treatments on mechanical properties of M789 steel fabricated by laser powder bed fusion. J. Alloys Comp. 2021;885:161033. doi: 10.1016/j.jallcom.2021.161033. DOI
Baia Y., Wang D., Yang Y., Wang H. Effect of heat treatment on the microstructure and mechanical properties of maraging steel by selective laser melting. Mater. Sci. Eng. A. 2019;760:105–117. doi: 10.1016/j.msea.2019.05.115. DOI
Noyan I.C., Cohen J.B. Residual Stress-Measurement by Diffraction and Interpretation. Springer; New York, NY, USA: 1987.
Brytan Z. Comparison of vacuum sintered and selective laser melted steel AISI 316L. Arch. Metall. Mater. 2017;62:2125–2131. doi: 10.1515/amm-2017-0314. DOI
Rai S., Choudhary B.K., Jayakumar T., Rao K.B.S., Raj B. Characterization of low cycle fatigue damage in 9Cr–1Mo ferritic steel using X-ray diffraction technique. Int. J. Pres. Ves. Pip. 1999;76:275–281. doi: 10.1016/S0308-0161(98)00140-9. DOI
Tung H.M., Huang J.H., Tsai D.G., Ai C.F., Yu G.P. Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment. Mater. Sci. Eng. A. 2009;500:104–108. doi: 10.1016/j.msea.2008.09.006. DOI
Sinha P.P., Tharian K.T., Sreekumar K., Nagarajan K.V., Sarma D.S. Effect of aging on microstructure and mechanical properties of cobalt free 18%Ni (250 grade) maraging steel. Mater. Sci. Technol. 1998;14:1–9. doi: 10.1179/mst.1998.14.1.1. DOI
Xu X., Ding J., Ganguly S., Diao C., Williams S. Oxide accumulation effects on wire + arc layer-by-layer additive manufacture process. J. Mater. Process Technol. 2018;252:739–750. doi: 10.1016/j.jmatprotec.2017.10.030. DOI
Fedina T., Sundqvist J., Kaplan A.F.H. Spattering and oxidation phenomena during recycling of low alloy steel powder in Laser Powder Bed Fusion. Mater. Today Commun. 2021;27:102241. doi: 10.1016/j.mtcomm.2021.102241. DOI