Influence of Scanning Strategy Parameters on Residual Stress in the SLM Process According to the Bridge Curvature Method for AISI 316L Stainless Steel
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/17_049/0008407
European Regional Development Fund
PubMed
32260108
PubMed Central
PMC7178378
DOI
10.3390/ma13071659
PII: ma13071659
Knihovny.cz E-resources
- Keywords
- AISI316L, BCM, SLM, residual stress, scanning strategy,
- Publication type
- Journal Article MeSH
The present paper deals with the investigation and comparison of the influence of scanning strategy on residual stress in the selective laser melting (SLM) process. For the purpose of the experiment, bridge geometry samples were printed by a 3D metal printer, which exhibited tension after cutting from the substrate, slightly bending the samples toward the laser melting direction. Samples were produced with the variation of process parameters and with a change in scanning strategy which plays a major role in stress generation. It was evaluated using the Bridge Curvature Method (BCM) and optical microscopy. At the end, a recommendation was made.
See more in PubMed
Baitimerov R.M., Lykov P.A., Radionova L.V., Safonov E.V. Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser. IOP Conf. Ser. Mater. Sci. Eng. 2017;17:36–40.
Williams R., Catrin J., Davies M., Hooper P.A. A pragmatic part scale model for residual stress and distortion prediction in powder bed fusion. Addit. Manuf. 2018;22:416–425. doi: 10.1016/j.addma.2018.05.038. DOI
Li C., Liu J.F., Guo Y.B. Prediction of Residual Stress and Part Distortion in Selective Laser Melting. Procedia CIRP. 2016;45:171–174. doi: 10.1016/j.procir.2016.02.058. DOI
Hardes C., Pöhl F., Röttger A., Thiele M., Theisen W., Esen C. Cavitation erosion resistance of 316L austenitic steel processed by selective laser melting (SLM) Addit. Manuf. 2019;29:100786. doi: 10.1016/j.addma.2019.100786. DOI
Kovalev O.B., Gurin A.M. Multivortex convection of metal in molten pool with dispersed impurity induced by laser radiation. Int. J. Heat Mass Transf. 2014;68:269–277. doi: 10.1016/j.ijheatmasstransfer.2013.09.031. DOI
Qiu Y., Wu J., Chen A., Chen P., Yang Y., Liu R., Chen G., Chen S., Shi Y., Li C. Balling phenomenon and cracks in alumina ceramics prepared by direct selective laser melting assisted with pressure treatment. Ceram. Int. 2020 doi: 10.1016/j.ceramint.2020.02.178. DOI
Alimardani M., Toyserkani E., Huissoon J., Paul C.P. On the Delamination and Crack Formation in a Thin Wall Fabricated Using Laser Solid Freeform Fabrication Process: An Experimental–Numerical Investigation. Opt. Lasers Eng. 2009;47:1160–1168. doi: 10.1016/j.optlaseng.2009.06.010. DOI
Wu A.S., Brown D.W., Kumar M., Gallegos G.F., King W.E. An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2014;45:6260–6270. doi: 10.1007/s11661-014-2549-x. DOI
Vasinonta A., Beuth J.L., Griffith M. Process Maps for Predicting Residual Stress and Melt Pool Size in the Laser-Based Fabrication of Thin-Walled Structures. J. Manuf. Sci. Eng. 2007;129:101–109. doi: 10.1115/1.2335852. DOI
Mercelis P., Kruth J.-P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006;12:254–265. doi: 10.1108/13552540610707013. DOI
Zou S., Xiao H., Ye F., Li Z., Tang W., Zhu F., Chen C., Zhu C. Numerical analysis of the effect of the scan strategy on the residual stress in the multi-laser selective laser melting. Results Phys. 2020;16:103005. doi: 10.1016/j.rinp.2020.103005. DOI
Ali H., Ma L., Ghadbeigi H., Mumtaz K. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective laser melted Ti6Al4V. Mater. Sci. Eng. A. 2017;695:211–220. doi: 10.1016/j.msea.2017.04.033. DOI
Borralleras P., Segura I., Aranda M., Aguado A. Influence of experimental procedure on d-spacing measurement by XRD of montmorillonite clay pastes containing PCE-based superplasticizer. Cem. Concr. Res. 2019;116:266–272. doi: 10.1016/j.cemconres.2018.11.015. DOI
Prime M.B. Cross-sectional mapping of residual stresses by measuring the surface contour after a cut. J. Eng. Mater. Technol. Trans. ASME. 2001;123:162–168. doi: 10.1115/1.1345526. DOI
Kruth J.P., Deckers J., Evren Y., Wauthle R. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2012;226:980–991. doi: 10.1177/0954405412437085. DOI
Zhong C., Biermann T., Gasser A., Poprawe G. Experimental study of effects of main process parameters on porosity, track geometry, deposition rate, and powder efficiency for high deposition rate laser metal deposition. J. Laser Appl. 2015;27:042003-1–042003-8. doi: 10.2351/1.4923335. DOI
Markusson L. Master’s Thesis. Luleå University of Technology; Luleå, Sweden: 2017. Powder Characterization for Additive Manufacturing Processes.
Hajnys J. Ph.D. Thesis. VSB - Technical University of Ostrava, Faculty of Mechanical Engineering; Ostrava, Czech Republic: 2019. Research into the Effect of Finishing Operations on Modification of Utility Properties of Components Produced by Additive.
Maly M., Höller C., Skalon M., Meier B., Koutny D., Pichler R., Sommitsch C., Paloušek D. Effect of Process Parameters and High-Temperature Preheating on Residual Stress and Relative Density of Ti6Al4V Processed by Selective Laser Melting. Materials. 2019;12:930. doi: 10.3390/ma12060930. PubMed DOI PMC
Ali H., Ghadbeigi H., Mumtaz K. Processing Parameter effects on residual stress and mechanical properties of selective laser melted Ti6Al4V. J. Mater. Eng. Perform. 2018;27:4059–4068. doi: 10.1007/s11665-018-3477-5. PubMed DOI PMC
Ali H., Ghadbeigi H., Mumtaz K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng. A. 2018;712:175–187. doi: 10.1016/j.msea.2017.11.103. PubMed DOI PMC
Kruth J.-P., Badrossamay M., Yasa E., Deckers J., Thijs L., Humbeeck J. Part and material properties in selective laser melting of metals; Proceedings of the 16th International Symposium on Electromachining, ISEM 2010; Shanghai, China. 19–23 April 2010.
Porosity Analysis of Additive Manufactured Parts Using CAQ Technology
Hot Deformation Treatment of Grain-Modified Mg-Li Alloy
Selective Laser Melting of 18NI-300 Maraging Steel