Analysis of Welded Joint Properties on an AISI316L Stainless Steel Tube Manufactured by SLM Technology
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008407
Innovative and additive manufacturing technology - new technological solutions for 3D printing of metals and composite materials
PubMed
33008027
PubMed Central
PMC7579464
DOI
10.3390/ma13194362
PII: ma13194362
Knihovny.cz E-zdroje
- Klíčová slova
- mechanical properties, microstructure, selective laser melting, welded joints,
- Publikační typ
- časopisecké články MeSH
This work is focused on the analysis of the influence of welding on the properties and microstructure of the AISI316L stainless steel tube produced by 3D printing, specifically the SLM (Selective Laser Melting) method. Both non-destructive and destructive tests, including metallographic and fractographic analyses, were performed within the experiment. Microstructure analysis shows that the initial texture of the 3D print disappears toward the fuse boundary. It is evident that high temperature during welding has a positive effect on microstructure. Material failure occurred in the base material near the heat affected zone (HAZ). The results obtained show the fundamental influence of SLM technology in terms of material defects, on the properties of welded joints.
Zobrazit více v PubMed
Eckel Z.C., Zhou C., Martin J.H., Jacobsen A.J., Carter W.B., Schaedler T.A. Additive manufacturing of polymer-derived ceramics. Science. 2016;351:58–62. doi: 10.1126/science.aad2688. PubMed DOI
Frazier W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014;23:1917–1928. doi: 10.1007/s11665-014-0958-z. DOI
Kamath C., El-dasher B., Gallegos G.F., King W.E., Sisto A. Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. Int. J. Adv. Manuf. Technol. 2014;74:65–78. doi: 10.1007/s00170-014-5954-9. DOI
Zhang C., Bao Y., Zhu H., Nie X., Zhang W., Zhang S., Zeng X. A comparison between laser and TIG welding of selective laser melted AlSi10Mg. Opt. Laser Technol. 2019;120:105696. doi: 10.1016/j.optlastec.2019.105696. ISSN 0030-3992. DOI
Kuryntsev S.V. The influence of pre-heat treatment on laser welding of T-joints of workpieces made of selective laser melting steel and cold rolled stainless steel. Opt. Laser Technol. 2018;107:59–66. doi: 10.1016/j.optlastec.2018.05.031. ISSN 0030-3992. DOI
Matilainen V., Pekkarinen J., Salminen A. Weldability of additive manufactured stainless steel. Phys. Procedia. 2016;83:808–817. doi: 10.1016/j.phpro.2016.08.083. ISSN 1875-3892. DOI
Yu H., Li F., Yang J., Shao J., Wang Z., Zeng X. Investigation on laser welding of selective laser melted Ti-6Al-4V parts: Weldability, microstructure and mechanical properties. Mater. Sci. Eng. A. 2018;712:20–27. doi: 10.1016/j.msea.2017.11.086. DOI
Voropaev A., Stramko M., Sorokin A., Logachev I., Kuznetsov M., Gook S. Laser welding of Inconel 718 nickel-based alloy layer-by-layer products. Mater. Today Proc. 2020;30:473–477. doi: 10.1016/j.matpr.2019.12.399. ISSN 2214-7853. DOI
Scherillo F., Astarita A., Prisco U., Contaldi V., di Petta P., Langella A., Squillace A. Friction stir welding of AlSi10Mg plates produced by selective laser melting. Metallogr. Microstruct. Anal. 2018;7:457–463. doi: 10.1007/s13632-018-0465-y. DOI
Liverani E., Toschi S., Ceschini L., Fortunato A. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J. Mater. Process. Technol. 2017;249:255–263. doi: 10.1016/j.jmatprotec.2017.05.042. ISSN 0924-0136. DOI
Hajnys J., Pagac M., Kotera O., Petru J., Scholz S. Influence of basic process parameters on mechanical and internal properties of 316l steel in slm process for renishaw AM400. MM Sci. J. 2019:2790–2794. doi: 10.17973/MMSJ.2019_03_2018127. DOI
Pagáč M., Hajnyš J., Petrů J., Zlámal T. Materials Science Forum. Volume 919. Trans Tech Publications; Stafa-Zurich, Switzerland: 2018. Comparison of hardness of surface 316L stainless steel made by additive technology and cold rolling; pp. 84–91. DOI
Pagáč M., Hajnyš J., Petrů J., Zlámal T., Šofer M. The study of mechanical properties stainless steel 316L after production from metal powder with using additive technology and by method selective laser melting; Proceedings of the METAL 2017-26th International Conference on Metallurgy and Materials, Conference Proceedings; Brno, Czech Republic. 24–26 May 2017; pp. 962–967.
Suryawanshi J., Prashanth K.G., Ramamurty U. Mechanical behavior of selective laser melted 316L stainless steel. Mater. Sci. Eng. A. 2017;696:113–121. doi: 10.1016/j.msea.2017.04.058. ISSN 09215093. DOI
Tanprayoon D., Srisawadi S., Sato Y., Tsukamoto M., Suga T. Microstructure and hardness response of novel 316L stainless steel composite with TiN addition fabricated by SLM. Opt. Laser Technol. 2020;129:106238. doi: 10.1016/j.optlastec.2020.106238. ISSN 0030-3992. DOI
Guo P., Zou B., Huang C., Gao H. Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition. J. Mater. Process. Technol. 2017;240:12–22. doi: 10.1016/j.jmatprotec.2016.09.005. DOI
Löber L., Flache C., Petters R., Kühn U., Eckert J. Comparison of different post processing technologies for SLM generated 316l steel parts. Rapid Prototyp. J. 2013;19:173–179.
Oyelola O., Crawforth P., M’saoubi R., Clare A.T. Machining of additively manufactured parts: Implications for surface integrity. Procedia CIRP. 2016;45:119–122. doi: 10.1016/j.procir.2016.02.066. ISSN 22128271. DOI
Pagáč M., Hajnyš J., Malotová Š., Zlámal T., Petrů J. The influence of the laser power on the utility properties of the surface roughness parameter of the overhangs during the SLM process; Proceedings of the METAL 2018—27th International Conference on Metallurgy and Materials, Conference Proceedings; Brno, Czech Republic. 23–25 May 2018; pp. 814–819.
Kaynak Y., Ozhan K. The effect of post-processing operations on surface characteristics of 316L stainless steel produced by selective laser melting. Addit. Manuf. 2019;26:84–93. doi: 10.1016/j.addma.2018.12.021. ISSN 22148604. DOI
Campanelli S.L., Casalino G., Contuzzi N., Ludovico A.D. Taguchi optimization of the surface finish obtained by laser ablation on selective laser molten steel parts. Procedia CIRP. 2013;12:462–467. doi: 10.1016/j.procir.2013.09.079. ISSN 22128271. DOI
Čep R., Janásek A., Petrů J., Sadílek M., Mohyla P., Valíček J., Harnicarova M., Czan A. Surface roughness after machining and influence of feed rate on process. Precis. Mach. VII. 2014;581:341–347. doi: 10.4028/www.scientific.net/KEM.581.341. ISSN 1013-9826. DOI
Fieger T.V., Sattler M.F., Witt G. Developing laser beam welding parameters for the assembly of steel SLM parts for the automotive industry. Rapid Prototyp. J. 2018;24:1288–1295. doi: 10.1108/RPJ-12-2016-0204. ISSN 1355-2546. DOI
Yang J., Wang Y., Li F., Huang W., Jing G., Wang Z., Zeng X. Weldability, microstructure and mechanical properties of laser-welded selective laser melted 304 stainless steel joints. J. Mater. Sci. Technol. 2019;35:1817–1824. doi: 10.1016/j.jmst.2019.04.017. ISSN 1005-0302. DOI
Vontorová J., Váňová P. Determination of carburized layer thickness by GDOES method. AIMS Mater. Sci. 2018;5:34–43. doi: 10.3934/matersci.2018.1.34. DOI
Vontorová J., Dobiáš V., Mohyla P. Utilization of GDOES for the study of friction layers formed on the surface of brake discs during the friction process. Chem. Pap. 2017;71:1507–1514. doi: 10.1007/s11696-017-0145-4. ISSN 0366-6352. WOS:000405694900014. DOI
Hajnys J., Pagáč M., Měsíček J., Petru J., Król M. Influence of scanning strategy parameters on residual stress in the SLM process according to the bridge curvature method for AISI 316L stainless steel. Materials. 2020;13:1659. doi: 10.3390/ma13071659. PubMed DOI PMC
Jajarmi E., Sajjadi S.A., Mohebbi J. Predicting the relative density and hardness of 3YPSZ/316L composites using adaptive neuro-fuzzy inference system and support vector regression models. Measurement. 2019;145:472–479. doi: 10.1016/j.measurement.2019.05.108. ISSN 0263-2241. DOI
GE Additive 316L [online]. Germany. [(accessed on 24 September 2020)];2016 Available online: https://www.ge.com/additive/sites/default/files/2019-07/GEAP_316L_DS_EN_A4_v1.pdf.
Hlinka J., Kraus M., Hajnys J., Pagac M., Petrů J., Brytan Z., Tański T. Complex corrosion properties of AISI 316L steel prepared by 3D printing technology for possible implant applications. Materials. 2020;13:1527. doi: 10.3390/ma13071527. PubMed DOI PMC
EN ISO 6892-1: 2019 Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. ISO. [(accessed on 24 September 2020)];2019 Available online: http://goktasmetal.com/wp-content/uploads/2016/01/TS%20EN%20ISO%206892-1.pdf.
Bansod A., Patil A., Verma J., Shukla S. Microstructure, mechanical and electrochemical evaluation of dissimilar low Ni SS and 304 SS using different filler materials. Mater. Res. 2019;22 doi: 10.1590/1980-5373-mr-2017-0203. DOI
Sun Z., Tan X., Tor S.B., Yeong W.Y. Selective laser melting of stainless steel 316L with low porosity and high build rates. Mater. Des. 2016;104:197–204. doi: 10.1016/j.matdes.2016.05.035. ISSN 0264-1275. DOI
Yasa E., Kruth J.P. Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting. Procedia Eng. 2011;19:389–395. doi: 10.1016/j.proeng.2011.11.130. DOI
Deev A.A., Kuznetcov P.A., Petrov S.N. Anisotropy of mechanical properties and its correlation with the structure of the stainless steel 316L produced by the SLM method. Phys. Procedia. 2016;83:789–796. doi: 10.1016/j.phpro.2016.08.081. ISSN 1875-3892. DOI